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Abstract 

Let n E Z+ and let K be a field. Let ~ be a partial order on 
{1, 2, ... , n}. Let An(:::;) be the matrix incidence algebra consisting of 
those n x n matrices A = (ai,j) with entries in K, satisfying ai,j 0 
whenever i 1:. j. For a subset £ ~ An (::5), a necessary and sufficient 
condition that the algebra generated by £ u {I} is An(::5) is that (i) for 
every 1 :::; i, j :::; n with i =1= j, there exists A E £ such that ai,i =1= aj,j 
and (ii) for every i ~ j with j covering i, there exists B E span £ such 
that bi,j =1= 0 and bi,i = bj,j. If the characteristic of K is zero or > n, the 
algebra An (=) is singly generated and, if ::5 is not equality, An C::;) has 
two generators. 

1. PRELIMINARIES 

Let (8, ~) be a locally finite partially ordered set. Here, local finiteness means 
that every interval [x, y] = {u E 8 : x ~ u ~ y} is finite. Let K be a field. The 
incidence algebra A( 8) of 8 over K is the set of all functions I : 8 x S -+ K 
with the property that I(x, y) = 0 whenever x 1:- y. A(8) becomes an associative 
K -algebra with the pointwise operations of addition and scalar multiplication and 
with the Dirichlet product: 

(f * g)(x, y) = I: I(x, u)g(u, y). 
x«u«y 

The Kronecker delta function is the multiplicative identity of A(8). In [3], Rota 
proposed the idea of such algebras as a basis for a unified study of combinatorial 
theory. In [1] (see also [2]), certain sub algebras of A(S) were considered. Here we 
consider generators of A( 8). 
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If n E Z+ and ::5 is a partial order on {I, 2, ... , n}, the corresponding incidence 
algebra can be identified in a natural way with the algebra of n x n matrices (with 
entries in K) A = (ai,j) satisfying ai,j = 0 whenever i -A j, with the usual matrix 
operations. (The Dirichlet product becomes matrix multiplication.) We will call 
such matrix algebras matrix incidence algebras and, with a slight change of no­
tation, use An(::5) to denote the matrix incidence algebra described immediately 
above. If::5 is consistent with the natural order on {I, 2, ... , n} in the sense that 
i ::5 j implies i S j, then An (::5) is an algebra of upper-triangular matrices. Any 
incidence algebra arising from a finite partially ordered set is isomorphic to some 
matrix incidence algebra An(::5) where ::5 is consistent with the natural order. In­
deeed, if (8, «) is a finite partially ordered set and Xl, X2, • •• ,Xn is an enumeration 
of S satisfying: Xi « Xj implies i S j, then A(8) is isomorphic to An(::5) (where 
::5 is defined by i :5 j if Xi « Xj) by the map f H (f(Xi,Xj)). It is not unwise 
therefore, to concentrate attention on matrix algebras of the type An(:5) where :5 
is consistent with the natural order. 

Notice that An(=) is the algebra of diagonal matrices, and An(S) is the alge­
bra of upper-triangular matrices. Throughout, K will denote a fixed but arbitrary 
field, and all matrices will be assumed to have entries in K. Also, I will denote 
the identity matrix and span E will denote the linear span of E. 

2. MAIN THEOREM 

First we need a lemma. In what follows, we will use the notation (A)i,j to 
denote the i, j-entry of a matrix A. 

LEMMA. Let n E Z+ and let T I , T2 , •.. ,Tn be n x n upper-triangular matrices 
satisfying (Tiki = 0, i = 1,2, ... , n. Then TI T2 ••• Tn O. 

Proof. The result is true when n = 1. Assume that it is true for n and let 
T I , T2 , ••• , Tn +1 be (n + 1) x (n + 1) upper-triangular matrices satisfying (Tiki = 

0, i = 1,2, ... , n + 1. By the assumption, T1T2 ••. Tn = (~ ~), for some n x 1 

matrix X and ,\ E K. Since Tn+l = (~ ~) , for some n x n matrix Y and n x 1 

matrix Z we have 

T I T2 .. • Tn Tn+1 = (~ ~) (~ ~) = O. 

The proof is completed by induction .• 

In the above lemma the order of the factors is important. For example, over 
any field of characteristic zero, only one product of the following three matrices is 
zero: 

(
0 1 1) (1 1 1) (1 1 1) 011 ,00 1 ,01 1 . 
001 001 000 

THEOREM. Let n E Z+ and let K be a field. Let::5 be a partial order on 
{I, 2, ... , n} and let An(:5) be the corresponding matrix incidence algebra over K. 
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Let £ be a subset of An (~). The algebra generated by £ U {I} is An (~) if and only 
if 

(i) for every 1 ::; i,j ::; n with i =f. j, there exists A E £ such that (A)i,i =I- (A)j,j) 
and 

(ii) for every 1 ::; i, j ~ n with i ~ j and with j covering i, there exists B E span 
£ such that (B)i,j =f. 0 and (B)i,i = (B)j,j' 

Proof. Suppose first that the partial order ~ is consistent with the natural 
order. Then, as noted earlier, An (~) is an algebra of upper-triangular matrices. 

Let B denote the algebra generated by E U {I} and put A = An(~). 
Suppose that conditions (i) and (ii) are satisfied. We proceed by induction. 

The result is true for n = 1. Assume that the result is true for n. Consider the 
situation for n + 1. Temporarily, for any (n + 1) x (n + 1) matrix A let ..4 denote 

the n x n matrix occurring in the top left-hand corner of A. Since ~ = span 
t, the induction assumption gives that the algebra generated by t u {i} is A. But 
the algebra generated by t U {i} is B, so A B. Thus, for every A E A, there 
exists B E B such that A = B. 

By condition (i), for every 1 ::; i ~ n, there exists Ai E B such that (Ai)i,i = 0 
and (Ai)n+l,n+l = 1. Then Ao defined by Ao = AIA2 ... An belongs to B and, by 
the lemma, satisfies ..40 0 and (AO)n+l,n+l = 1. 

If n + 1 covers no element of {I, 2, ... , n}, every entry in the last column of 
any element of A is zero, except possibly for the n + 1, n + 1- entry. In this case 
it easily follows that B = A. For then, if A E A and B E B satisfy ..4 = iJ, then 
B + J.tAo = A, for some J.t E K. So A E B. 

On the other hand, suppose that n+ 1 covers at least one element of {I, 2, ... , n}. 
Let Ek,l denote the (n + 1) x (n + 1) matrix having k, l-th entry equal to 1 and all 
other entries zero. We show that Ei,n+l E B, for every i satisfying i ~ n + 1. From 
this, together with the fact that A = B, it readily follows that A = B. 

Let the elements of {I, 2, ... , n} covered by n + 1 be it, i 2 , •.• , iq , where 1 ::; 
q ::; nand i1 < i2 < ... < iq < n + 1. By condition (ii), for every 1 ~ p ::; q, there 
exists Bp E B such that (Bp)ip,n+l = 1 and (Bp)ip,ip (Bp)n+l,n+l = O. For every 
1 ::; p ::; q, there exists Fp E B such that Eip,ip = Fp. All the rows of FpBp are zero 
except the ip-th and this is the same as the ip-th row of Bp. Note that, for every 

n 

1 ~ p ::; q and X, YEA we have I: (X)ip,j(Y)j,n+l (X)ip,ip (Y)ip,n+1 since 
j=l 

n + 1 covers ip. Using this (recalling that (Bp)ip,i p = 0) gives FpBpAo = Eip,n+b 
so Eip ,n+l E B for 1 ~ p ::; q. 

Next, suppose that 1 ~ i ~ nand i ~ n + 1, but n + 1 does not cover i. Then 
i ~ ip, for some 1 ::; p ::; q and there exists Gi,ip E B such that Ei,ip = Gi,ip' Then 
Gi,ipFpBpAo = Ei,n+b so Ei,n+l E B. 

Since Ao E Band Ei,n+l E B whenever 1 ::; i ::; nand i ~ n + 1, we get that 
En+l,n+l E B. It now follows that A = B and the proof is completed by induction. 

Conversely, let A = B. Since {A E A : (A)i,i = (A)j,j} is a proper subalgebra 
of A, for every 1 ::; i, j ::; n with i =1= j, condition (i) holds. 
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Suppose that condition (ii) does not hold. Then there exist 1 ::; i, j ::; n 
with i :5 j and with j covering i, such that, for every B E span £, (B)i,j = 0 or 
(B)i,i =1= (B)j,j. This conclusion is, in fact, valid for every B E span (£ U {I}). 
Let :F = span (£ U {I}). Temporarily, for any n x n matrix A, let A be the 2 x 2 

matrix given by A = (~1~;:: ~1j;:;)· Then F = span (F U {J}) is a subspace 

of the vector space of 2 x 2 upper-triangular matrices, of dimension < 3. It cannot 
be the case that (B)i,j 0, for every BE£' since {A E A: (A)i,j = O} is a proper 
subalgebra of A containing I. (Note that, since j covers i, for every X, YEA, 
we have (XY)i,j = (X)i,i(Y)i,j + (X)i,j(Y)j,j') Hence there exists Bo E £, such 

that jj = (~ ;) with"Y =1= O. Since a =1= {J, (~ ~) E F, for some £5 =1= o. 

It follows that { (~ ~), ( ~ 1)} is a basis for F. But the linear span of 

{(~ n, (~ n} is an algebra (since (~ ~r = (~ n)· ThusF is a 

proper subalgebra of the algebra of all 2 x 2 upper-triangular matrices. The set of 
matrices {A E A : A E F} is therefore a proper sub algebra of A containing £ U {I}. 
(Note that XY = XY, for every X, YEA.) This contradicts the fact that B = A 
and the proof for the case where :5 is consistent with the natural order is complete. 

Finally, let ::5 be any partial order defined on {l, 2, ... , n}. Choose a permu-
tation r of {l, 2, ... , n} satisfying r(i) :5 r(j) imples i ::; j. The partial order ~, 
defined on {l, 2, ... , n} by i ~ j if r(i) :5 r(j), is consistent with the natural order. 
Let V be the n x n matrix having all its i, r( i)-entries equal to 1 (i = 1,2, ... , n) 
and all other entries zero. Then V is invertible and V-I is the transpose of V (it 
has all its r( i), i- entries equal to 1 and zeros elsewhere). Then A H V A V-I is 
an algebra isomorphism of An (::5) onto An (~). Let £ be as in the statement of 
the theorem. Then £ U {I} generates An(:5) if and only if V£V- 1 U {I} generates 
An(~)' It is easy to check that V£V- I satisfies conditions (i) and (ii), with ::5 
replaced by «, if and only if £ satisfies them as they stand. This completes the 
proof. I 

The above theorem includes results about generating sets for the algebra of 
diagonal matrices and for the algebra of upper-triangular matrices: take :5 to be, 
respectively, equality or the natural order. 

COROLLARY 1. If £ is a set of diagonal n x n matrices, then the algebra 
generated by £, U {I} is the algebra of all diagonal matrices if and only if, for every 
1 ::; i,j ::; n with i =1= j, there exists A E £, such that (A)i,i =1= (A)j,j. If the 
characteristic of the field K is zero or > n, any diagonal matrix with non-zero 
distinct diagonal entries generates the algebra of n x n diagonal matrices over K. 

Proof. The first part of the statement of this corollary follows from the the­
orem. Suppose that the characteristic of K is zero or > n, and let A be any 
diagonal matrix with non-zero distinct diagonal entries. Then {A, I} generates the 
algebra of diagonal matrices by the theorem. But p(A) I for some polynomial 
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p(x) satisfying p(O) = O. It follows that {A} generates the algebra of diagonal 
matrices .• 

The proof of the following corollary is obvious. 

COROLLARY 2. If::5 is different from equality, and if the characteristic of 
the field K is zero or> n, then A(::5) has two generators. Indeed, in this case, any 
diagonal matrix with non-zero distinct diagonal entries, and any matrix having 
a non-zero i, j -entry whenever j covers i and all its other entries equal to zero, 
together generate A(::5). 

REMARKS. 1. Clearly '£' can be replaced by 'span £' in condition (i) of the 
statement of the theorem. However, 'span £' cannot be replaced by '£' in condition 

(ii). For example, if £ = { (~ ;), (~ ~)}, then £ U {I} generates the algebra 

of upper-triangular 2 x 2 matrices since (~ ;) - (~ ~) = (~ ~) E span E, 

but £ itself does not satisfy condition (ii) of the theorem. 
2. In the statement of the theorem '£U{I}' cannot be replaced by '£'. For example, 

e={O ~ D,O ~ D} 
does not generate the algebra of 3 x 3 upper-triangular matrices. 

REFERENCES 

[1] K. J. Harrison and W. E. Longstaff, Subalgebras of incidence algebras deter­
mined by equivalence relations, J. Combinatorial Th. A (1) 31 (1981), 94-97. 

(2] A. Kriegl, A characterization of reduced incidence algebras, Discrete Math. 
34 (1981),141-144. 

[3] G.-C. Rota, On the foundations of combinatorial theory, I, Z. Wahrschein­
lichkeitstheorie und Verw. Gebiete 2 (1964), 340-368. 

(Received 23/9/99) 

121 




