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Abstract

We show that a necessary and sufficient condition for the existence of a
Py-factorization of the complete bipartite multigraph AKp,, is
m =mn =0 (mod k(2k — 1)/d), where d = ged(), 2k — 1).

1. Introduction

Let Ky »n be the complete bipartite graph with two partite sets having m and
n vertices respectively. The graph AK,, , is the disjoint union of A graphs each
isomorphic to K, ,. A subgraph F' of AK,, , is called a spanning subgraph of
MKy if F contains all the vertices of AK,, . It is clear that a graph with no
isolated vertices is uniquely determined by the set of its edges. So in this paper,
we consider a graph with no isolated vertices to be a set of 2-element subsets of its
vertices. For positive integer k, a path on k vertices is denoted by Py. A Py-factor
of AK 1, is a spanning subgraph F' of AK,, ,, such that every component of F is a
Py and every pair of Py’s have no vertex in common. A Py-factorization of AKmn
is a set of edge-disjoint Py-factors of AKy, » which is a partition of the set of edges
of AKy, n. (In paper [4] a Py-factorization of AK,, , is defined to be a resolvable
(m,n,k,\) bipartite Py design.) The multigraph AK,, , is called Pj-factorable
whenever it has a Py-factorization.

Py-factorizations of AK,, , have been studied by several researchers. When
k = 3, the spectrum problem for P3-factorization of the complete bipartite graph
K1, has been completely solved (see [2]). When % is an even number, the spec-
trum problem for Py-factorization of the complete bipartite graph K, , has been
completely solved (see [3,4,5]). In this paper, we show that a necessary and suffi-
cient condition for the existence of a Pyi-factorization of the complete multigraph
AKmn is that m = n = 0 (mod k(2k — 1)/d), where d = ged(), 2k — 1). (For
integers x and y, we use ged(z, y) to denote the greatest common divisor of z and
y.)
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2. Main result

The following theorem gives a necessary condition for the complete bipartite
multigraph AK, » to be Pog-factorable.

Theorem 2.1. Let k, m and n be positive integers. If \Kp, 5, is Pyy-factorizable
then m = n = 0 (mod k(2k — 1)/d), where d = ged(), 2k — 1).

Proof: Let X and Y be the two partite sets of AKm n with |X| = m and Y| = n.
Let {Fy,Fy,-+,F.} be a Py-factorization of AKm . Let F; have ¢ components.
Since F, is a spanning subgraph of AK, », we have m = kt = n and |Fi| =
m(2k — 1)/k is an integer that does not depend on the individual Pyg-factors.
Hence :

m=n=0 (mod k). (1)

Let b be the total number of components; then b = Am?/(2k — 1) and r = b/t =
Mkm/(2k — 1), that is, Akm/(2k — 1) is an integer. Since ged(k,2k — 1) = 1, the
number Am/(2k — 1) must be an integer, and therefore Am = 0 (mod (2k — 1)).
Let d = ged(X, 2k — 1). Then we have

m = 0 (mod (2k — 1)/d)). | (2)

By combining equalities (1) and (2), we have m = n = 0 (mod k(2k — 1)/d).
To show that the condition is also sufficient, we need the following results.

Lemma 2.2. If\Kn, 5 has a Pyg-factorization, then sAKy, n, has a Py,-factorization
for every positive integer s.

Proof: Construct a Psk-factorization of MKy, repeatedly s times; this gives a
Py-factorization of sAKy, .

Lemma 2.3. IfAK,, , has a Py,-factorization, then AKsp, on has a Pog-factorization
for every positive integer s.

Proof: Since K, , is 1-factorable (see [1, pp72-75]), we can let {F1,Fy,- -, F,} be
a 1-factorization of it. For each ¢ with 1 < i < s, replace every edge of F; with
a AK, n to get a spanning subgraph G; of AKsp sn such that the G; (1 <4 < s)
are pairwise edge disjoint and their sum is AKyp sn. Since AKy, p is Py-factorable,
each G; is also Pyy-factorable. And consequently, AKsn sn is Pax-factorable.

We are now in a position to prove that the condition is also sufficient.

Lemma 2.4. When 2k — 1 = tA and n = t(tA + 1)/2 then AK,, has a Pag-
factorization. :

Proof: Let u = (tA+1)/2 and v = t. Let X and Y be the two partite sets of AKn n
and set

X={zi;|1<i<u, 1 <5<},
Y={y;|1<i<u 1<j< v}
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We will construct a Poi-factorization of AK, ,. We remark in advance that the
additions in the first subscript of the z;;’s and y;;’s are taken modulo » in
{1,2,---,u} and the additions in the second subscript are taken modulo v in
{1,2,---,v}.
For each 7 with 1 < ¢ < u, let
Eyi1 = {:ij Yijr2i—2 |1 < j < v}
For each 7 with 2 < i < w, let

Eai—a = {%ij yi-1,j42i-3 | 1 < j < v}

Let F = J; c;<9u—1 Ei, then the graph F' is a Pyg-factor of AK,, . Define the
bijection o from X UY onto X UY by o(; ;) = zit1,; and o (¥i;) = yi+1,; for all
1,7 with1 <i<wuand1<j<wv. Foreachiand j with1l <14,j <w, let

Fij={o'(z)o’(y) |z € X, y €Y, zy € F}.

It is easy to show that the F;; (1 < ¢,j < u) are pairwise disjoint Pp-factors
of AK,,n, and their sum is AK,,,. Thus {F;; |1 <i<u, 1 <j<u}isa
Py, -factorization of AK,, ,,. This proves the lemma.

Theorem 2.5. Let d = gcd(A, 2k — 1). When n = 0 (mod k(2k — 1)/d), then
MK n has a Poy-factorization.

Proof: Put A = hd, 2k — 1 = td, ged(h,t) = 1, n = sk(2k — 1)/d, and N =
k(2k — 1)/d. Then we have n = st(td + 1)/2 and N = t(¢td + 1)/2. By lemma 2.4,

dK n N has a Py-factorization. By applying Lemmas 2.2 and 2.3, we see that
MK, 5 has a Pyg-factorization.

Combining Theorems 2.1 and 2.5 gives the main result:

Theorem 2.6. Let d = ged(A, 2k — 1). The graph AK,, 5, has a Pyy-factorization
if and only if m = n =0 (mod k(2k — 1)/d).

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, (Macmillan,
London and Basingstoke, 1976).

[2] K. Ushio, Ps-factorization of complete bipartite graphs, Discrete Math., 72
(1988), 361-366.

[3] K. Ushio, Path-factorization of complete bipartite graphs, Journal of the Fac-
ulty of Science and Technology Kinki University, 24 (1988), 405-408.

[4] K. Ushio, G-designs and related designs, Discrete Math., 116 (1993), 299-311.

5] H. Wang, Ps,-factorization of a complete bipartite graph, Discrete Math., 120
D
(1993), 307-308.

(Received 28/5/99)

199







