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Abstract 

A graph is h-matchable if G-X has a perfect matching for every subset 
X ~ V(G) with IXI = h, and it is h-extendable if every matching of h 
edges can be extended to a perfect matching. It is proved that a graph G 
with even order is 2h-matchable if and only if (1) G is h-extendable; and 
(2) for any edge set D such that, for each e = xy E D, x,y E V(G) and 
e ~ E( G), G U D is h-extendable. Also nine known sufficient conditions 
for a graph to be h-extendable are stated, and sharp analogues of them 
all are obtained for matchability, each of which implies the corresponding 
result for extendability. 

1 Terminology and introduction 

All graphs considered in this paper are undirected, finite and simple. In general 
we follow the terminology of [1]. 

Let G be a graph. We denote by o(G) the number of odd components of G and 
by w(G) the number of the components of G. Let v E V(G) and X ~ V(G). We 
define N(v) = {u I u E V(G) and uv E E(G)} and N(X) = U N(v). Let S ~ V(G) 

vEX 
and let H be a subgraph of G. We ~se the notation Ns(v) = N(v) n S, NH(v) = 
N(v) n V(H), ds(v) = INs(v)1 and dH(v) = INH(v)l. Let G and H be two disjoint 
graphs. We denote by kH the union of k copies of Hi and by G+ H the join of G and 
H, which is the graph constructed from G and H by joining each vertex of G to all 
vertices of H. 

A graph G with n vertices is h-matchable where 0 ::; h :::; n-2, if for each sub­
set X ~ V(G) with IXI = h, G-X has a perfect matching (a I-factor). When 
h = 0, G has a perfect matching. When h = 1 or 2, G is known as factor-critical or 
bicritical respectively. G is h-extendable for 0 ::; h :::; (n-2)/2 if G has a matching 
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of size h and any matching of size h in G is contained in a perfect matching of G. 
When h = 0, G has a perfect matching. 

The toughness of G is defined as: 
tough(G) = min { W(~IX) I X C V(G) and w(G-X) ~ 2 } 

if G is not a complete graph, and tough(G) = 00 if G is a complete graph. 
The binding number of G is defined as: 
bind(G) = min { I~~)I I 0 =1= X C V(G) and N(X) =1= V(G) }. 
The concept of h-extendability was introduced by Plummer [6] in 1980. Since 

then, several general sufficient conditions for h-extendability have been found (see 
[2], [4-8] and Section 4 below). For each of these conditions, we shall obtain an 
analogous sharp sufficient condition for a graph to be h-matchable, and we shall 
see in Section 4 that each of our new theorems implies the corresponding result for 
extend ability. Also we shall obtain a result to show the relation between matchability 
and extend ability in Section 2. 

2 A few properties of h-matchable graphs 

In this Section, we show some important properties of h-matchable graphs of 
which we shall make frequent use in the next section. 

Proposition 1: Let G be a graph with order nand h be an integer such that 0 ::; 
h ::; n-2 and h == n (mod 2). Then G is h-matchable if and only if, for each subset 
S ~ V(G) with lSI ~ h, o(G-S) ::; lSI - h. 
Proof. This follows easily from Tutte's well known characterization of perfect 
matchings [11] (see also [10], Theorem 3.3.12.) 0 

Corollary 2: Let G be anh-matchable graph. Then G is j-matchable for every j 
such that 0 ::; j ::; hand j == h (mod 2). 
Proof. We use Proposition 1. Suppose S ~ V(G) and lSI ~ j. If j ::; lSI < h, then 
SeT for some set T such that ITI = h, and then o(G-S) ::; o(G-T) + (h-j) ::; 
(lSI-h) + (h-j) = ISI-j; this holds because removing a vertex from a graph cannot 
reduce its number of odd components by more than 1. If lSI ~ h then o(G-S) ::; 
ISI-h ::; ISI-j. 0 

Corollary 3: Let G be a graph with order n that is not h-matchab1t:'; where 0 ::; h 
::; n-2 and h == n (mod 2). Then there is a set S C V(G) with lSI ~ h such that 
w(G-S) ~ o(G-S) ~ ISI-h+2 ~ 2. 
Proof. By Proposition 1, there is a set S ~ V(G) with lSI ~ h such that o(G-S) 
~ ISI-h+1. But o(G-S) has the same parity as n-ISI and hence as ISI-h, and so 
o(G-S) ~ ISI-h+2. The rest is obvious. 0 
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Lemma 4 ([2]): Let h 2:: 1. Then a graph G with even order is h-extendable if and 
only if o(G-S) ::s; ISI-2h for every S c V(G) such that G[S] contains h independent 
edges. 

The next theorem shows the relation between 2h-matchable graphs and h-extend­
able graphs. 

Theorem 5: A graph G with even order is 2h-matchable if and only if 
(1) G is h-extendable; and . 
(2) for any edge set D such that, for each e = xy E D, x, Y E V(G) and e ¢ E(G), 
G U D is h-extendable. 
Proof. Suppose G is 2h-matchable. By Proposition 1, o(G-S) ::s; ISI-2h for each 
S ~ V(G) with lSI 2:: 2h. By Lemma 4, Gis h-extendable. Let D be an edge set such 
that, for each e = xy E D, x, Y E V(G) and e ¢ E(G). And let G' = G u D. Since 
adding new edges to G the number of odd components in G-S does not increase for 
each set S ~ V(G), we have o(G'-S) ::s; ISI-2h for each S ~ V(G') with lSI 2:: 2h. 
Hence G' is h-extendable. 

Suppose G is not 2h-matchable. By Corollary 3, there is a set S ~ V(G) with 
lSI 2:: 2h such that o(G-S) 2:: ISI-2h+2. We have two cases. 
Case 1: G [S] contains h independent edges. 

Then by Lemma 4, G is not h-extendable. So (1) of this theorem does not hold. 
Case 2: G[S] contains less than h independent edges. 

However, lSI 2:: 2h. We can add a set D of edges such that, for each e = xy E D, 
x, yES and e ¢ E(G), into G[S] so that G[S] contains h independent edges. Let G' 
= G u D. Since o(G-S) 2:: ISI-2h+2, o(G'-S) 2:: ISI-2h+2, by Lemma 4, G' is not 
h-extendable. Hence (2) of this theorem does not hold. 0 

3 Some sufficient conditions for matchability 

In this section, we prove nine sufficient conditions for match ability that are anal­
ogous to, and have similar proofs to, known sufficient conditions for extendability. 
Our first condition involves toughne~s. 

Theorem 6: Let G be a connected graph with order n and let h be an integer with 
o ::; h ::s; n-2 such that h == n (mod 2 ). Suppose that tough(G) > ~ , and tough(G) 
2:: 1 if h ::s; 1. Then G is h-matchable. 
Proof. Suppose not. Clearly tough(G) < n/2 and so h < n. 

By Corollary 3, there is a set S ~ V(G) with lSI 2:: h such that w(G-S) > 
lSI - h + 2 2::2. However, if h :::; 1 and tough(G) 2:: 1 then 

w(G-S) ::s; ISI/tough(G) :::; lSI < lSI - h + 2, 
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a contradiction. And if h 2: 2 and tough(G) > h/2 then 
w(G-S) S ISI/tough(G) < ISI/(h/2) 

S ¥1 + (iSI-h~(h-2) = lSI - h+2, 
another contradiction. The result follows. 0 

The lower bounds on toughness in Theorem 6 are sharp. Taking G = Kh + 
2Kl shows the sharpness of the bound for h 2: 2; tough(G) = ~ but G is not h­
matchable because deleting the vertices of Kh from G, the resulting graph has no 
perfect matching. Taking H = Kr+ (r+I)Kl shows the sharpness of the bound for 
h = 1; tough(H) = r:l -+1- as r-+ 00. And H is not I-matchable because deleting 
a vertex in Kr from H results in a graph with no perfect matching. Taking H = Kr 
+ (r+2)Kl shows the sharpness of the bound for h = 0 by the same reason as above. 
The next theorem gives a binding number condition. 

Theorem 7: Let G be a connected graph with order n. Let h be an integer such 
that 0 S h S n-2 and h == n (mod 2). 
(i) If bind(G) > !! for h 2: 5, then G is h-matchable; 
(ii) If bind(G) > ~hit26 for h = 2, 4, then G is h-matchable; 
(iii) If bind(G) > h!3 for h = 1, 3, then G is h-matchable; 
(iv) If bind(G) 2: ~ , then G is h-matchable for h = O. 
Proof. Suppose G satisfies the hypotheses of this theorem but is not h-matchable. 
By Corollary 3, there is a set 8 ~ V(G) with 181 2: h such that 

o(G-S) 2: ISI- h+2 2: 2. (1) 
Suppose bind(G) = b and let i(G) denote the number of singleton components 

of G. Then we have two cases. 
Case 1: i(G-S) > O. 

Let X = V(G)-S. Since Na(X) "! V(G), n-i(G-S) 2: INa(X)I2: blXI = bn-bISI. 
So 

i(G-S) S bISI-(b-I)n. (2) 
By (1) and (2), 

o(G-S)-i(G-S) 2: ISI- h+2-bISI+(b-I)n 
= (b-I)(n-ISI)-h+2. (3) 

However, counting the vertices in V(G)-S and using (3), we have 
n-ISI 2: i(G-S)+3(0(G-S)-i(G-S)) 

2: i(G-S)+3(b-I)(n-ISI)-3h+6. 
Then 

(3b-4)(n-ISI) S 3h-6-i(G-S). (4) 
If i(G-S) 2: 2, since n-ISI2: 0(0.-8) 2: 2 by (1), we deduce from (4) that 3h-6-2 

2: 2(3b-4). So b S ~, contradicting the hypotheses for all h of this theorem. 
Otherwise, i(G-S) = 1 and n-ISI 2: 4 since o(G-S) 2: 2 by (1). By (4), we have 

3h-7 2: 4(3b-4). Hence b S 3~;9, contradicting the hypotheses for all h of this 
theorem. 
Case 2: i(G-S) = O. 

We have two subcases. 
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Case (2.1): h ?: 3. 
Let r be the order of a smallest odd component of G-S and let X be the set 

of a vertex from a smallest odd component of G-S and all vertices of any other 
ISI-h+1 odd components ofG-S. Since NG(X) =f. V(G), we have ISI+(IXI-1)+(r-1) 
?: ING(X)I ?: biXI. So (b-1)IXI ~ ISI+r-2. As IXI ?: r(ISI - h+1)+1, we have 
(b-1)[r(ISI- h+1)+1] ~ ISI+r-2. Then 

(r - b~l)ISI ~ ~=~+(h-1)r-1. (5) 
Since r ?: 3 > b~l and lSI?: h, (5) implies that 

b < 2r±h-l. (6) 
- r±l . 

Since h ?: 3, the function f(r) = (2r+h-1)/(r+1) attains its maximum value at 
r = 3. Thus b :::; f(3) = ht5, contradicting the hypotheses for h ?: 3. 
Case (2.2): h = 0, 1, 2. 

Let X be the set of all vertices of any lSI - h+ 1 odd components of G-S. Then 
lSI + IXI ?: ING(X)I ?: blXI· SO IXI :::; ISI/(b-1). Combining this with IXI ?: 
3(ISI - h+1), we get 

b ~ 3(1sll~l±l) + 1. (7) 
Since lSI> h we have b < §. = 7h±26 for h = 2 and b < i = h±3 for h = 1. Also the - , - 3 24 -3 3 
function f(m) = m/3(m-h+1) +1 = m/3(m+1) + 1 for h = 0 is a strictly monotone 
increasing function and f(m) < ~ for all m ?: 1. Obviously, f(m)-t ~- as m-t 00. 

Since lSI?: 1 because G is connected, by (7), b < ~. Thus we have contradictions to 
the hypotheses for h = 0, 1, 2. 0 

Taking G = Kh +2KI shows the sharpness of the bound on binding number for h 
?: 5 and H = Kh +2K3 shows the sharpness of the bound for 1 :::; h:::; 4 in Theorem 7. 
Let F = Km±l +(m+3)K3 (m ?: 0). Then bind(F) =~!~: -+ ~- as m-+ 00, where 
we choose X to be the set of all vertices of m+2 copies of K3 in F such that bind(F) 
= IN(X)I/IXI. But bind(F) < ~ for all m. Then F shows the sharpness of the bound 
for h = O. Theorems 8 and 9 give a neighbourhood union condition and a degree 
sum condition for h-matchable graphs. 

Theorem 8: Let G be a k-connected graph with order nand h an integer such that 
o :::; h ~ n-2 and h == n (mod 2). Suppose there is an integer t, 1 :::; t ~ k-h+2, 
such that for each independent set I = {WI, W2, ... , Wt}, IN(I)I ?: n+h-1-k. Then 
G is h-matchable. 
Proof. Suppose not. By Corollary 3, there is a set S C V(G) with lSI?: h such 
that w(G-S) ?: ISI-h+2 ?: 2. Since G is k-connected, lSI ~ k and so w(G-S) ?: 
k-h+2 ?: t. Let CI , C 2 , •• " Cw(G-S) be the components of G-S; choose a Wi E 

V(Ci ) for each i, and let I = {WI, W2, "', wd. Then I is an independent set. 
Since IV(Ci)1 ?:1 for t+1 ~ i ~ w(G-S), it follows that 

t 
n ?: lSI + l: IV(Ci)1 + w(G-S)-t 

i=l 

?: lSI + IV(Ci)1 + ISI-h+2-t 

so that 
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t 
L: (IV(Ci)l-l) s n+h-2-2ISI· (8) 
i=l 

Thus 
t 

IN(I)I s L: (IV(C i )l-l)+ISI 
i=l 

S n+h-2-ISI 
S n+h-2-k, 

contrary to an hypothesis. 0 

Theorem 9: Let G be a k-connected graph with order nand h an integer such that 
o ~ h S n-2 and h == n (mod 2). Suppose there is an integer t, 1 S t S k-h+2, 
such that for each independent set I = {Wl,W2, -... ,Wt} ~ V(G), 

t ' 

L:d(wi) ~ t(n+h-2)/2 + 1. 
i=l 

Then G is h-matchable. 
Proof. Suppose not. By Corollary 3, there is a set S ~ V(G) with lSI ~ h such 
that 

w(G-S) ~ ISI-h+2 ~ 2. (9) 
Suppose first that t ~ 2. Construct I exactly as in the proof of Theorem 8, and note 
that, since IV(Ci)1 ~ 1 for all i, (8) gives 

lSI s (n+h-2)/2. (10) 
Hence 

t t 
L: d(wi) S L: (IV(Ci) l-l)+tISI 
i=l i=l 

S n+h-2+(t-2)ISI by (8) 

S t(n+h-2)/2 by (10), 

contrary to an hypothesis. 
This completes the proof when t ~ 2, so suppose t = 1. Then the hypotheses ofthe 

theorem imply d(w) ~ (n+h)/2 for each wE V(G), so that IV(Ci)1 ~ (n+h)/2-ISI+l 
for each i. Let x := mini IV(Ci)1 and w := w(G-S). Then we have just seen 

2x ?: n+h-2ISI+2. (11) 
Counting the vertices in G gives 

n ~ lSI + wx. (12) 
Adding (9), (11) and (12) and rearranging gives (w-2)x S w-4, which is impossible 
since w ~2 from (9), and x is a positive integer. This contradiction completes the 
proof of Theorem 9. 0 

For any integers h, k, t such that 0 S h S k and 1 S t S k-h+2, G = 
Kk +(k-h+2)K1 shows that the bounds in Theorems 8 and 9 are sharp. For any 

t 
independent set I = {WbW2' ... ,Wt} ~ V(G), IN(I)I ~ k = n+h-2-k and L d(wi) 

i=l 
~ tk = t(n+h-2)/2 . But G is not h-matchable. 

Now we introduce the following definitions. Let K:(G), a(G) and 8(G) denote 
the connectivity, independence number and minimum degree of G. If u, v E V(G), 
let d(u,v) denote the distance between u and v, let N2{v) ={ u I u E V(G) and 

206 



d(u,v) = 2 }, and let Gv = G[{v}UNc(v)]. If d(u,v) = 2, let nu,v(w) = max{ lSI I S 
is independent and {u,v} ~ S ~ N(w) for a vertex w E N(u) n N(v) } and o:*(u,v) = 
maxw{nu,v(w) I w E N(u) n N(v) }. We can now define the following five conditions. 

Cl(h): For each v E V(G), K(Gv ) ~ o:(Gv)+h-1. 
C2 (h): For each v E V(G) and each independent set R ~ N2 (v), IN(v) n N(R)I ~ 
IRI+h. 
C3 (h): For each u, v E V(G) such that d(u,v) = 2, IN(u) n N(v)1 ~ o:*(u,v)+h-1. 
C4 (h): For each v E:: V(G) and nonadjacent ver~ices u, w E N(v), dc,,(u)+dcJw) ~ 
dG(v)+h. 
C5 (h): beG) ~ (n+h)/2. 

Now we prove the following theorem. 

Theorem 10: Let G be a connected graph with order nand h an integer such that 
o ::; h S n-2 and h == n (mod 2). If G satisfies any of the conditions Ci(h) (1 SiS 
5), then G is h-matchable. . 
Proof. By [4] Theorem 9 and [5] Theorem 1, Cl(h) and C2 (h) hold for h ~ 1. By 
[4] and [5], Ci(h) implies Ci+1 (h) for h ~ 0 and i = 2, 3, 4. 

Now we prove the result of C2 (h) for h = O. 
Suppose G is not h-matchable. By Corollary 3, there is a set S ~ V(G) with lSI 

~ 1 (since G is connected) such that 
w(G-S) ~ o(G-S) ~ ISI-h+2 ~ 2. (13) 

We choose S such that lSI is as small as possible subject to (13). Then we have the 
following claim. 
Claim 1: For each vertex v in an odd component such that Ns(v) =1= 0, there is 
an independent set R ~ N2 (v) such that IN(v) n N(R)I < IRI = IRI+h for h = 0, 
(contradicting the hypothesis of C2 (h) for h = 0). 

Suppose not. Then there is a vertex v in an odd component C with Ns(v) =1= 0 
such that the vertices in Ns(v) are adjacent to at least INs(v) 1+2 odd component C, 
CI , C2 , .. " Ct ( t ~ INs (v)I+1 ). (Otherwise, let S' = S\Ns(v), we have IS'I < lSI 
and IS'I-o(G-S') S ISI-o(G-S), contrary to the choice of S). Now we choose a 
vertex Wi in Ci which is adjacent to Ns(v) for 1 ::; i ::; t. Then R = {WI, W2, ... , 

wd satisfies the inequality IN(R) n N(v)1 = INs(v)1 < IRI, as claimed. 
In the following, we shall prove C1 (h) holds for h = O. 
Suppose G is not h-matchable .. By Corollary 3, there is a set S ~ V(G) with 

lSI ~ 1 such that 
o(G-S) ~ ISI-h+2 = ISI+2 > 2 (14) 
We choose S to be a minimum set subject to the inequality (14). 
Let lSI = s, o(G-S) = t and CI , C2 , ••• , Ct be the odd components of G-S. Let 

S = {VI, V2, ... , vs} and ki be the number of odd components in G-S which are 
adjacent to Vi. Without loss of generality, assume ki ::; k2 ::; ... S ks. 

Let kmj = max{ ki I Vi is adjacent to Cj and 1 SiS s} (j = 1,2" . ·,t). Without 
loss of generality, assume kml S km2 S ... ::; kmt · 
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Claim 2: ki ~ 3 for all i such that 1 ::; i ::; s. 
Suppose ki ::; 2 for some i. Then we use S' = S\ {Vi} to replace S. We have 

o(G-S') ~ o(G-S)-1 ~ ISI+2-1 = IS'I+2, contradicting the choice of S. 
Claim 3: For each Vi E S, if Vi is adjacent to Cjl then Cj is adjacent to at least ki 

vertices in S. 
Since Vi is adjacent to ki odd components in G-S, there is an independent set of 

order ki in N(Vi). Let u E V(Cj ) such that ViU E E(G). By condition C1(0), there 
are at least ki -l internally disjoint paths from u to w E V(C k ), where ViW E E(G) 
and k =I- j. These paths must go through vertices of S. So Cj is adjacent to at least 
ki-l vertices in S. 

Suppose Cj is adjacent to exactly ki-l vertices Vi, UI, U2, ... , Uk;-2 in S. Let Cj , 

D1 , D2,' .. , Dki - 1 be the odd components in G~S which are adjacent to Vi. Since 
there are ki-l internally disjoint paths from u to each of D1, D 2, ... , Dki - 1 and these 
paths must go through Vi, UI, U2,' .. , Uki-2, each of Cj , Db D2, ... , Dki - l is adjacent 
to all of Vi, UI,' .. , Uki-2. 

If Uk is only adjacent to Cj , D1, .. " Dki - l for k = 1,2,' . ·,ki -2, then let S' = 
S\{Vi, Ul,' . ',Uki-2} and we have o(G-S') = o(G-S)-(ki-l) ~ ISI+2-(ki-l) = 
IS'I+2, contradicting the choice of S. 

Hence a Uk (1 ::; k ::; ki-2) is adjacent to at least ki+l odd components in G-S. 
But Uk is adjacent to Cj , so Cj is adjacent to at least (ki+l)-1 = ki vertices in S by 
the above argument. Hence Claim 3 is proved. 

Considering all vertices in S adjacent to Cj , by Claim 3, Cj is adjacent to at least 
k mj vertices in S. For the convenience of explanation, if a vertex in S is adjacent to k 
odd components of G-S, then we say that it sends k edges to the odd components. 
If an odd component C of G-S has k neighbours in S, then we say that C sends k 
edges to S. Now the vertices in S send kl +k2 + .. ·+ks edges to the odd components 
of G-S. And the odd components of G-S send at least kml +km2 + .. +kmt edges 
to S. So we have 

kl +k2 + .. ·+ks ~ kml +km2 + .. ·+kmt (15) 
s s 

Claim 4: E ki ::; E kmi 
i=l i=l 

By induction, we shall prove that kmi ~ ki (i = 1,2,' . ·,s). Then the claim holds. 
By the definition of kmi , kml ~ k1 . 

Assume that kmi ~ ki for all i < j. Now i = j. If there is an odd component Cp 

E {CI, C2 , ••• , Cj } such that Cp is adjacent to Vq for some q ~ j, then kmj 2: kmp 

~ kq 2: kj . Otherwise, CI, C2 , •• " Cj are only adjacent to VI, V2, .. " Vj-I. Then 
kl +k2 + .. ·+kj- I ~ kml +km2 + .. ·+kmj . By induction hypothesis, kmi ~ ki (i = 
1,2", ·,j-l), and kmj ~ 1. So kml+km2 + .. ·+kmj_l+kmj >kl+k2 + ... +kj - 1, a 
contradiction. 

Since kms+l ~ 1, by Claim 4, kml +km2 + .. ·+kmt >kI +k2 + .. ·+ks , contradicting 
(15). This last contradiction completes the proof of Theorem 10. 0 

Taking G = Kh+2Kl shows that the results of Theorem 10 for C1 (h) and C2(h) 
for h ~ 1 are sharp. Taking H = Kr+(r+2)Kl shows that the results of Theorem 10 
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for CI (h) and C2 (h) for h = 0 to be sharp. The above counterexamples also show 
the sharpness of the results of Theorem 10 for Ci(h) for i = 3,4,5 and h ~ O. 

4 Sufficient conditions for extendability 

In view of Theorem 5, Theorems 6-10 immediately imply the following known results 
(and Theorems 8 and 9 gives short proofs of Corollaries 13 and 14). 

Corollary 11 ([7]): Let G be a connected graph with even order. If tough(G) > h 
for h ~ 1, then G is h-extendable. 

Corollary 12 ([2]): Let G be a connected graph with even order. If bind(G) > 
max {h, (7h+13)/12} for h ~ 1, then G is h-extendable. 

Corollary 13 ([8]): Let G be a k-connected graph with even order n. Further, 
suppose there is an integer t, 1 ::; t ::; k-2h+2, such that for each independent set 
I = {WI, W2, ... , Wt}, IN(I)I ~ n-k+2h-1. Then if 
(a) h = 1, G is bicritical (and hence I-extendable) and if 
(b) h ~ 2, G is h-extendable. 

Corollary 14 ([8]): Let G be a k-connected graph with even order n. Further, 
suppose there is an integer t, 1 ::; t ::; k-2h+2, such that for each independent set 

t 

I = {Wl,W2' ... ,wd ~ V(G), L: d(wi) ~ t«n-2)/2+h)+1. Then if 
i=l 

(a) h = 1, G is bicritical (and hence I-extendable) and if 
(b) h ~ 2, G is h-extendable. 

Corollary 15 ([4,5,6]): Let G be a connected graph with even order nand h an 
integer such that 1 ::; h ::; (n-2)/2. If G satisfies any of the conditions Ci(2h) (1 ::; 
i ~ 5), then G is h-extendable. 

Remark 1: We notice that when we prove a graph to be h-extendable we seldom 
use the edges in G[S] for the S in Lemma 4. So "almost all" sufficient conditions for 
a graph to be h-extendable actually.force the graph to be 2h-matchable. Hence we 
can obtain analogous conditions for a graph to be h-matchable. 
Remark 2: Akira Saito [9] raised a problem about adding new edges to an h­
extendable graph to obtain new h-extendable graphs. However, Gyori and Plummer 
[3] showed that adding any new edge to some h-extendable graphs, which are neither 
Kn nor Km,m, cannot keep h-extendability. 

By Theorem 5, when we prove that some sufficient conditions for a graph to 
be h-extendable actually force the graph to be 2h-matchable, then adding any new 
edges to the graph results in many new h-extendable graphs which may not satisfy 
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the original sufficient conditions. For example, conditions C i (2h) (1 :::; i :::; 4) in 
Corollary 15 can apply to graphs with arbitrary large diameter (see [4]), adding new 
edges to the graphs, we can obtain many new h-extendable graphs which do not 
satisfy Ci (2h) . 
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