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Abstract

A graph is h-matchable if G—X has a perfect matching for every subset
X € V(G) with |X| = h, and it is h-extendable if every matching of h
edges can be extended to a perfect matching. It is proved that a graph G
with even order is 2h-matchable if and only if (1) G is h-extendable; and
(2) for any edge set D such that, for each e = xy € D, x,y € V(G) and
e ¢ E(G), G UD is h-extendable. Also nine known sufficient conditions
for a graph to be h-extendable are stated, and sharp analogues of them
all are obtained for matchability, each of which implies the corresponding
result for extendability.

1 Terminology and introduction

All graphs considered in this paper are undirected, finite and simple. In general
we follow the terminology of [1].

Let G be a graph. We denote by o(G) the number of odd components of G and
by w(G) the number of the components of G. Let v € V(G) and X C V(G). We
define N(v) = {u | u € V(G) and uv € E(G)} and N(X) = UX N(v). Let S C V(G)

vE

and let H be a subgraph of G. We use the notation Ng(v) = N(v) N S, Ny(v) =
N(v) N V(H), ds(v) = |Ng(v)| and dg(v) = |[Ng(v)|. Let G and H be two disjoint
graphs. We denote by kH the union of k copies of H; and by G+H the join of G and
H, which is the graph constructed from G and H by joining each vertex of G to all
vertices of H.
A graph G with n vertices is h-matchable where 0 < h < n—2, if for each sub-
set X C V(G) with |X| = h, G-X has a perfect matching (a 1-factor). When
= 0, G has a perfect matching. When h = 1 or 2, G is known as factor-critical or
bicritical respectively. G is h-extendable for 0 < h < (n-2)/2 if G has a matching
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of size h and any matching of size h in G is contained in a perfect matching of G.
When h = 0, G has a perfect matching.

The toughness of G is defined as:

tough(G) = min { u—(gélx—) | X ¢ V(G) and w(G-X) > 2 }
if G is not a complete graph, and tough(G) = oo if G is a complete graph.

The binding number of G is defined as:

bind(G) = min { B | 0 # X € V(G) and N(X) # V(G) }.

The concept of h-extendability was introduced by Plummer [6] in 1980. Since
then, several general sufficient conditions for h-extendability have been found (see
[2], [4—8] and Section 4 below). For each of these conditions, we shall obtain an
analogous sharp sufficient condition for a graph to be h-matchable, and we shall
see in Section 4 that each of our new theorems implies the corresponding result for
extendability. Also we shall obtain a result to show the relation between matchability
and extendability in Section 2.

2 A few properties of h-matchable graphs

In this Section, we show some important properties of h-matchable graphs of
which we shall make frequent use in the next section.

Proposition 1: Let G be a graph with order n and h be an integer such that 0 <
h < n-2and h = n (mod 2). Then G is h-matchable if and only if, for each subset
S C V(G) with |S| > h, o(G-8) < [S| = h.

Proof. This follows easily from Tutte’s well known characterization of perfect
matchings [11] (see also [10], Theorem 3.3.12.) O

Corollary 2: Let G be an h-matchable graph. Then G is j-matchable for every j
such that 0 < j < h and j = h {mod 2).

Proof. We use Proposition 1. Suppose S C V(G) and |S| > j. If j < |S| < h, then
S ¢ T for some set T such that |T| = h, and then o(G-S) < o(G-T) + (h—j) <
(IS|=h) + (h—j) = |S|—j; this holds because removing a vertex from a graph cannot
reduce its number of odd components by more than 1. If |S| > h then o(G—S) <
SI=h < [S|—j. ©

Corollary 3: Let G be a graph with order n that is not h-matchahle, where 0 < h
< n-2and h = n (mod 2). Then there is a set S C V(G) with [S| > h such that
w(G=S8) > o(G-S) > |S|-h+2 > 2.

Proof. By Proposition 1, there is a set S C V(G) with |S| > h such that o(G-S)
> |S|-h+1. But o(G—S) has the same parity as n—|[S| and hence as |S|-h, and so
o(G-8) > |S|~h+2. The rest is obvious. O
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Lemma 4 ([2]): Let h > 1. Then a graph G with even order is h-extendable if and
only if o(G—S8) < [S|—2h for every S C V(G) such that G[S] contains h independent
edges.

The next theorem shows the relation between 2h-matchable graphs and h-extend-
able graphs.

Theorem 5: A graph G with even order is 2h-matchable if and only if

(1) G is h-extendable; and

(2) for any edge set D such that, for each e = xy € D, x, y € V(G) and e ¢ E(Q),
G U D is h-extendable.

Proof. Suppose G is 2h-matchable. By Proposition 1, o(G—S) < |S|-2h for each
S C V(G) with |S| > 2h. By Lemma 4, G is h-extendable. Let D be an edge set such
that, for each e = xy € D, x, y € V(G) and e ¢ E(G). And let G’ = G U D. Since
adding new edges to G the number of odd components in G—S does not increase for
each set S C V(G), we have o(G'—S) < |S|—2h for each S C V(G’) with |S| > 2h.
Hence G’ is h-extendable. )

Suppose G is not 2h-matchable. By Corollary 3, there is a set S C V(G) with
[S| > 2h such that o(G—S) > |S|—2h+2. We have two cases.

Case 1: G[S] contains h independent edges.

Then by Lemma 4, G is not h-extendable. So (1) of this theorem does not hold.
Case 2: G[S] contains less than h independent edges.

However, |S| > 2h. We can add a set D of edges such that, for each e = xy € D,
x,y € S and e ¢ E(G), into G[S] so that G[S] contains h independent edges. Let G’
= G U D. Since o(G-S) > [S|-2h+2, o(G'—=S) > |S|—2h+2, by Lemma 4, G’ is not
h-extendable. Hence (2) of this theorem does not hold. O

3 Some sufficient conditions for matchability

In this section, we prove nine sufficient conditions for matchability that are anal-
ogous to, and have similar proofs to, known sufficient conditions for extendability.
Our first condition involves toughness.

Theorem 6: Let G be a connected graph with order n and let h be an integer with
0 <h < n-2such that h =n (mod 2 ). Suppose that tough(G) > £ , and tough(G)
> 1ifh < 1. Then G is h-matchable.
Proof. Suppose not. Clearly tough(G) < n/2 and so h < n.

By Corollary 3, there is a set S € V(G) with |S| > h such that w(G-S) >
[S| — h+2 >2. However, if h < 1 and tough(G) > 1 then

w(G=S) < [S/tough(G) < |S] < |S| — h+2,
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a contradiction. And if h > 2 and tough(G) > h/2 then
w(G-8) < |S|/tough(G) < [S|/(h/2)
< Bl (SERG=D) — 5| — pt2,
another contradiction. The result follows. O

The lower bounds on toughness in Theorem 6 are sharp. Taking G = Kp+
2K, shows the sharpness of the bound for h > 2; tough(G) = % but G is not h-
matchable because deleting the vertices of Kj, from G, the resulting graph has no
perfect matching. Takmg H = K.+ (r+1)K; shows the sharpness of the bound for
h = 1; tough(H) = &5 —1— as r— co. And H is not 1-matchable because deleting
a vertex in K, from H results in a graph with no perfect matching. Taking H = K,

+ (r+2)K; shows the sharpness of the bound for h = 0 by the same reason as above.

The next theorem gives a binding number condition.

Theorem 7: Let G be a connected graph with order n. Let h be an integer such
that 0 <h < n—2and h = n (mod 2).
(i) If bind(G) > 2 for h > 5, then G is h-matchable;
(i) If bind(G) > 2 for h = 2, 4, then G is h-matchable;
(iii) If bind(G) > h+3 for h = 1, 3, then G is h-matchable;
(iv) If bind(G) > %, then G is h-matchable forh = 0.
Proof. Suppose G satisfies the hypotheses of this theorem but is not h—matchable
By Corollary 3, there is a set S C V(G) with |S| > h such that

o{G=S8) > |S| - h+2 > 2. 1)

Suppose bind(G) = b and let i(G) denote the number of singleton components
of G. Then we have two cases.
Case 1: i(G-S) > 0.

Let X = V(G)=S. Since Ng(X) # V(G), n—i(G=S) > [Ng(X)| > b|X| = bn—b|S|.
So

i(G-8) < b}Si—(b-—l)n. 2)
By (1) and (2),

0(G-8)—i(G-S) > |S| — h+2-b|S|+(b—1)n
= (b—1)(n—[S|)~h+2. (3)

However, counting the vertices in V(G)—S and using (3), we have

n—|S| > i(G-S)+3(o(G—S)~i(G-S))

> i(G-8)+3(b—1)(n—|S|}—3h+86.

Then

(3b—4)(n—|S|) < 3h—6-3(G~-S). (4)

Ifi(G-S) > 2, smce n—|S| > o(G-S) > 2 by (1), we deduce from (4) that 3h—6—2
> 2(3b—4). So b < 2, contradicting the hypotheses for all h of this theorem.

Otherwise, i(G—S) = 1 and n—|S| > 4 since o(G—S) > 2 by (1). By (4), we have
3h-7 > 4(3b—4). Hence b < 343, contradicting the hypotheses for all h of this
theorem.
Case 2: {(G-S8) =

We have two subcases.
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Case (2.1): h > 3.

Let r be the order of a smallest odd component of G—S and let X be the set
of a vertex from a smallest odd component of G—S and all vertices of any other
|S|—h+1 odd components of G—S. Since Ng(X) # V(G), we have [S|+(|X|-1)+(r—1)
> |[Neg(X)| > b|X|. So (b—1)|X| < |S|+r—2. As |[X| > r(|S| — h+1)+1, we have
(b=1)[r(|S| = h+1)+1] < |S|+r—2. Then

(r — )18 < =24 (h~1)r-1. 5)
Since r > 3 > 7 and [S| > h, (5) implies that
b<=yE. (0

Since h > 3, the function f(r) = (2r+h—1)/(r+1) attains its maximum value at
r = 3. Thus b < f(3) = &2, contradicting the hypotheses for h > 3.
Case (22): h=0,1, 2.

Let X be the set of all vertices of any |S| — h+1 odd components of G—S. Then
IS| + 1X| > [Ng(X)| > b|X|. So |X| < [S|/(b—1). Combining this with |X| >
3(|S] = h+1), we get

b< g+l ()
Since |S| > h, wehave b < 8 =22 for h =2 and b < § = &2 forh = 1. Also the
function f(m) = m/3(m~ h+1) +1 =m/3(m+1) + 1 for h 0 is a stnctly monotone
increasing function and f(m) < § for all m > 1. Obv1ously, f(m)— $— as m— oo,
Since |S| > 1 because G is connected by (7), b < . Thus we have contradlctlons to
the hypotheses for h =0, 1,2. O

Taking G = K;,+2K; shows the sharpness of the bound on binding number for h
> 5 and H = K, +2Kj shows the sharpness of the bound for 1 < h <4 in Theorem 7.
Let F = Kpy1+(m+3)Ks (m > 0). Then bind(F) = ™ — £— as m— oo, where
we choose X to be the set of all vertices of m+2 copies of K3 in F such that bind(F)
= |N(X)|/|X|. But bind(F) < 3 for all m. Then F shows the sharpness of the bound
for h = 0. Theorems 8 and 9 give a neighbourhood union condition and a degree

sum condition for h-matchable graphs.

Theorem 8: Let G be a k-connected graph with order n and h an integer such that
0 <h<n-2and h =n (mod 2). Suppose there is an integer t, 1 < t < k—h+2,
such that for each independent set I = {w1, wq, --+, wi}, IN(I)| > n+h—1—k. Then
G is h-matchable.

Proof. Suppose not. By Corollary 3, there is a set S C V(G) with |S| > h such
that w(G—S) > |S|-h+2 > 2. Since G is k-connected, |S| > k and so w(G—S) >
k—h+2 > t. Let Cy, Cy, - -+, Cyg-s) be the components of G—S; choose a w; €
V(C;) for each i, and let I = {wy, wy, - - -, w;}. Then I is an independent set.

Since |V(C;)| >1 for t+1 < i £ w(G-S), it follows that

t
n > [S|+ ‘g,] [V(C))] + w(G=8)—t

i
> S|+ Z:l [V(Ci)| + [S|-h+2~t
so that -
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L(VC)I-D) < n+h-2-28.  (8)

Thus ,
NDI < SVEI-D+S]
< n+h-2-S|
< n+h-2-k,

contrary to an hypothesis. O

Theorem 9: Let G be a k-connected graph with order n and h an integer such that
0 <h<n-2andh =n (mod 2). Suppose there is an integer t, 1 <t < k—h+2,
such that for each independent set I = {wi,ws,™ - ,w¢} € V(G),

Zd(w,) > t(n+h-2)/2 + 1.
Then G is h-matchable.
Proof. Suppose not. By Corollary 3, there is a set S C V(G) with [S| > h such
that
w(G-8) > |S|-h+2 > 2. 9)
Suppose first that t > 2. Construct I exactly as in the proof of Theorem 8, and note
that, since [V(C;)| > 1 for all i, (8) gives
IS| € (n+h-2)/2. (10)
Hence
Zd(wz) < Z(W( i)|=1)+t[S]
< n+h —2+(t—2)|S| by (8)
< t{n+h-2)/2 by (10),

contrary to an hypothesis.

This completes the proof when t > 2, so suppose t = 1. Then the hypotheses of the
theorem imply d(w) > (n+h)/2 for each w € V(G), so that |V(C;)| > (n+h)/2—|S|+1
for each i. Let x := min; |[V(C;)| and w := w(G—S8). Then we have just seen

2x > n+h-2|S|+2. (11)

Counting the vertices in G gives

n > |S| + wx. (12)

Adding (9), (11) and (12) and rearranging gives (w—2)x < w—4, which is impossible
since w >2 from (9), and x is a positive integer. This contradiction completes the
proof of Theorem 9. O

For any integers h, k, t such that 0 < h < kand 1 £t < k-h+2, G =

Kj+(k—h+2)K; shows that the bounds in Theorems 8 and 9 are sharp. For any
1

independent set I = {w;,wa, -+ ,w;} € V(G), IN(I)| > k = n+h—2—k and } d(w;)
i=1

> tk = t(n+h—2)/2 . But G is not h-matchable.

Now we introduce the following definitions. Let x(G), a(G) and 6(G) denote
the connectivity, independence number and minimum degree of G. If u, v € V(G),
let d(u,v) denote the distance between u and v, let No(v) ={ u | u € V(G) and
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d(u,v) = 2 }, and let G, = G[{v}UNg(v)]. If d(u,v) = 2, let n,,(w) = max{ [S| | S
is independent and {u,v} C S C N(w) for a vertex w € N(u) N N(v) } and a*(u,v) =
maxy, {n,,(w) | w € N(u) N N(v) }. We can now define the following five conditions.

Ci(h): For each v € V(G), £(G,) > a(Gy)+h-1.

Cy(h): For each v € V(G) and each independent set R C Na(v), [N(v) N N(R)| >
[R|+h.

Cs(h): For each u, v € V(G) such that d(u,v) = 2, |N(u) N N(v)| > a*(u,v)+h-1.
C4(h): For each v € V(G) and nonadjacent vertices u, w € N(v), dg, (u)+dg, (w) >
dg(v)-+h.

Cs(h): 5(G) > (n+h)/2.

Now we prove the following theorem.

Theorem 10: Let G be a connected graph with order n and h an integer such that
0 <h < n-2and h =n (mod 2). If G satisfies any of the conditions C;(h) (1 <i<
5), then G is h-matchable. o
Proof. By [4] Theorem 9 and [5] Theorem 1, C;(h) and Cz(h) hold for h > 1. By
[4] and [5], C;(h) implies C;11(h) forh > 0andi =2, 3, 4.

Now we prove the result of Co(h) for h = 0.

Suppose G is not h-matchable. By Corollary 3, there is a set S C V(G) with |S|
> 1 (since G is connected) such that

w(G-S8) > o(G-S) > |S|-h+2 > 2. (13)

We choose S such that |S| is as small as possible subject to (13). Then we have the
following claim.

Claim 1: For each vertex v in an odd component such that Ng(v) # 0, there is
an independent set R C Ny(v) such that |[N(v) N N(R)| < |R| = |R|+h for h = 0,
(contradicting the hypothesis of Cy(h) for h = 0).

Suppose not. Then there is a vertex v in an odd component C with Ng(v) # 0
such that the vertices in Ng(v) are adjacent to at least [Ng(v)|+2 odd component C,
Cq, Coy - -+, Gy (t > |Ng(v)|+1 ). (Otherwise, let S' = S\Ng(v), we have |S'| < |S]
and |$'|—0(G—5') < |S|—0(G-S), contrary to the choice of S). Now we choose a
vertex w; in C; which is adjacent to Ng(v) for 1 <i <t. Then R = {wy, wa, - -
w; } satisfies the inequality [N(R) N N(v)| = [Ng(v)| < |Rl, as claimed.

In the following, we shall prove C;(h) holds for h = 0.

Suppose G is not h-matchable.. By Corollary 3, there is a set S C V(G) with
IS| > 1 such that

o{G=S8) > |S|-h+2 = |S|+2 > 2 (14)

We choose S to be a minimum set subject to the inequality (14).

Let |S] = s, o(G=S) =t and Cy, Cy, - -+, C; be the odd components of G—S. Let
S = {vi, v2, - -+, vs} and k; be the number of odd components in G—S which are
adjacent to v;. Without loss of generality, assume k; <k, < --- < k,.

Let ky,; = max{ k; | v; is adjacent to C; and 1 <i < s} (j = 1,2, - -,t). Without
loss of generality, assume ky;, < kp, <00 < ki,

?
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Claim 2: k; > 3 for all i such that 1 <i <s.

Suppose k; < 2 for some i. Then we use S’ = S\{v;} to replace S. We have
0(G-98') > o(G-8)-1 > |S|+2~1 = |§'|+2, contradicting the choice of S.

Claim 3: For each v; € S, if v; is adjacent to C,, then C; is adjacent to at least k;
vertices in S.

Since v; is adjacent to k; odd components in G—S, there is an independent set of
order k; in N(v;). Let u € V(C;) such that v;u € E(G). By condition C;(0), there
are at least k;—1 internally disjoint paths from u to w € V(Cy), where v;w € E(G)
and k # j. These paths must go through vertices of S. So C; is adjacent to at least
k;—1 vertices in S.

Suppose C; is adjacent to exactly k;—1 vertices vy, uy, ug, « -+, ug;—3 in S. Let C;,
Dy, Dy, -, Dki_l be the odd components in G—S which are adjacent to v;. Since
there are k;—1 internally disjoint paths from u to each of Dy, Dy, -+, D,_; and these

paths must go through v;, uy, us,- -, ug, -2, each of C;, Dy, Do, - -+, Dy,_1 is adjacent
to all of v;, uy, -+, Ug—2
If uy, is only adjacent to Cj, Dy, - - -, Dy, for k = 1,2,- - - k;—2, then let S’ =

S\{vi, uy, - -,ug,—2} and we have o(G— S’) = 0o(G-=8)—(k; 1) > |S|+2—-(k;,~1) =
|S’[+2, contradicting the choice of S.

Hence a u (1 < k < k;—2) is adjacent to at least k;+1 odd components in G—S.
But uy is adjacent to C;, so C; is adjacent to at least (k;+1)—1 = k; vertices in S by
the above argument. Hence Claim 3 is proved.

Considering all vertices in S adjacent to C;, by Claim 3, C; is adjacent to at least
k,; vertices in S. For the convenience of explanation, if a vertex in S is adjacent to k
odd components of G—S, then we say that it sends k edges to the odd components.
If an odd component C of G—S has k neighbours in S, then we say that C sends k
edges to S. Now the vertices in S send k;-+ky + - - +k, edges to the odd components
of G—S. And the odd components of G—S send at least ki, +kp, + - - -+kyy, edges
to S. So we have

k;+ko + +k Ky +kim, + -+ ki, (15)

Claim 4: Ek < ka‘

By 1nduct10n we shall prove that k,,, > k; (i = 1,2,- - -,5). Then the claim holds.
By the definition of ki, km, > k1.

Assume that k,,, > k; for alli < j. Now i = j. If there is an odd component C,
€ {Cy, Cy, - -+, C;} such that C, is adjacent to v, for some q > j, then ky,;, > ky,
>k, > k;. Otherwise, Cy, C,, -+ -, C; are only adjacent to vy, vo, - -+, vj_1. Then
ki+ks + - - ~4+kj_1 > kmy+km, + - - -+kp,;. By induction hypothesis, ky,, > k; (i =
1,2, - ',j—l), and kmj > 1. So km1+km2 + - '+kmj_1+kmj >ki+ky + - - '+kj_1, a
contradiction. )

Since kp,,, > 1, by Claim 4, kpn, +kpm, + + « -+kpm, >ki+ko + - -+k;, contradicting
(15). This last contradiction completes the proof of Theorem 10. O

Taking G = K,+2K; shows that the results of Theorem 10 for C;(h) and C,(h)
for h > 1 are sharp. Taking H = K,+(r+2)K; shows that the results of Theorem 10
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for Cy(h) and Cy(h) for h = 0 to be sharp. The above counterexamples also show
the sharpness of the results of Theorem 10 for C;(h) for i = 3,4,5 and h > 0.

4 Sufficient conditions for extendability

In view of Theorem 5, Theorems 6—10 immediately imply the following known results
(and Theorems 8 and 9 gives short proofs of Corollaries 13 and 14).

Corollary 11 ([7]): Let G be a connected graph with even order. If tough(G) > h
for h > 1, then G is h-extendable.

Corollary 12 ([2]): Let G be a connected graph with even order. If bind(G) >
max {h, (7h+13)/12} for h > 1, then G is h-extendable.

Corollary 13 ([8]): Let G be a k-connected graph with even order n. Further,
suppose there is an integer t, 1 < t < k—2h+2, such that for each independent set
I = {wy, wa, -+, w¢}, IN()| > n—k+2h—1. Then if

(a) h =1, G is bicritical (and hence 1-extendable) and if

(b) h > 2, G is h-extendable.

Corollary 14 ([8]): Let G be a k-connected graph with even order n. Further,
suppose there is an integer t, 1 < t < k—2h-+2, such that for each independent set

1= {wy,ws, - ,w} C V(Q), _il d(w;) > t((n—2)/2+h)+1. Then if

(a) h = 1, G is bicritical (and hence 1-extendable) and if
(b) h > 2, G is h-extendable.

Corollary 15 ([4,5,6]): Let G be a connected graph with even order n and h an
integer such that 1 < h < (n—2)/2. If G satisfies any of the conditions C;(2h) (1 <
i < 5), then G is h-extendable.

Remark 1: We notice that when we prove a graph to be h-extendable we seldom
use the edges in G[S] for the S in Lemma 4. So “almost all” sufficient conditions for
a graph to be h-extendable actually force the graph to be 2h-matchable. Hence we
can obtain analogous conditions for a graph to be h-matchable.
Remark 2: Akira Saito [9] raised a problem about adding new edges to an h-
extendable graph to obtain new h-extendable graphs. However, Gyori and Plummer
(3] showed that adding any new edge to some h-extendable graphs, which are neither
K, nor K, ,,, cannot keep h-extendability.

By Theorem 5, when we prove that some sufficient conditions for a graph to
be h-extendable actually force the graph to be 2h-matchable, then adding any new
edges to the graph results in many new h-extendable graphs which may not satisfy
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the original sufficient conditions. For example, conditions C;(2h) (1 <i < 4) in
Corollary 15 can apply to graphs with arbitrary large diameter (see [4]), adding new
edges to the graphs, we can obtain many new h-extendable graphs which do not
satisfy C;(2h).
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