ON POTENTIALLY P-GRAPHIC DEGREE SEQUENCES

N.R. ACHUTHAN AND M.SIMANIHURUK SCHOOL OF MATHEMATICS AND STATISTICS CURTIN UNIVERSITY OF TECHNOLOGY GPO BOX U 1987 PERTH W.A 6001

ABSTRACT

A sequence $\pi = (d_1, d_2, \ldots, d_n)$ of positive integers is said to be **graphic** if there exists a simple graph G such that π is the degree sequence of G. For a specified property P of graphs, a sequence $\pi = (d_1, d_2, \ldots, d_n)$ of positive integers is said to be **potentially P-graphic** if π is graphic and there exists a realization of π with the property P.

In this paper we characterize potentially P-graphic sequences where P is one of the following properties:

- (i) connected and each block is a clique on k vertices.
- (ii) connected and each block is a clique on k_1 or k_2 vertices.

1. INTRODUCTION

In this paper we consider finite undirected graphs without loops or multiple edges. For a graph G, let V(G) and E(G) denote the vertex and edge sets respectively. Let $\deg_G(u)$ denote the degree of vertex u of G, that is, the number of edges in G incident at u. A sequence $\pi = (d_1, d_2, \ldots, d_n)$ of positive integers is called the **degree sequence** of graph G if the vertices of G can be labelled u_1, u_2, \ldots, u_n such that $\deg_G(u_1) = d_1$, $1 \le i \le n$. A sequence $\pi = (d_1, d_2, \ldots, d_n)$ is said to be graphic if there exists a graph G such that π is the degree sequence of G. Then G is called a realization of π . All sequences in this paper are non-negative integer sequences in non-increasing order. Let $\omega(G)$ denote the number of connected components of G.

Australasian Journal of Combinatorics 2(1990) pp. 29-38

Let P be an invariant property of graphs. A graphic sequence $\pi = (d_1, d_2, \ldots, d_n)$ is said to be **potentially P-graphic** if there exists a realization of π with property P and it is said to be **forcibly P-graphic** if every realization of π has property P. Many authors have characterized potentially P-graphic and forcibly P-graphic sequences for various properties P. Some of the properties P considered in the literature are : k-edge connectedness (Edmonds [3]), k-vertex connectedness (Wang and Kleitman [8]), k-factorability (Rao and Rao [6], Kundu [4]) and many more. For a good survey of these problems the reader is referred to S.B.Rao [7].

A nontrivial connected graph with no cut vertices is called a block. A block of a graph G is a subgraph of G that is a block and it is maximal with respect to this property.

Consider the property P: G is connected and each block is a clique. For this property P, the problem of characterizing the potentially P-graphic sequences was suggested by A.Ramachandra Rao [5]. We define **property** $P(\mathbf{k}_1, \mathbf{k}_2, \ldots, \mathbf{k}_r)$ to be: G is connected and each block is a clique on k vertices where k is one of the specified r distinct positive integers $\mathbf{k}_1, \mathbf{k}_2, \ldots, \mathbf{k}_r$. In this paper we characterize potentially $P(\mathbf{k}_1, \mathbf{k}_2, \ldots, \mathbf{k}_r)$ -graphic sequences for r=1 and r=1. In section 2 we present some of the results for general $P(\mathbf{k}_1, \mathbf{k}_2, \ldots, \mathbf{k}_r)$. In section 3 we discuss the main results for $P(\mathbf{k}_1, \mathbf{k}_2, \ldots, \mathbf{k}_r)$, r=1 and 2.

2. RELATED RESULTS

We assume that k_1,k_2,\ldots,k_r are r distinct integers greater than or equal to 2. Let $\pi=(d_1,d_2,\ldots,d_n)$ be a potentially $P(k_1,k_2,\ldots,k_r)$ -graphic sequence and G a realization of π with the property $P(k_1,k_2,\ldots,k_r)$. With reference to G , we introduce the following notation :

b - Number of blocks of G;

 b_i - Number of blocks of order k_i , $1 \le i \le r$;

- $\alpha_i(v)$ Number of blocks of order k_i containing the vertex v of G, $1 \le i \le r$;
- b(v) Number of blocks of G containing the vertex v;
- n, Number of vertices with degree $(k_i 1)$, $1 \le i \le r$;

Some of the following facts are immediate and the rest can be found in any text book (Bondy and Murty [2], Berge [1]). For a graph G on n vertices with degree sequence $\pi=(d_1,d_2,\ldots,d_n)$ and property $P(k_1,k_2,\ldots,k_r)$, we have the following:

Fact 1.
$$b(v) = \sum_{i=1}^{r} \alpha_i(v)$$
.

Fact 2.
$$n = 1 + \sum_{i=1}^{r} b_i (k_i - 1).$$

Fact 3.
$$\sum_{j=1}^{n} d_{j} = \sum_{i=1}^{r} b_{i} k_{i} (k_{i} - 1).$$

Fact 4. For a vertex
$$v$$
 with degree d_j ,
$$d_j = deg(v) = \sum_{i=1}^{r} [(k_i - 1) \alpha_i(v)].$$

Fact 5. b = 1 +
$$\sum_{v}$$
 (b(v) - 1).

Fact 6.
$$\sum_{i=1}^{r} b_i = 1 + \sum_{v} \left(\left(\sum_{i=1}^{r} \alpha_i(v) \right) - 1 \right)$$
.

Fact 7. There exists at least one i such that
$$n_i \ge (k_i - 1), \ 1 \le i \le r.$$

Fact 8.
$$\Sigma$$
 $(\alpha_{i}(v) - 1) = b_{i} - \omega(G_{i}) \le b_{i} - 1, 1 \le i \le r.$
 $v \in V(G_{i})$

From the definition of $P(k_1, k_2, \dots, k_r)$ the following can be easily observed.

Fact 9. If π is potentially $P(k_1, k_2, \dots, k_q)$ -graphic then π is potentially $P(k_1, k_2, \ldots, k_m)$ -graphic, where m > q.

3. MAIN RESULTS

In the following theorem we characterize potentially P(k) degree sequences.

Theorem 1. Let $k \ge 2$ be an integer and $\pi = (d_1, d_2, \dots, d_n)$ be a non-increasing sequence of positive integers. π is potentially P(k) graphic if and only if there exist positive integers b and α_i , $1 \leq j$ ≤ n such that

(i)
$$n = 1 + b(k - 1)$$
.

(ii)
$$\sum_{i=1}^{n} d_i = k(n-1)$$

(ii)
$$\sum_{j=1}^{n} d_{j} = k(n-1) .$$
(iii)
$$d_{j} = \alpha_{j}(k-1) , 1 \le j \le n \text{ where } 1 \le \alpha_{j} \le b .$$

Proof. Let π be potentially P(k)-graphic. Then there exists a graph G, a realization of π with property P(k). Now invoking Facts 2,3,4 and 7 we have the necessary conditions (i) to (iii).

The proof of sufficiency is by induction on b. Now let π satisfy the conditions (i) to (iii). For the basis of induction , if b = 1 it is easy to see from conditions (i) to (iii) that k = n and $d_i = n - 1$, $1 \le n$ $j \leq n$. Thus K_n the complete graph on n vertices has the degree sequence π and the property P(k), proving the basis of induction. Now we make the induction hypothesis that the suffciency is true for b - 1 and prove it for b ≥ 2. The proof of the inductive step depends on a procedure of laying off (k - 1) vertices of degree (k - 1) and reducing the degree of a suitable vertex by (k - 1) such that the new degree sequence π' satisfies conditions (i) to (iii).

With reference to π let $n_1 = |\{j / d_j = k - 1; 1 \le j \le n \}|$. Note that $n_1 < n$ since $b \ge 2$. Using conditions (iii) in (ii) and rewriting it we get,

$$(k-1)(\sum_{j=1}^{n} (\alpha_{j} - 1)) + (k-1) = (n - n_{1}) + (n_{1} - 1)$$

$$(1)$$

Note that,

$$\sum_{j=1}^{n} (\alpha_{j} - 1) = \sum_{j=1}^{n-n} (\alpha_{j} - 1) \ge (n - n_{1})$$
 (2)

Combining (1) and (2) we can conclude that $n_1 \ge k$.

Now define $\pi' = (d_1', d_2', \dots, d_n')$ where n' = n-k+1 as follows:

$$d_{j}' = \begin{cases} d_{j} & , 1 \leq j \leq n - n_{1} - 1 \\ d_{j} - (k - 1), j = n - n_{1} \\ d_{j} & , n - n_{1} + 1 \leq j \leq n' \end{cases}.$$

Note that π' is well defined since $n_1 \ge k$. It is easy to verify that π' satisfies conditions (i) to (iii) with b' = b - 1. Thus using the induction hypothesis π' is potentially P(k) -graphic. Now let G' be a realization of π' with property P(k). From G' obtain a G by attaching a K_k to a vertex of degree $(d_{n-n-1} - (k-1))$ in G'. It is easy to see that G has the degree sequence π and the property P(k). This completes the proof of the inductive step and hence the theorem.

We note that Theorem 1 covers the following known results:

- (i) When k = 2, it characterizes the degree sequence of a tree on n vertices (Bondy and Murty [2], p. 27).
- (ii) When k=3 , it characterizes the degree sequence of a connected graph in which each block is a triangle (A.Ramachandra Rao [5]).

In theorem 2, we characterize potentially $P(k_1,k_2)$ -graphic sequences.

Theorem 2. Let $k_1 \ge k_2 \ge 2$ be integers and $\pi = (d_1, d_2, \ldots, d_n)$ be a non-increasing sequence of positive integers. π is potentially $P(k_1, k_2)$ - graphic if and only if there exist non-negative integers b_1 , b_2 ; α_j , β_j , for $1 \le j \le n$ such that (i) $n = 1 + b_1 (k_1 - 1) + b_2 (k_2 - 1)$.

(ii)
$$\int_{j=1}^{n} d_{j} = b_{1} k_{1}(k_{1} - 1) + b_{2} k_{2}(k_{2} - 1).$$

(iii)
$$\begin{aligned} d_j &= \alpha_j \ (k_1 - 1) + \beta_j (k_2 - 1) \ , \ 0 \leq \alpha_j \leq b_1 \ , \ 0 \leq \beta_j \leq b_2 \ , \\ \alpha_j &+ \beta_j \geq 1 \ ; \ \text{for} \ 1 \leq j \leq n \ . \end{aligned}$$
 (iv)
$$\sum_{j=1}^{\Sigma} (\alpha_j + \beta_j - 1) = b_1 + b_2 - 1.$$

(iv)
$$\sum_{j=1}^{n} (\alpha_j + \beta_j - 1) = b_1 + b_2 - 1.$$

(v)
$$\sum_{\substack{j=1\\ \alpha_j \geq 1}}^{n} (\alpha_j - 1) \leq b_1 - 1 \text{ and } \sum_{\substack{j=1\\ \beta_j \geq 1}}^{n} (\beta_j - 1) \leq b_2 - 1.$$

Proof. Let π be potentially $P(k_1, k_2)$ -graphic. Then there exists a realization G of π with property $P(k_1,k_2)$. Using this graph G, define b_i = the number of blocks of order k_i , $1 \le i \le 2$. For a vertex v with degree d_j , define $\alpha_j = \alpha_1(v)$ and $\beta_j = \alpha_2(v)$ where $\alpha_i(v) = the number$ of blocks of order k_i containing the vertex v, $1 \le i \le 2$. Then conditions (i) and (ii) follow from Facts 2 and 3 respectively. The condition (iii) is immediate from Facts 4, 7 and the fact that $\alpha_{i}(v) \leq$ b_i , for $1 \le i \le 2$. The conditions (iv) and (v) follow from the Facts 6 and 8 respectively. This completes the necessity part of the proof.

The proof of sufficiency is by induction on $b_1 + b_2$. Assume that the π satisfies the conditions (i) to (v). For the basis of induction assume that $b_1 + b_2 \le 2$. Now if either $b_1 = 0$ or $b_2 = 0$, then the condition (i) to (v) reduce to conditions (i) to (iii) of Theorem 1 and thus π is potentially $P(k_1)$ -graphic and hence $P(k_1,k_2)$ -graphic, using Fact 9. Next if $b_1 = 1$ and $b_2 = 1$, from condition (iii) we note that the possible degrees in π are $k_1 + k_2 - 2$, $k_1 - 1$ and $k_2 - 1$. Further, using conditions (i), (ii) and (iv) we can prove that

$$d_{i} = \begin{cases} k_{1} + k_{2} - 2, & \text{if } i = 1 \\ k_{1} - 1, & \text{if } 2 \leq i \leq k_{1} \\ k_{2} - 1, & \text{if } k_{1} + 1 \leq i \leq n. \end{cases}$$

Now construct a graph G by taking a K_{k} and to exactly one of these k_{1} vertices attach a $K_{_{\boldsymbol{k}}}$. It is easy to show that G is a realization of π with property $P(k_1, k_2)$ and thus π is potentially $P(k_1, k_2)$ -graphic.

This completes the proof of the basis of induction. Make the induction hypothesis that the sufficiency is true for $b_1 + b_2 - 1$ and prove it for $b_1 + b_2 \ge 3$. We prove this inductive step by cases.

Case A: either $b_1 = 0$ or $b_2 = 0$.

In this case, conditions (i) to (v) reduce to conditions (i) to (iii) of Theorem 1. Now using Theorem 1 and Fact 9 we conclude that π is potentially $P(k_1,k_2)$ -graphic.

Case B: $b_1 \ge 1$ and $b_2 \ge 1$.

Using conditions (i) and (iv) we can easily show that

$$\begin{array}{lll} & & & n_1 \geq (k_1-1) \text{ or } n_2 \geq (k_2-1) \\ & & & n_1 = |\{j \neq \alpha_j = 1, \; \beta_j = 0 \; ; \; 1 \leq j \leq n \; \}| \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

Subcase (i): $n_2 \ge (k_2 - 1)$.

Now in order to accomplish the laying off procedure we prove the existence of a degree d_t such that $d_t=\beta_t(k_2-1)$ with $\beta_t\geq 2$ or $d_t=\alpha_t(k_1-1)+\beta_t(k_2-1)$ with $\alpha_t\geq 1$ and $\beta_t\geq 1$. Suppose such a d_t does not exist. Then condition (iv) can be rewritten as

That is ,
$$\sum_{j} (\alpha_{j} - 1) = b_{1} + b_{2} - 1$$
.
 $\alpha_{j} \ge 1$
 $\beta_{j}^{j} = 0$

Thus we get
$$\Sigma$$
 (α_j - 1) = Σ (α_j - 1) = b_1 + b_2 - 1
$$\alpha_j \ge 1 \qquad \qquad \alpha_j \ge 1 \qquad \qquad \beta_i = 0$$

and this contradicts condition (v). Thus the existence of a d_t as required is proved. From the set of such d_t 's, choose the one with the largest β_t . Now construct a degree sequence π' with $b_1 + b_2$ reduced by one by laying off $(k_2 - 1)$ vertices of degree $(k_2 - 1)$ and reducing

the degree d_t by $(k_2 - 1)$. More precisely define $\pi' = (d_1', d_2', \dots, d_{n'})$ where $n' = n - k_2 + 1$ as follows:

$$d_{j}' = \begin{cases} d_{j}, & j \neq t, 1 \leq j \leq n' \\ d_{j} - (k_{2} - 1), j = t. \end{cases}$$

With reference to the sequence $\pi',$ let us define b_1', b_2'; $\alpha_j', \, \beta_j'$, $1 \leq j \leq n'$ as follows :

$$b_1' = b_1$$
, $\alpha_j' = \alpha_j$, $1 \le j \le n'$
 $b_2' = b_2 - 1$, $\beta_j' = \beta_j$, $1 \le j \le n'$ and $j \ne t$, $\beta_t' = \beta_t - 1$

Now using the facts $n'=n-k_2+1$, $\alpha_j=0$ and $\beta_j=1$ for $n'+1\leq j\leq n$, it is easy to verify that π' satisfies conditions (i) to (v). Now by the induction hypothesis obtain a realization G' of π' with the property $P(k_1,k_2)$. From G' construct a graph G by attaching a K_k to a vertex of degree d_t' in G'. Note that G is a realization of π and also has property $P(k_1,k_2)$. Thus π is potentially $P(k_1,k_2)$ -graphic.

Subcase (ii): $n_2 < (k_2 - 1)$.

In this case note that $n_1 \ge (k_1 - 1)$. Now the laying off procedure will be accomplished using degrees $(k_1 - 1)$ and the arguments can be provided along the same lines as in the subcase (i). This completes the sufficiency proof in all the cases and hence the theorem is proved. \square

A.Ramachandra Rao characterized potentially Q-graphic sequences (Theorem 1, [5]) where property Q is: the graph is connected and each block is an edge or a triangle. Note that property Q is equivalent to property P(3,2). Thus Theorem 2 covers the characterization of potentially Q-graphic sequences.

In the following we provide examples of sequences to demonstrate that none of the five conditions of Theorem 2 is redundant. In these examples, we express the sequence using the convention that an integer $\textbf{d}_{_{\boldsymbol{i}}}$ occurring $\textbf{s}_{_{\boldsymbol{i}}}$ times in the sequence is represented by $\boldsymbol{d}_{_{\boldsymbol{i}}}^{}\textbf{s}_{_{\boldsymbol{i}}}$.

- 1. $\pi = (10,4,2^{12})$ for $k_1 = 5$, $k_2 = 3$:

 Note that n = 14. Consider $b_1 = 1$, $b_2 = 3$, $\alpha_1 = 1$, $\beta_1 = 3$, $\alpha_2 = 1$, $\beta_2 = 0$, $\alpha_3 = 0$, and $\beta_3 = 1$. (Here α_i and β_i are used to express d_i in condition (iii) for $1 \le i \le 3$ where $d_1 = 10$, $d_2 = 4$ and $d_3 = 2$.). It is easy to see that they satisfy conditions (ii) to (v) but not (i).
- 2. $\pi = (10, 4^2, 2^{12})$ for $k_1 = 5$, $k_2 = 3$:

 Note that $b_1 = 1$, $b_2 = 5$, $\alpha_1 = 1$, $\beta_1 = 3$, $\alpha_2 = 0$, $\beta_2 = 2$, $\alpha_3 = 0$ and $\beta_3 = 1$ satisfy conditions (i),(iii),(iv) and (v), but not (ii).
- 3. $\pi = (6, 3^6, 2^3)$ for $k_1 = 4$, $k_2 = 3$:

 It is easy to show that $b_1 = 1$, $b_2 = 3$, $\alpha_1 = 1$, $\beta_1 = 3$, $\alpha_2 = 1$, $\beta_2 = 0$, $\alpha_3 = 0$ and $\beta_3 = 1$ satisfy conditions (i), (ii),(iv) and (v), but not (iii).
- 4. $\pi = (6, 3^6, 2^3)$ for $k_1 = 4$, $k_2 = 3$:

 In this case $b_1 = 1$, $b_2 = 3$, $\alpha_1 = 0$, $\beta_1 = 3$, $\alpha_2 = 1$, $\beta_2 = 0$, $\alpha_3 = 0$, and $\beta_3 = 1$ satisfy conditions(i),(ii),(iii) and (v), but not (iv).
- 5. $\pi = (5,4^2,3^7,2)$ for $k_1 = 4$, $k_2 = 3$:

 Now $b_1 = 2$, $b_2 = 2$, $\alpha_1 = 1$, $\beta_1 = 1$, $\alpha_2 = 0$, $\beta_2 = 2$, $\alpha_3 = 1$, $\beta_3 = 0$, $\alpha_4 = 0$ and $\beta_4 = 1$ satisfy conditions (i) to (iv) but not (v).

 One can easily verify that there is no graph with the property $P(k_1, k_2)$, realizing any of the above sequences. This establishes the fact that none of the five conditions of Theorem 2 is redundant.

ACKNOWLEDGEMENT The authors thank Dr.K. Vijayan and Dr.Nirmala Achuthan for the useful discussions they had with them.

REFERENCES

- [1]. C. Berge, Graphs and Hypergraphs. North Holland, Amsterdam (1976).
- [2]. J.A. Bondy and U.S.R. Murty, Graph Theory with Applications. Mcmillan, London (1977).
- [3]. J. Edmonds, Existence of k-edge connected ordinary graphs with prescribed degrees. J. Res. Nat. Bur. Stand., 68B(1964), 73-74.
- [4]. S. Kundu, The k factor conjecture is true. Discrete Mathematics, 6(1973), 367-376.

- [5]. A. Ramachandra Rao, Degree sequence of cacti.

 Proceedings Combinatorics and Graph Theory (Ed. S. B. Rao),
 Lecture Notes in Mathematics, Springer-Verlag, 885(1981), 410-416.
- [6]. A. Ramachandra Rao and S.B. Rao, On factorable degree sequences. J. Combinatorial Theory, 13B(1972), 185-191.
- [7].S.B.Rao, A survey of the theory of potentially P-graphic and forcibly P graphic degree sequences. Proceedings Combinatorics and Graph Theory (Ed. S.B. Rao), Lecture Notes in Mathematics Springer-Verlag, 885(1981), 417-440.
- [8].D.L.Wang and D.J.Kleitman, On the existence of n-connected graphs with prescribed degrees ($n \ge 2$), Networks, 3(1973),225-239.