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Abstract

We denote by r(Gy,G2) the ramsey number of two graphs Gy and Gy. If T4y is a
tree of order p 4+ 1 which is not a star, and if p is not a divisor of the positive integer
g — 1, then we shall show that r(T,4+1, K1,4) < p+q— 1, and we shall describe some
trees and stars for which equality holds. Furthermore, we determine the ramsey num-
bers (T, ,, Ty,,) for p,q > 4, where T7 denotes a tree of order n with A(T) = n—2.

1. Introduction

In this paper we consider finite, undirected, and simple graphs with the vertex
set V(G) and the edge set E(G). We write n(G) = |V(G)] for the order, (¢ for the
complement, and d(z,G) for the degree of the vertex x of G. By 6(G) and A(G)
we denote the minimum and maximum degree of G, respectively. For A C V(G) let
G[A] be the subgraph induced by A. The set N(x, &) consists of all vertices adjacent
to the vertex z, and N[z,G] = N(z, @)U {2}. By GUH we define the disjoint union
of the graphs G and H. If p is a positive integer, then we use pG for the union of p
copies of the graph G. We denote by K,, the complete graph of order n and by Ki»
the star of order n + 1. For a factorization of the complete graph K, in two graphs
Fy and Fy, we write K,, = Fy @ F,. The ramsey number r(Gy, G2) of two graphs Gy
and G is the least positive integer ¢ such that for any factorization K, = Fy @ F?,
the graph G; is a subgraph of F; for at least one 1 = 1,2.

If T,41 is a tree of order p + 1 which is not a star, and if p is not a divisor of the
positve integer ¢ — 1, then we shall show in this paper that r(Tpyy, K1) Sp+g—1,
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and we shall give different examples where equality holds. Furthermore, we determine
the ramsey numbers r(T,,,Tr,) for p,q > 4, where T denotes a tree of order n

with A(T*) =n —2.

2. Preliminary Results
The next two theorems are very important for our research.

Theorem 2.1 (Kirkman [4] 1847, Reif8 [6] 1859) The complete graph K, is
1-factorable.

Theorem 2.2 (Petersen [5] 1891) A graph G is 2-factorable if and only if G
is 2p-regular.

Lemma 2.1 Let T' be any tree of order n, and let G be a graph with §(G) > n — 1.
Then there exists is a subgraph 7" of ¢ which is isomorphic to T.

A proof of this well-known result can be found for example in the book of Char-
trand and Lesniak [3, p. 72]. In the sequel, we also need an extension of Lemma 2.1.
This extension is a consequence of the next lemma.

Lemma 2.2 Let G be a connected, non-complete graph of order n(G) > p + 2
with 6(G) > p > 3. Furthermore, let T be a tree with 4 < n(T) < p+ 1 and
A(T) < n(T') — 2. If a is an arbitrary vertex of T, then there exists a tree T, C @
which is isomorphic to T such that

Nd',GINV(T,) # V(T.),

where o’ € V(1) is the vertex isomorphic to a (if f : V(T') — V(T,) is an isomor-
phism with f(a) = &/, then we say that «’ is isomorphic to a).

Proof. We proceed by induction on n = n(T).

If n = 4, then T is a path of length 3. Since G is non-complete, there exist two
vertices  and y in G of distance two. Using this observation, it is easy to see that
Lemma 2.2 is valid for n = 4.

Now assume that 5 < n < p+ 1 and let @ be an arbitrary vertex of T'. Since T is
not a star, we find an end vertex v # a of T such that the tree H = T — v is neither
a star. Let v be adjacent to v in T. By the the induction hypothesis, there exists a
tree H, € G which is isomorphic to H such that N{a',G] NV (H,) # V(H,), where
a' is the vertex isomorphic to a. Let u’ € V(H,) be isomorphic to u. Since §(G) > p,
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we can find a vertex v/ in GG which is adjacent to v’ in G such that o' € V(H,). Now
the tree H, together with the vertex v’ and the edge u'v’ is isomorphic to 7', and it
has the desired properties. O

Lemma 2.3 Let GG be a connected graph of order n((7) > p + 2 with 6(G) > p > 2.
If T is a tree of order n(T) < p+ 2 and A(T') < p, then there exists a subgraph 7"
of G which is isomorphic to T.

Proof. Tf G is complete or n(T) < p+ 1, then the statement follows from Lemma 2.1.
In the remaining case that G is not complete and n(T') = p+ 2, we prove the lemma
by induction on p.

First, assume that p = 2. Then simple ohservations show that ¢/ contains a path of
length 3.

Second, assume that p >> 3. Then let v be an end vertex of T such that H =T —v is
not a star, and let a be adjacent to v in T. According to Lemma 2.2, there exists a
tree H, C G which is isomorphic to  such that N[/, G)1NV( H,) # V(H,), where o’
is the vertex isomorphic to a. Since §((¥) > p, we can find a neighbour v/ of a’ with
v’ & V(H,). If we now join H, and v’ by the edge a’v’, then we obtain a tree 7' C G,
isomorphicto T. O

3. Main Results

Let H and G be two graphs. If there exists a subgraph H’ of G which is isomor-
phic to H, then we say short that H is a subgraph of (7, and we write H C G. In
the following R?, means an m-regular graph of order n.

Our first result is an extension of the next theorem of Burr [1] from 1974.

Theorem (Burr [1] 1974) Let p,q > 2 be two integers. H T, is a tree of or-
der p + 1, then 7{Tpy1,K1,4) < p+ ¢. If there exists a positive integer ¢ such that
q— 1 =tp, then r(Tp41, K14) =p+ ¢

Theorem 3.1 Let p,q > 2 be two integers and T,41 be a tree of order p + 1 which

is not a star. If p is not a divisor of ¢ — 1, then
r(Tos1, Kig) Sp+q—1.
If furthermore, p and ¢ fulfil one of the following conditions, then equality holds.

i) If ¢ =2, then r(Tpy1, K1) =p+q¢—-1=p+1.
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i) If p=¢ >3, then r(Tp41, K14) =p+g—1=2p—1.
iii) If ¢ — 1 = kp + 1 for an integer k > 1, then 7(Tp41, K1,0) =p+¢— 1.

iv) If ¢ — 1 = kp + s for an integer k > 1 with 2 < s < p— 1, then r(Tpy1, K1q) =
pt+qg—1,ifk+s+1—p>0o0r A(Tp41) = p— 1. (In particular, we have
r(Tpp1, K1) =p+q—1,ifg—1=kp+p—Tlorifg—1=kp+p-2(p=3).)

v) Ifp > ¢ > 3 and A(Tpp1) = p— 1, then #(Tpp1, K1) =p+g—1,ifp+qis
even or if ¢ is odd and p is even, and r(Tp41, K1) = p+ ¢ — 2, if pis odd and
q is even.

Proof. Let G be any graph of order p+ q — 1. If Ky, is not a subgraph of G, then
A(G) < g — 1 and hence §(G) > p — 1. From the hypothesis that p is not a divisor
of ¢ — 1, we conclude that there exists a component H of & with n(H) > p+ 1.
Since A(Tp41) < p— 1, it follows from Lemma 2.3 that Tpy1 € H C G and therefore
r{(Tps1, K1) <p+qg—1

i) If ¢ = 2, then the complete graph G = K, shows immediately the inequality
r(Tp1, Kag) 2 p+ 1.

ii) If p = ¢ > 3, then we obtain r(Tp41, K1) = 2p — 1 from G = 2K,,.

iii) If g — 1 = kp + 1, then the graph G = (k + 1)K, of order p+ ¢ — 2 yields
r(Tpr1, Krg) 2P+ g - 1.

iv) Ifg—1=kp+swith2<s<p-landk+s+1-p=0, then there exists

the graph
G=(p+1-8)K,-1U(k+s+1-p)K,

of order n(G) = p+q—2. Since T4y is not a subgraph of G and AlG)<g-1,
we see that r(Tpy1, K1,4) > p+q—1. (In particular, for s =p—1ors=p—2,
the condition k + s + 1 — p > 0 is valid, and thus r(Tpq1, K1,4) =p+ ¢ — 1 for
g—1l=kp+p—lorq—1l=kp+p—-2)
Thus, we assume in the following that ¢ — 1 = kp + s with 2 < s < p—3 and
A(Tpr)=p—1.
If p+ ¢ is even or ¢ is odd and p is even, then according to Theorem 2.1 and
Theorem 2.2, there exists the factorization

- _ prtg-2 pt+g—2
Kppqo = RZ37" @ RI5TT,

which implies, together with the condition A(T,41) = p — 1, the inequality
r(Tpe1, Kig) 2P+ - 1.
If ¢ is even and p is odd, then we shall investigate the two cases depending on
whether & is even or odd.
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If k is odd, then it follows from ¢ = kp+s+1 that s is even. Hence, by Theorem
2.1, there exists the graph

F=kK,u RS
of order n(F) = p+ ¢ — 2. Then the factorization K,, o = F & F shows
T(Tp+1, I{l,q) Zptq— 1.
In the case that k is even, we conclude that s = 2t + 1 is odd. If p +# is even,
then there exists
Fy = (k= 1)K, U2RY,
and if p + ¢ is odd, then there exists
B = (k= 1)K, U R U RO

We observe that n(F;) = n(F;) = p+ ¢ — 2, and the factorizations K\, 5 =
F, & F, for ¢ = 1,2, yield the desired result.

Now let p > ¢ >3 and A(Tp41) =p— 1.
If p + ¢ is even or g is odd and p is even, then the inequality r(Tp41, K1)
p+ ¢ — 1 follows from the above factorization K42 = Rif%"2 & R’;f‘{—g.

v

In the case p odd and q even, let G be an arbitrary graph of order p+ ¢~ 2. If
K, is not a subgraph of (i, then we have A(G) < g—1 and hence §(G) > p—2,
and thus G is connected. Since the integers p + ¢ — 2 and p — 2 are both odd,
we can find a vertex v in G with |[N(v,G)| > p — 1. Consequently, 1,41 C G,
and we have proved r(Ty41, Kiq) Sp+q—2.

Finally, the factorization

e _ ppt+g-3 p+q—3
Kpyg-s = RJZ3 & RS

shows the opposite inequality r(Tp41, K1,0) 2 p+¢—2. 0

For the special case that the trees are stars, Burr and Roberts [2] determined the

ramsey numbers exactly.

Theorem (Burr, Roberts [2] 1973) Let p,q > 2 be two integers. Then

— H . . t
r(Kyp, K1) = { p+q—1, if p and ¢ are both even,

p+q, otherwise.

It is our aim now to determine the ramsey numbers of two trees Ty and T3 which
fulfil the property A(T;) = n(T;) — 2 for ¢ = 1,2.

Theorem 3.2 Let p,q > 4 be two integers. Then

p+qg—1, if g=2=tpor p—2=1gq,
r(Tyyy, Tor) = § p+g—3, if pis odd and ¢ =p,
p+q—2, otherwise.
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Proof. Let G be a graph of order p 4+ ¢ — 1 and assume that 7* 741 is not a subgraph
of G.

If A(G) < g —2, then 8(G) > p, and we deduce from Lemma 2.1 that T, CG.

If A(G) > ¢~ 1, then let v € V(G) such that d(v,G) = A(G). We choose a vertex
set A C N(v,(7) with |A] = ¢ — 1, and we define B = V(G) — (AU {v}). We have
[B| = p— 1 and all edges between A and B are necessarily elements of E(G). This
i) Spta— L

Let Without loss of generality ¢ — 2 = ¢p. Then the graph G = (t + 1)K, shows
(T Th) 2 p+g—1.

implies 7, , € (7, and so we have proved (7,

Now let & be a graph of order p + ¢ — 2 with ¢ — 2 # ¢p and p — 2 # tg, and
in addition assume that 77 *1 is not a subgraph of .
If A(GY) < g — 2. then §(G) > p — 1, and hence there is a component H of GG with
n(H) > p+ 1. In view of Lemma 2.3, we conclude Ir,CH<q.
If A(G) = g — 1, then let v € V() with d(v, ) = A(G). We choose a vertex set
A € N(v,d) with |A] = ¢ — 1, and we define B = V(G) — (AU {v}). We have
|B| = p— 2 and all edges between A and B are elements of £(G). If there are two
vertices in A which are adjacent in G, then T* a1 © G is immediate. So, we assume
now that G[A] = K, ;. Consequently, all vertices of B are adjacent to v in (.
If ¢ > p—1, then it is a simple matter to obtain T** »+1 & G. Therefore, all that
remains is the case p = ¢+ s with s > 3. If we define /I, = G[B] and H, = G[B],
then it is not difficult to see that T701 € Gor A(Hy) < s —2. From A(H,) < s — 2,
we deduce §(H,) 2 p—3—(s—2) = g— 1. Because p— 2 + tq, we thus obtain, using
Lemma 2.3, the contradiction T, < (. Since we have checked all the possibilities,
we have proved r(Ty,, 17, ) < p+ g — 2 for this case.
If p and ¢ are not both odd, then according to Theorem 2.1 and Theorem 2.2, there
exists the factorization

Kpyq-s = Rﬁgvg @ Ry

If p and ¢ are odd, and without loss of generality ¢ > p + 4, then we define
G =KU Rq Z3 and Kppe-3 = G @ G. These two factorizations yield the desired
equahty ?"(TP_H, Tr) = p+q—2for the discussed cases.

Finally, let p = ¢ be odd, and let G be a graph of order p + g — 3. Furthermore,
we assume that 7%, is not a subgraph of (/.
If A(G) < ¢— 3, then §(G) > p—1 and G is connected. In view of Lemma 2.3, we
conclude Ty, C G.
If A(G) = g —2, then 8(G) 2 p—2,A(G) > p—1, and G is connected. Now let
b€ V(G) with d(b,G) = A(G). We choose A C N(b, () such that |A| = p — 1, and
we define B = V(G) — (AU {b}). So, it follows |B| = ¢—3 > 2 and all edges between
A and B are contained in (. But now it is easy to see that T o1 =Try CG.
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If A(G) > q — 1, then let v be a vertex with d(v,G) = A(G). We choose A C
N(v,G) with |[A| = ¢ — 1 and we define B = V(G) — (AU {v}). Hence, we see that
|B] = p— 3 > 2 and all edges between A and B are necessarily in G. This implies

Ty, =Ty © G, and we obtain #(Tyyy, Byyq) < p+ ¢ — 3 for this case.

If p = q is odd, then the factorization
Kppg-a = thg_4 & thg_‘;
shows the desired equality, and the theorem is proved. O

In connection with Lemma 2.3, we like to formulate the following conjecture.

Conjecture Let (¢ be a connected graph of order n(() > p + 3 with §(G) > p > 3.
If T is a tree of order n(T) < p+ 3 and A(T) < p—1, then T'C G.

We note that there exist examples which show that this conjecture is not valid
for A(T") = p in general.
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