P_{2k} -factorization of complete bipartite multigraphs

Beiliang Du

Department of Mathematics Suzhou University Suzhou 215006 People's Republic of China

Abstract

We show that a necessary and sufficient condition for the existence of a P_{2k} -factorization of the complete bipartite multigraph $\lambda K_{m,n}$ is $m = n \equiv 0 \pmod{k(2k-1)/d}$, where $d = \gcd(\lambda, 2k-1)$.

1. Introduction

Let $K_{m,n}$ be the complete bipartite graph with two partite sets having m and n vertices respectively. The graph $\lambda K_{m,n}$ is the disjoint union of λ graphs each isomorphic to $K_{m,n}$. A subgraph F of $\lambda K_{m,n}$ is called a spanning subgraph of $\lambda K_{m,n}$ if F contains all the vertices of $\lambda K_{m,n}$. It is clear that a graph with no isolated vertices is uniquely determined by the set of its edges. So in this paper, we consider a graph with no isolated vertices to be a set of 2-element subsets of its vertices. For positive integer k, a path on k vertices is denoted by P_k . A P_k -factor of $\lambda K_{m,n}$ is a spanning subgraph F of $\lambda K_{m,n}$ such that every component of F is a P_k and every pair of P_k 's have no vertex in common. A P_k -factorization of $\lambda K_{m,n}$ is a set of edge-disjoint P_k -factors of $\lambda K_{m,n}$ which is a partition of the set of edges of $\lambda K_{m,n}$. (In paper [4] a P_k -factorization of $\lambda K_{m,n}$ is defined to be a resolvable (m,n,k,λ) bipartite P_k design.) The multigraph $\lambda K_{m,n}$ is called P_k -factorable whenever it has a P_k -factorization.

 P_k -factorizations of $\lambda K_{m,n}$ have been studied by several researchers. When k=3, the spectrum problem for P_3 -factorization of the complete bipartite graph $K_{m,n}$ has been completely solved (see [2]). When k is an even number, the spectrum problem for P_k -factorization of the complete bipartite graph $K_{m,n}$ has been completely solved (see [3,4,5]). In this paper, we show that a necessary and sufficient condition for the existence of a P_{2k} -factorization of the complete multigraph $\lambda K_{m,n}$ is that $m=n\equiv 0\pmod{k(2k-1)/d}$, where $d=\gcd(\lambda,2k-1)$. (For integers x and y, we use $\gcd(x,y)$ to denote the greatest common divisor of x and y.)

2. Main result

The following theorem gives a necessary condition for the complete bipartite multigraph $\lambda K_{m,n}$ to be P_{2k} -factorable.

Theorem 2.1. Let k, m and n be positive integers. If $\lambda K_{m,n}$ is P_{2k} -factorizable then $m = n \equiv 0 \pmod{k(2k-1)/d}$, where $d = \gcd(\lambda, 2k-1)$.

Proof: Let X and Y be the two partite sets of $\lambda K_{m,n}$ with |X|=m and |Y|=n. Let $\{F_1,F_2,\cdots,F_r\}$ be a P_{2k} -factorization of $\lambda K_{m,n}$. Let F_i have t components. Since F_i is a spanning subgraph of $\lambda K_{m,n}$, we have m=kt=n and $|F_i|=m(2k-1)/k$ is an integer that does not depend on the individual P_{2k} -factors. Hence

$$m = n \equiv 0 \pmod{k}. \tag{1}$$

Let b be the total number of components; then $b = \lambda m^2/(2k-1)$ and $r = b/t = \lambda km/(2k-1)$, that is, $\lambda km/(2k-1)$ is an integer. Since $\gcd(k,2k-1)=1$, the number $\lambda m/(2k-1)$ must be an integer, and therefore $\lambda m \equiv 0 \pmod{(2k-1)}$. Let $d = \gcd(\lambda, 2k-1)$. Then we have

$$m \equiv 0 \pmod{(2k-1)/d}.$$
 (2)

By combining equalities (1) and (2), we have $m = n \equiv 0 \pmod{k(2k-1)/d}$.

To show that the condition is also sufficient, we need the following results.

Lemma 2.2. If $\lambda K_{m,n}$ has a P_{2k} -factorization, then $s\lambda K_{n,n}$ has a P_{2k} -factorization for every positive integer s.

Proof: Construct a P_{2k} -factorization of $\lambda K_{n,n}$ repeatedly s times; this gives a P_{2k} -factorization of $s\lambda K_{n,n}$.

Lemma 2.3. If $\lambda K_{n,n}$ has a P_{2k} -factorization, then $\lambda K_{sn,sn}$ has a P_{2k} -factorization for every positive integer s.

Proof: Since $K_{s,s}$ is 1-factorable (see [1, pp72–75]), we can let $\{F_1, F_2, \dots, F_s\}$ be a 1-factorization of it. For each i with $1 \leq i \leq s$, replace every edge of F_i with a $\lambda K_{n,n}$ to get a spanning subgraph G_i of $\lambda K_{sn,sn}$ such that the G_i $(1 \leq i \leq s)$ are pairwise edge disjoint and their sum is $\lambda K_{sn,sn}$. Since $\lambda K_{n,n}$ is P_{2k} -factorable, each G_i is also P_{2k} -factorable. And consequently, $\lambda K_{sn,sn}$ is P_{2k} -factorable.

We are now in a position to prove that the condition is also sufficient.

Lemma 2.4. When $2k-1=t\lambda$ and $n=t(t\lambda+1)/2$ then $\lambda K_{n,n}$ has a P_{2k} -factorization.

Proof: Let $u = (t\lambda + 1)/2$ and v = t. Let X and Y be the two partite sets of $\lambda K_{n,n}$ and set

$$X = \{x_{i,j} \mid 1 \le i \le u, \ 1 \le j \le v\},$$

$$Y = \{y_{i,j} \mid 1 \le i \le u, \ 1 \le j \le v\}.$$

We will construct a P_{2k} -factorization of $\lambda K_{n,n}$. We remark in advance that the additions in the first subscript of the $x_{i,j}$'s and $y_{i,j}$'s are taken modulo u in $\{1, 2, \dots, u\}$ and the additions in the second subscript are taken modulo v in $\{1, 2, \dots, v\}$.

For each i with $1 \le i \le u$, let

$$E_{2i-1} = \{x_{i,j} \, y_{i,j+2i-2} \mid 1 \le j \le v\}.$$

For each i with $2 \le i \le u$, let

$$E_{2i-2} = \{x_{i,j} y_{i-1,j+2i-3} \mid 1 \le j \le v\}.$$

Let $F = \bigcup_{1 \leq i \leq 2u-1} E_i$, then the graph F is a P_{2k} -factor of $\lambda K_{n,n}$. Define the bijection σ from $X \cup Y$ onto $X \cup Y$ by $\sigma(x_{i,j}) = x_{i+1,j}$ and $\sigma(y_{i,j}) = y_{i+1,j}$ for all i, j with $1 \leq i \leq u$ and $1 \leq j \leq v$. For each i and j with $1 \leq i, j \leq u$, let

$$F_{i,j} = \{ \sigma^i(x)\sigma^j(y) \mid x \in X, \ y \in Y, \ xy \in F \}.$$

It is easy to show that the $F_{i,j}$ $(1 \le i, j \le u)$ are pairwise disjoint P_{2k} -factors of $\lambda K_{n,n}$ and their sum is $\lambda K_{n,n}$. Thus $\{F_{i,j} \mid 1 \le i \le u, 1 \le j \le u\}$ is a P_{2n} -factorization of $\lambda K_{n,n}$. This proves the lemma.

Theorem 2.5. Let $d = \gcd(\lambda, 2k-1)$. When $n \equiv 0 \pmod{k(2k-1)/d}$, then $\lambda K_{n,n}$ has a P_{2k} -factorization.

Proof: Put $\lambda = hd$, 2k-1 = td, $\gcd(h,t) = 1$, n = sk(2k-1)/d, and N = k(2k-1)/d. Then we have n = st(td+1)/2 and N = t(td+1)/2. By lemma 2.4, $dK_{N,N}$ has a P_{2k} -factorization. By applying Lemmas 2.2 and 2.3, we see that $\lambda K_{n,n}$ has a P_{2k} -factorization.

Combining Theorems 2.1 and 2.5 gives the main result:

Theorem 2.6. Let $d = \gcd(\lambda, 2k - 1)$. The graph $\lambda K_{m,n}$ has a P_{2k} -factorization if and only if $m = n \equiv 0 \pmod{k(2k-1)/d}$.

References

- [1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, (Macmillan, London and Basingstoke, 1976).
- [2] K. Ushio, P₃-factorization of complete bipartite graphs, Discrete Math., 72 (1988), 361–366.
- [3] K. Ushio, Path-factorization of complete bipartite graphs, Journal of the Faculty of Science and Technology Kinki University, 24 (1988), 405–408.
- [4] K. Ushio, G-designs and related designs, Discrete Math., 116 (1993), 299-311.
- [5] H. Wang, P_{2p} -factorization of a complete bipartite graph, Discrete Math., 120 (1993), 307–308.

(Received 28/5/99)

•