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Abstract 

Let dg (n, k) be the maximum possible minimum Hamming distance of a 
linear [n, k] code over lFg• In this paper, twenty-four new linear codes 
over lFg are constructed which improve the table of dg(n, k) by Brouwer. 
Four of these codes meet the upper bound on dg (n, k) and so are optimal. 
A geometric interpretation of the small dimensional codes is also given. 

1 Introduction 

Let lFq denote the Galois field of q elements, and let V(n, q) denote the vector space 
of all ordered n-tuples over lFq• A linear [n, kJ code C of length n and dimension k 
over lFq is a k-dimensional subspace of V (n, q). Define an inner product on IF:: by 
x . Y = XIYl + ... + XnYn where x = (Xl,' ", xn) and Y = (Yl," " Yn). The [n, n - k] 
dual code C1- of C is defined as C1- = {x E IFqnl x . Y = 0 for all Y E C}. An 
[n, k, d] code is an [n, k] code with minimum (Hamming) distance d. Let Ai be the 
number of codewords of (Hamming) weight (or distance) i in C. Then the numbers 
Ao, AI, . .. ,An are called the weight distribution of C. 

A central problem in coding theory is that of optimising one of the parameters 
n, k and d for given values of the other two. One version is to find dq(n, k), the 
largest value of d for which there exists an [n, k, d] code over IFq• Another is to find 
nq(k, d), the smallest value of n for which there exists an [n, k, d] code over IFq. A 
code which achieves either of these values is called optimal. 
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The Griesmer bound is a well-known lower bound on nq(k, d) 

k-l d 
nq(k, d) 2: 9q(k, d) = I: r j 1, 

j=O q 
(1) 

where r x 1 denotes the smallest integer 2: x. For k :s; 2, the Griesmer bound is met 
for all q and d. In addition, most values of ng(3, d) (and thus dg(n, 3)) have been 
determined [4]. For larger dimensions, far less is known. In this paper we consider 
codes for dimensions k = 3 - 5. Twenty-four codes are found which improve the 
lower bounds on minimum distance. Four of these codes meet the Griesmer bound 
and so are optimal. 

A punctured code of C is a code obtained by deleting a coordinate from every 
codeword of C. A shortened code of C is a code obtained by taking only those 
codewords of C having a zero in a given coordinate position and then deleting that 
coordinate. The following bounds can be established based on these constructions 

1) dq(n + 1, k) ~ dq(n, k) + 1, 

and 

2) dq(n + 1, k + 1) ~ dq(n, k). 

Using the codes given in this paper, they provide many additional bound improve­
ments. 

The next section presents the class of linear codes considered in this paper, and 
the construction results. 

2 Quasi-Cyclic Codes 

A code C is said to be quasi-cyclic (QC) if a cyclic shift of any codeword by p 
positions is also a codeword in C. A cyclic code is a QC code with p = 1. The 
length n of a QC code is a multiple of p, i.e., n = mp. With a suitable permutation 
of coordinates, many QC codes can be characterized in terms of (m x m) circulant 
matrices. In this case, a QC code can be transformed into an equivalent code with 
generator matrix 

(2) 

where R i , i = 0,1, ... ,p - 1 is a circulant matrix of the form 

rO,i rl,i r2,i rm-l,i 

rm-l,i rO,i rl,i r m -2,i 

Ri= r m -2,i rm-l,i rO,i r m -3,i (3) 

rl,i r2,i r3,i rO,i 

The algebra of m x m circulant matrices over IFq is isomorphic to the algebra of 
polynomials in the ring IFq[x)j(xm -1) if Ri is mapped onto the polynomial, ri(x) 
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rO,i + rl,iX + r2,iX2 + ... + r m_l,iXm-1, formed from the entries in the first row of R [11]. 
The ri(x) associated with a QC code are called the defining polynomials [6]. The set 
{ro(x), rl(x),"', rp_l(x)} defines an [mp, k] QC code where k = m - deg(h(x)) and 

h(x) = xm - 1 , 
gcd{xm -1, ro(x), rl(x),"', rp-l(x)} 

is the order of the code [13]. Codes for which k < m are called degenerate [6]. 
The QC codes presented here are constructed from a set of defining polynomials. 

These are the equivalence class representatives of a partition of the set of polynomials 
of degree less than m into cyclic classes. Two polynomials, rj(x) and ri(x) are said 
to be equivalent if they belong to the same class, i.e. 

for some integer l > 0 and scalar a E lFg \ {o}. The number of representative defining 
polynomials N(m), for m ::; 6, is given below 

m N(m) 
2 7 
3 32 
4 213 
5 1478 

The QC codes presented here were constructed using a nonexhaustive heuristic 
combinatorial search, similar to that in [5],[7],[9]. The search for a [pm, k] code was 
initialized with a randomly selected subset of p defining polynomials, or in some 
cases, with defining polynomials from a power residue code [10]. Since every subset 
of these polynomials gives a QC code, the object is to find a subset which gives a 
high minimum distance. To achieve this goal, polynomials were substituted into this 
subset using a greedy algorithm until either a distance bound or an iteration limit 
was reached. 

The codes which improve the lower bounds on minimum distance are given in 
Table 1. The defining polynomials are listed with the lowest degree coefficient on the 
left, i.e., 4321 corresponds to the polynomial x3 + 2X2 + 3x + 4. The correspondence 
between these coefficients and the elements of lFg is 

Coeff. lFg 

0 0 
1 1 
2 2 
3 a 
4 a+l 
5 a+2 
6 2a 
7 2a+ 1 
8 2a+2 
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Table 1: QC Codes Over IF9 Which Improve the Lower Bounds on Minimum Distance 

code d d.L m r;(x) 
[55,3] 48 3 5 15351, 14837, 14241, 14413, 14726, 15775, 18481, 15188, 14365 

1551, 14678 
l24,4) 19 4 4 1168, 1, 1236, 113, 1175, 176 
[32,4] 26 4 4 1114, 1468, 18, 1187, 1535, 1184, 164, 1142 
[40,4] 33 4 5 2535, 246, 26187, 22788, 21222, 2625, 2562, 2112 
[45,4] 37 3 5 2715, 2361, 2163, 2157, 21246, 21516, 2343, 2517, 27438 
[55,4] 46 3 5 22878, 2247, 21534, 2328, 2265, 22353, 21222, 264, 21786, 246, 2157 

[105,4] 90 3 7 2874281, 2835277, 232521, 255583, 281318, 2871114, 2868385 
2864176, 241263, 277457, 288661, 2753824, 285824, 254154, 224723 

[119,4] 102 3 7 2755485, 226431, 2856372, 247126, 210403, 2868385, 287532 
233706, 2866724, 21357, 2881228, 2741165, 2613761, 2867253 
251077, 282747, 23065 

[126,4J 108 3 7 272633,2881228,248558,282747,241263,22786, 235367, 2864176 
263137, 232521, 2837825, 2753824, 2713472, 2761322, 288661 
221646, 2888571, 27571 

[130,4J 111 3 5 21555, 2112, 21183, 21615, 21444, 22416, 21327, 21318, 21285 
26547, 2184, 22776, 21624, 2472, 27654, 2427, 2037, 21174, 21888 
22434, 27267, 222, 27465, 21264, 2046, 2481 

l32,5) 24 4 8 686667, 68541, 62321121, 6755406 
[40,5] 31 4 8 615012, 681255, 65772366, 6676464, 62772768 
[48,5] 38 4 8 664626, 68541, 6425838, 6238356, 68448537, 6471474 
(55,5] 44 4 11 1175761245, 12785132328, 1572374127, 1128283458, 11135413524 
[66,5] 53 4 11 12127183437, 1308705183, 11175862134, 11214136785, 1027064358 

12685252416 
[77,5] 63 4 11 1206264438, 115056864, 1563501762, 157430286, 1224157773 

1745764878,12546262815 
(80,5] 65 3 8 6814203, 6615411, 6576018, 608478, 62153721, 62334186, 6632241 

68268882, 6733527, 6718362 
(88,5] 72 3 11 1282733361, 1775131518, 12783141516, 1362465126, 11512742646 

1336171614, 1031486832, 1306714074 
• [99,5] 82 3 11 1124247864,1774152327,11223246774,1226175558,1173770133 

1487547534, 11875142316, 11684132517, 1047542178 
[110,5] 91 3 11 1427814264, 1583412882, 1881124743, 1862225844, 1636711341 

156451068, 1621361385, 12537182823, 1126265346, 1274662233 
[121,5] 101 3 11 1182853482,1310830857,1724517237,11226273447,1131366741 

1153505313, 11318625285, 1204246683, 1206264438, 1774152327 
155415414 

[132,5] 110 3 11 11177826816,146332188,104258763,12764242317,1053325404 
11542118376, 1153505313, 11155324314, 1147452087, 1881124743 
1663141317,1050388731 

134 



with a a root of the primitive polynomial x 2 + x + 2. The minimum distance and 
the dual distance of the codes are also given in Table 1. 

As an example, consider a [36,3] code with m = 3, p = 12, and the following 
generator matrix 

[ 

176 116 011 117 018 112 127 017 016 158 015 125] 
G = 617 611 101 711 801 211 712 701 601 815 501 512 . 

761 161 110 171 180 121 271 170 160 581 150 251 

The corresponding weight distribution is 

o 1 
31 288 
32 360 
36 80 

This code is optimal since it meets the Griesmer bound (1). Now consider a degen­
erate [48,3] code with m = 4, p = 12, and the following generator matrix 

[ 

0156 1185 1158 1545 0174 0183 1173 1263 1518 
G = 6015 5118 8115 5154 4017 3018 3117 3126 8151 

5601 8511 5811 4515 7401 8301 7311 6312 1815 

1353 1257 1236] 
. .. 3135 7125 6123 . 

5313 7512 3612 

This code has the following three-weight distribution 

Ai 

and also meets the Griesmer bound. 

o 1 
42 576 
45 128 
48 24 

Two codes listed in Table 1 also meet (1). The [55,3,48] code establishes that 
dg(55,3) = 48. This code has weight distribution 

Ai 
0 1 

48 360 
49 240 . 
50 48 
51 40 
54 40 

The [24,4,19] code establishes that dg (24, 4) = 19. This code has weight distribution 
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Table 2: Weight Distributions of the New QC Codes 

Code Weight Distribution 
[32,4J 0'26""027' '''~28o"u29l:.:I:SU30b4U31 UI:SU323~ 

[40,4J 013396034128035160036800376403832039960 

[45,4] 013784038880391240401040419604260043640443204540 

[55,4J 01468804713604812404972050680 5152052680 53240 54240 

[105,4] 0190218493212896162499560102561058 

[119,4] 01102100810310081046161051072106392107448108896109280110168111280112112113112 

114112 11556 

[126,4] 0110810081097841108401116161126721136161145041155041163921172241181681196412056 

12156 12256 

[130,4] 01111680112720113720114720115720116680117400118360119680 120240 121360 12280 123200 

[32,5] 0' 2411L1: 25""""26"/'>027 '''U''2811qU''291"uo030""''''~ 31 0'>/0 32HlO 

[40,5] 01311792323208334352347424351004836122083710112 386688 39281640400 

[48,5J 01382240393072405392416592428512 4310688 449824457744463648471216 48120 

[55,5] 01441672453872465104476072488184498624509328 518008 525280 532728 54176 

[66,5] 01531408542024553872564664576512589416598624 607304 617304 624048632816 6479265264 

[77,5] 01632200642904654576665984676160686512698888 707920 715456 724488 732640 7488075264 

76176 

[80,5] 0165960662368673456684832695696706784717168728600736848 74531275409676193677704 
78128791288032 

[88,5] 01721496732552742816754136765632777040787392 797568 806512 815984823608832552841232 
854408688 

[99,5] 01821936832992843608855984865016876072 887568 895808 906248915720923960 932288 94968 
9544096440 

[110,5] 01911320922464932992942904954136966864977568986248997040100519210145761022728 
1032464104149610561610635210788 

[121,5] 0110115841023696103325610444881053960 106536810760721086072109739211053681113696 
1123520113211211412321151056116176 

[132,5] 01110132011118481123520 1133080 1143784115466411658081175984118589611962481205456 
1214048122299212314961241672125114412688 

Ai 
0 1 
19 1088 
20 1056 
21 1088 
22 1600 
23 1344 
24 384 

The weight distributions of the remaining codes from Table 1 are given in Table 2. 
The next two sections of this paper present a geometrical interpretation of the 

small dimensional codes found during the search for good QC codes. 

3 A geometric description of linear codes 

Let a linear code [n, k, d]q be described by a generator matrix G. The columns of G can 
be seen as points in projective space PG(k - 1, q). For every point P E PG(k - 1, q) 
(=I-dimensional subspace of IF;) denote by w(P) the number of times P appears as 
a column of G. It follows that G may be described as a weight function 

w : PG(k - 1, q) -+ {O, 1, 2, ... }. 
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Conversely any such weight function will give a generator matrix G of a q-ary code C 
of dimension::; k and length n = L:p w (P). The dimension of C will be = k if and only 
if the points P with nonzero weight are not contained in a hyperplane. If all weights 
are 0 or 1, the code is called projective. Denote the rows of G by VI, V2, ... ,Vk. 

A typical nonzero element of C is a linear combination V = L:f=1 AiVi, where the 
coefficients are not all O. Word V vanishes at a certain coordinate if and only if the dot 
product of (AI, A2, ... , Ak) and the point describing that column of Gis 0, equivalently 
if this point of PG(k - 1, q) is contained in the hyperplane (AI, A2,"" Ak)1-. We see 
that wt{ v) = n - L:p w(P), where P varies over the hyperplane (AI, A2, ... , Ak)1-. 
This motivates the following: 

Definition 1 Let 
w : PG(k - 1, q) --t {O, 1,2, ... } 

be a weight function. Define the mass of w as the sum L: w(P), where the sum is 
over all P E PG(k - 1, q). For every hyperplane H c PG(k - 1, q) define 

w(H) = L w(P). 
PEH 

We have seen the following: 

Lemma 1 Let 
w : PG(k - 1, q) --t {O, 1, 2, ... , n} 

be a weight function such that w(H) < mass{w) for every hyperplane H of PG(k -
1, q). Then the construction discussed above yields a code [n, k, d]q, where n = mass( w) 
and d = n - maxHw(H). 

It is clear that every q-ary code may be described in this way. We may also 
describe the weight distribution of the code in this geometrical language. In fact, 
Ad (q - 1) is the number of hyperplanes H satisfying n - w (H) = i, for every 
i > O. This geometrical language is particularly profitable in the description of low­
dimensional codes. 

4 Codes related to conic sections 

We work in the projective plane PG(2, q) for odd q and use homogeneous coordinates. 
Points are therefore written as (x : y : z), lines as [a : b : c], and point (x : y : z) is 
on line [a : b : c] if and only if the dot product xa + yb + zc = O. Our conic section 
will be Q = V(y2 - XZ), that is the set of all points (x: y : z) satisfying y2 = xz. 
It is clear that there are q + 1 such points, more precisely 

Q = V(y2 - XZ) = {(O : 0 : In u {(I : y : y2) lyE ffi'q}. 

Put PrXJ = (0 : a : 1), Py = (1 : y : y2). As matrices 

( ~1 :1 :2)' yr y~ 
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and 

(:1 :2 :3)' yr y~ y~ 

have nonzero determinants when the Yi are pairwise different, we have that no three 
points of Q are collinear. In particular there are at most three types of lines, relative 
to their behaviour concerning Q : secants (two points in common with Q), tangents 
(containing one point from Q) and exterior lines. Clearly the number of secants is 
( q~ 1). As every point of PG (2, q) is on precisely q + 1 lines and every point of Q is 
on q secants, we see that every point of Q is on precisely one tangent. The number 
of tangents is therefore q + 1. It follows that the number of exterior lines is (~). Let 
tp be the tangent through P E Q. We have 

too = [1 : 0 : 0] and ty = [y2 : -2y : 1]. 

It is simple to determine the intersections of the tangents: 

toonty = (0: 1: 2y),ty nty' = (1: (y+y')/2: yy'). 

Assume three tangents meet in a common point. This would mean that (1 : (y + 
y')/2 : yy') E tyll, or 

0= y"2 _ y"(y + y') + yy' = (y" _ y)(y" _ y'), 

which is impossible since y, y', y" were chosen as different. We conclude that there 
are three types of points in PG(2, q) with respect to their position relative to Q : 
points of Q, exterior points (on precisely 2 tangents) and interior points (on no 
tangent at all). In fact, we have seen that no point off Q is on more than 2 tangents. 
That such a point cannot be on precisely one tangent follows from a trivial parity 
argument. As we have q + 1 tangents and each contains q exterior points we see 
that there are precisely (q + 1)q/2 exterior points. It follows that the number of 
interior points must be (~). Let us determine the exterior points explicitly: these 
are the points (0 : 1 : 2y) with arbitrary y, and the points which can be written 
(1 : (y + y')/2 : yy'), where y #- y'. The point (1 : v : w) is exterior if and only if we 
can find y #- y' such that y + y' = 2v, yy' = w. Eliminating y' from the first equation 
we arrive at a quadratic equation for y, which after completing the square becomes 
(y - V)2 = v2 - w. It follows that v2 - w must be a square. v2 - w = 0 is not possible 
as this would lead to y = y' = v, violating the condition y #- y'. Each square v2 - w 
gives 2 solutions. This provides a complete description. 

Lemma 2 A point (x : y : z) is an exterior point of Q if and only if y2 - xz is a 
nonzero square. It is interior if y2 - xz is a non-square. 

It is now a trivial counting problem to find the distribution of types of points on 
types of lines: 

138 



Lemma 3 Every secant has (q - 1)/2 exterior points and (q - 1)/2 interior points. 
Each tangent has q exterior points and no interior points. Each exterior line has 
(q + 1)/2 exterior points and equally many interior points. 

This suffices to allow the construction of some good 3-dimensional codes. Take 
all interior points and one point of Q as columns of a generator matrix. We obtain a 
code oflength (g) + 1. Every line (=hyperplane) intersects our point set in ~ (q + 1) /2 

points (see Lemma 3). It follows that d = (~) + 1 - (q + 1)/2 = (q - 1)2/2. 

Theorem 1 Let Q be a quadric (conic section) in PG(2, q), q odd. The set of inte­
rior points together with one point of Q defines a code 

[(~) + 1,3, (q - I)' /2]q. 

For q = 9 we obtain a [37,3,32]9 code, which corresponds to an extension of the 
first 3-dimensional code in Section 2. If we use all interior points and all points of Q 
the following is obtained: 

Theorem 2 Let Q be a quadric (conic section) in PG(2, q), q odd. The set of inte­
rior points together with the points of Q define a code 

[e; 1) + 1,3, (q' - 1)/2]q. 

The constructions of Theorems 1 and 2 are not new. In geometrical language 
they can be found in unpublished work by Barlotti [2]. If q = p is an odd prime, 
then the constructions of these theorems are optimal. This was proved by Ball 
[1]. This statement is not true for odd prime-powers in general. In fact, a code 
[48,3,42)g was constructed by Mason [12]. An advantage of our explicit construction 
is that we obtain generic generator matrices. In the case of the first family the 
columns of a generator matrix can be chosen as (0,0, l)t and all (1, y, z)t, where 
y2 _ z is a non-square. Other interesting codes of higher dimension can be obtained 
via concatenation. We concentrate on the quadratic case. Use the Q-ary code from 
one of our families, where Q = q2, and concatenate with the code [q + 1, 2, q]q. This 
gives the following codes: 

Theorem 3 q-ary codes with the following parameters exist for all odd q : 

[(q + 1)( (~) + 1),6, q(q' - I)' /2]q 

and 

(
q2 + 1) [(q + 1)( 2 + 1),6, q(q4 - 1)/2]q. 

In the ternary case we obtain optimal codes [148,6, 96h and [184,6,120]3' Codes 
with these parameters were first constructed by Boukliev and Gulliver, respectively. 
Even in the IF5-case this is not completely uninteresting. The first family yields a 
[1806,6, 1440]s code of Griesmer defect 4. 
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