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Abstract

In this paper a degree condition for the codiameter is presented.

1 Introduction

In {1], Hikoe Enomoto proved the following theorem.

Theorem 1. [1] Let G be a 3-connected graph with n vertices such that oy > m.
Then d*(G) > min{n — 1,m — 2}.

In [2], Nathaniel Dean obtained the following result.

Theorem 2. [2]Let G be a 2-connected graph with vertex set {xy, %3, -, 2,} and
edge set E. Suppose G satisfies the following property for a given positive integer
m: for all positive integers j and k such that j < k, z;zp ¢ E; d(z;) < 7 and
d(zr) < k — 1, we have

(1) d(z;) + d(zx) > m whenever j +k > n,

(2) d(z;) + d(zx) > min{k + 1,m} whenever j + k < n.

Then ¢(G) > min{m, n}.

The main theorem in this paper is as follows:

Theorem 3. Let G be a 3-connected graph with V(G) = {v1,ve, -, v, } where
d(v1) < d{vg) < -+ < d(vy). Suppose for every pair of characteristic vertices v, and
vy, we have ‘

(1) d(v,) + d(vp) > m whenever a +b > n,

(2) d(va) + d(vs) > min{b + 3, m} whenever a+b < n.

Then d*(G) > min{n — 1,m — 2}.
Clearly, Theorem 1 is an immediate corollary of Theorem 3.
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2 Notation and Preliminaries

In this paper we denote the neighbour set of the vertex « by N{(z), and put
I'(z) = {z} UN(z). For a path P = (uy,uz, -, %), let uj = u;y1, uj = ;- and
|P| = p. If C is a cycle in G, then |C| stands for the number of vertices contained in
C.

Definition 1. Assume G is a connected graph. For every two vertices z and y
in G, their codistance is defined by d*(z,y) = max{|P| — 1| P is a (z,y) path} and
the codiameter of G is defined by d*(G) = min{d*(z,y) | {z,y} C V(G)}.

Lemma 1. Assume Q = {z1-- %} is a path in a 2-connected graph G and
N(z;) € V(Q), N(z:) C V(Q). Then for every two vertices T, and z, in Q, there
must exist a path R in G with x, and Ty as its ends and |R| > min{d(z1)+1, d(z:)+1}.

Proof. Suppose a < b. Let ¢ = max{i | z; € N(z;)} and d = min{i | 2; €
N(z¢)}. We consider three cases.

(M) a < c<b Leta' =min{i|z; € N(z1), i > a}. Then R = (:z:a 5 T1Ty C—j :vb)
includes z;, and all its neighbours. Therefore |R| > d(z1) + 1.

(I) ¢ € a < b. Since G is a 2-connected graph, there exists at least one path
- Pi(zj,,m,) satisfying that V(Q)NV(P) = {zp,z,} (fi <c < li). Choose Py so
as to maximize [;. If {; > a, then stop, or else we take a similar path Pa(zj,,x,)
satisfying that fo < Iy < lp where Iy is maximized. If I > a, then stop. Otherwise,
repeat the above procedure until we obtain paths P, r = 1,2,- .-, ¢ such that f, <
Iy <lpand fy <e<La<l,

Let f} = min{i | z; € N(=,), i > f1} It is easy to show that if ¢is is an odd num-

—

ber, then the path R = (wa Qumy,_, thl Tf Ty P2 Ty, Q TfTy Q x5 P1 xy,

g, 1—3:, a:qum,,) contains z1, &, and all the neighbours of z; and hence |R| > d(x;)+2.
— —

If ¢ is an even number, then the path R = (ma Qmy,_, ﬁq_l Tf Ty ﬁl zn @

N
Ty Quap, 1-3)2 Ty - T, ]_3(, x,qub) has length at least d(z;) + 2.

(IIl) @ < b < c. If d > a, from (I) and (II) we can see that there exists a path in

G with z, and =z, as its ends and length at least d(z;) + 1. Therefore we can assume

d<a<b<cand N(@) N {Tar1, > T5-1} # 0. Now N(ze) {zatr, -+, Too1} # 0.
— —

(Otherwise, N(x1)N{zTat1, -+, Tp-1} = O. Then the path (ma Q7. Q z,,) has
length at least d(z1) +1). Let
a = min{i | 3; € N(z,), i > a}, V' = max{i | z; € N(=z,), i < b},
f=max{i | z; € N(m), i <b}, h=min{i | z; € N(zy), i > a}.
“ -
If & > f, then the path (za Q 120 Q Ty1y E) T ) contains z, and all its neigh-
bours. Therefore the length of the path is at least d(z;) + 1
— - -
If ¥ < f, then the path (:z;a Q 1125 Q zpzy Q 7y ) has length at least d(z;) + 2




3 Proof of Theorem 1

Definition 2. Let G be a graph with n vertices V(G) = {v1,vq," -+, vn}, where
d(v) < d(v2) < - < d(vs). We call v, and v (@ < b) a pair of characteristic
vertices in G if 1) voup ¢ E and II) d(v,) < a + 1, d(vp) < b.

Theorem 1. Let G be a §-connected graph with vertez set V(G) = {vy,ve, -+, vy}
such that d(vy) < d(vg) < -+- < d(vy). Then passing through every edge of G there
ezists a cycle of length at least d(v,)+d{vy)—1 for some pair v, and vy of characteristic
vertices.

The rest of this section is devoted to the proof of Theorem 1.

We will prove it by contraposition. Suppose the theorem is false. Throughout
the proof, let e be an arbitrary edge in G and P = (v;---v;) be one of the longest
paths passing through e, chosen so as to maximize j + £. In addition, e = vyv,. It
is easily seen that N(v;)UN(vx) C V(p) and v;ux ¢ E. Suppose j < k without loss
of generality.

Proposition 1. If vfv; € E and i # f, then i < j.

Proof. If vjv; € E and i # f, then P’ = y; (ﬁ v;vi }3’ vk is one of the longest
paths passing through e. So i + &k < j + k, i.e. 4 < j, which completes our proof.

Similarly, we can prove that if v; vy € E and i # h, then ¢ < k.

Proposition 2. d{v;) < j+1 and d(vg) < k.

Proof. d(v;) = |[N"(v)} < [{vi | vfv; € B, i # fH+1< {w | vi € V(G),
i<iH+1l=j+1

Similarly, d(vy) = [NV (ve)] < {vs | vjve € B, i # A} +1 < {v; | v € V(G),
i # h}| = k. This completes the proof of Proposition 2.

From Proposition 1 and Proposition 2, we know that v; and v, are a pair of
characteristic vertices.

Renumber the vertices of P as P = z125 - - -z so that N(z;)UN(z;) C P. Put
p=max{i | z; € N(z1)}, ¢ = min{i | z; € N(z;)} and e = z,_;z,. We consider two
cases: 1) p<gand2) p>q.

Case 1. p < gq.

In this case, we distinguish two subcases depending on the position of the edge
ee)2<s<pandll)p+1<s<q.

Subcase 1.1. 2 < s < p.

Let 4y = max{i | z; € N(z1), i < s-1}.

Algorithm 1.1

Step 0. Set S = {1, -, ziy—1} U{zs, , 2p}, R = {Zpp1,-- 2} and W =
{igr a1},

r+0,lp + p.

Step 1. Find a path from S to R, P,(zy,,x,), such that P, P = {zy,, 2, } with
the maximal [,

Step 2. i) If I, < [,_1, then stop and set I,_; =c.

i) If I, > .-y and I, < g, then S « SU{zy,_,, -, @1,—1}, B ¢ {Zp,01, -, 2}
and return to step 1.

iii) If I, > ¢, go to the next step.




Step 3 Let f! = min{i | 2; € N(z1), i > fi}, I, = max{i | 2; € N(z), 1 <L},
C[) =1 P xpay, Gy = P(zg, )Py, i =1,2,-+,7, Copy = Play, z)2y, and C =

Z Oy, where ¥ stands for symmetric difference. Clearly, the cycle C' passes through

e and contains all the elements in ['(z;) UT(z:). Since N{z1) N N(x;) C {z,}, we
have |C| > d(w;) + d(z;) + 1, which contradicts the maximality of j + k. Hence, the
Algorithm 1.1 will not stop at iii) of step 2.

Algorithm 1.2.

Step 0. Let 7 + 0, Qo = Teq1 - Ty and Yo = Teqy

Step 1. If N(y.)\{z.} € @, go to Step 3. Otherwise, go to the next step.

Step 2. If (N(y,)\{z:})\@- # 0, then choose v; in the set (N (y-)\{z:})\@r, s0
as to maximize [. Let v = Yrp1, Yrs1Qr = @r4q and r ¢~ 7+ 1. Then go to Step 1.

Step 3. Let Q, = (v-+-wi). If i <1 for every v; € (N(v)NQ")™, then r* ¢~ r
and stop. Otherwme choose v; € (N(v)NQr)7, 50 as to maximize 4. Set v; = Yry1,
Qry1 = v; Q, i Q7 vg, T 4 7+ 1 and Qy ¢ Q1. Return to Step 1.

It follows from ¢ < g and N () € V(Q») U{z.} that V(Q;) D {Zct1, Teta, > Tt}
forr=0,1,.-+,7"

In the following, we prove V(Q,) N{z1, @2, -+, &c-1} = @ by recursive reasoning.
When r = 0, V(Qo) = {Tc41,Tet2, - -+, 2} and the equality clearly holds. Now sup-
pose the equality is true for some r (r < r*). That is to say, V(Qr) N{z1, T2, -, Te-1}
= (). We will verify the case r-+1. For this purpose, let Q, = wiws * -  Wq, i.e. W1 = Yp,
W = Ty, h = max{i | w; € N(w1)} and &' = min{é | w; € N(wa)}.

Since G is 3-connected and z, ¢ V(Q,), there exist two {2, 22, +, Zc-1} -V (Q;)
chains py (%, %5,) and po(@iy, oj,) in G\{2.} with empty intersection. Suppose j; <
ja. Choose p; and g so as to maximize jo. By Algonthm 1.1, {x“,z,z} cWw.
Without loss of generality, suppose i1 < iz and let Ry = x;, P Z1Tp P Z;,. Then Ry
contains e and all the elements in T'(z;). Hence |Ry| > d(z1) + 1.

Proposition 3. A’ < j; < ja.

Proof. Suppose h' > j;. Since G\{z.} is 2-conncected and N(wa) C V(@)U

{z.}, applying the proof of Lemma 1 (i) and (ii) to G\{z.} and QT, we know from
Algorithm 1.1 and choice of u; and uo that there exists a (wj,,w;,) path Ry such
that

i) V(Rs) 2 T(wa)\{zc);

ii) Ry n(Rl UmUpe) € {wjx ) wjz}'

Let C = RyURyUp1Upus, then C is a cycle passing through e with length
d(x;) + d(xs) + 1. This contradicts the maximality of j + k.

Proposition 4. h > j;.

Proof. Suppose h < j;. Similar to the proof of Proposition 3 with condition
N(w;) € V(Q,)U{z.}, we can find a (w;,, w;,) path such that

i) V(Ry) 2 D(wa) \ {z.};

ii) Ry N(Ry U 1 U pi2) € {wjy, wjp }

Let C = RiUR;Up1Upa. Then C is a cycle passing through e with length
d(x;) + d(z¢) + 1. This contradicts the maximality of j + k.

Proposition 5. N(y,) N{z1,22, -+, Te—1} = 0.




Proof. V(Q,)N{z1,%2,"+,Tc-1} = O by assumption. From the connectedness
and V(Q,) O {Zes1, Tesay -+, 2}, it follows that N(y.) N{z1, 22, -+, 21} € W
by Algorithm 1.1. Next we prove N(y,)NW = 0. Suppose N(y,)NW # 0. Let
z5 € N(y,) NW. Since at least one of z;, and z;, is not zy, we assume z;, # zy with
f > i, without loss of generality. By Proposmon 3, there exxsts Ji = mm{z i<

Ji, w; € N(wq}} such that C = z;, P T1Tp P T pwy Qr Wi Wa Q, wj, i z;, passes
through e and |C| > d(z1) + d(z2) + 1. This contradicts the max1mahty of j + k.

Similarly, we have the following result

Proposition 6. N(y,) Nt U pe) =

By Proposition 5 and Algorithm 1. 2 V(Q,+1 Mz, 22, 2.1} = 0. Hence,

V(Q-) 1, T2,y Ber} = O for r = 0,1,2,-++,r* and Propositions 3-6 hold for
every 7 € {0,1,2,--+,7*}.

Since G is a finite graph, there must exist a path r* = (v, -+, vy) with v = 1z,
by the use of Algorithm 1.2. Assume j < [ (in the case j > [, the proof is similar).
Then, we have d(v;) < |N(w)\{z}|+1 = |N"(v)NQr|+1= [{v;| vjivy € E}+1<
Hv: v € V(G), i <1} = I. In addition, d{v;) < j+ 1. So v; and v, are a pair
of characteristic vertices. Let r* = ajay- - aq = v+ Vg, a1 = v}, Qg = Uy = & and

= G\ {z.}. Then there exist two {1,292, -, ey} — V(r*) chains p(z;,,a;) and
pa(%i,, aj,) in G' with empty intersection. By Lemma 1 and the choice of py and p,,
there exists a (ay,, aj,) path Ry such that

i) RzN Ry =0 and Ry N(pa U o) € {ajy, @15

i) V(R2) 2 T(w) \ {1} or V(R2) 2 D(u)\ {zc).

Let C = R{UR;UpiUpe. Then C is a cycle passing through e with length at
least d(v;) + d(vg) + 1 or d(v;) + d(v;) + 1. This contradicts the maximality of j + &
or j+L

Subcase 1.2. p+1<s<q.

Let G' = G\ {z.}. Then G’ is a 2-connected graph. There exists a {zy, s, -,
Tp-1}—{Zps1, -, T} path Py(zg,, x1,) such that | is maximized. Ifl; > s, then stop.
Otherwise, find a similar path Py(zy,,2,) in G' with fo <l < ly. If I > s, then
stop. Repeat this procedure. Finally, we get a path P.(zy,,2,.) (r = 1,2, -+, d) with
fr<loy <l,and fi <p < s <ly Clearly Iy < q. (Otherwise, let Cy = z; 13) ZpTy

with fi = min{i |+ > fi, @ € N(=1)}, C; = =z, ]3 Ty, ﬁ, zp, (i =1,2,---,d)
and Cyyy = xy, szr where I/, = max{i | z; € N(z,), ¢ < lg}. Then the symmetric

difference C = Z C; is a cycle passing through e with length at least d(z;)+d(z:)+2.
This contradxcts the maximality of j + k.

Algorithm 1.3

Step 0. Set S = {zs, -1}, BR={Ti 1, ", &}, W= {&1y-1,+ -+, Ts-1} and
7 d.

Step 1. Find a path P,(zy,,z,,) from S to R so as to maximize ;.

Step 2. 1) If [, < ,_1, then stop and set [,_y = c.

ii) If I, > g, then stop.

i) If I, > -1 and I, < g, then S« SU{z,_,," 21,1}, R+ {@p, 41, +, 21}
and return to Step 1.




This algorithm will not stop at ii) of step 2. Otherwise it is easily proven that
C= E C; is a cycle passing through the edge e with length at least d(a;) +d(z:) +2,

Where C’ is identical to C; in Algorithm 1.1. This contradicts the maximality of
j+k

Algorithm 1.4

Step 0. Set Zey1 = Yo, Qo — PZc1,3¢) and i 0.

Step 1. If N(y,) \ {z.} € V(Q»), go to Step 3. Otherwise, go to Step 2.

Step 2. If N(y) \ (V(Q,) U{z.}) # 0, choose v; so as to maximize the index [.
Set v = Yra1, Yr1Qr = @r11 and 7 <7 + 1. Then return to Step 1.

Step 3. Let Q, = (v;---vg). If i <[ for every v; € [N(y,) NQ;]~, then stop.
Otherwise, choose v; in [N(y,) NQr]™ so as to maximize the index i. Let Q1 =

(vi @-r vy 65, vk) and r + r + 1. Return to Step 1.

Now it is easily seen that V(Q,) D {Zcs1, Tea, <+, 2} for r =0,1,2,- -+, 7"

Since ¢ < g, we have N(z;) C V(Q,) U{z.}. In the following, we prove V(Q,)N{z1,
Tg, - Te1} = 0 in a recursive way.

V(Qo) = {%ct1, Teta, - -+ Ty} So the equality holds when r = 0.

Assume the equality is true for some r (r < r*). We consider the case 7+ 1.

Let Q, = wywy---wg. Then wy = y,, wg = z, h = max{i | w; € N(w;)} and
W = min{i | w; € N(wg)}. By assumption, V(Q;) M{z1,22, -+, Tc-1} = 8. Since
G is 3-connected and z, ¢ V(Q,), there exist two {1, %2, +,2Zc—1} — V(Q,) chains
(i, w;,) and pa(wi,, wy,) in G\ {z.} without intersection. We assume j; < jo.
Choose p1; and fp so as to maximize j;. Then {z;,z;,} € W. Now suppose i; < iy
without loss of generality. Let

- ~ o - - = g
Tiy, P2y Pa-1%5, "%, P22 Pag, P xf'levfl Pyay zpy Pymy Py
if d 1s odd
R, = « - -
Tiy P iy, Pa-1 Tjpy Ty Pioy, P nay Py, Py, a5, Py, P,
if d is even,

and f{ = min{i | 4 > fi, z; € N(z1)}. Clearly, Ry contains the edge e and all the
elements in I'(z;). Thus |[Ri| > d(z1) +1

Proposition 7. h' < j; < ja.

Proof. Suppose k' > j;. Since G\{z.} is 2-connected and N (wg) € V(Q,) U{z.},
applying the proof of Lemma (i) and (ii) to G\ {z.} and 6-5,, we know from Algorithm
1.4 and the choice of y; and us that there exists a path Ry such that

(i) V(Re) 2 T'(wp) \ {zc}

(it) RaN(Ry U U pi2) € {wjy, wjp}-

Let C = RyURyUpiUpy. Then C is a cycle passing through e with length at
least d(x;) -+ d(zs) + 1. This contradicts the maximality of § + k.

Proposition 8. h > j;.

Proposition 9. N(y,) N {z1,%2, -, Ze—1} = 0.

Proof. V(Q,)N{z1, %2, -+,Zc-1} = 0 by assumption. From the connectedness
and V(QT) 2 {xc+17 LS TR »xt}’ it follows that N(yr) ﬂ{%a Ty 0y xc-l} - w




by Algorithm 1.3. Next we prove N(y)N\W = 0. Suppose N(y,)NW # 0. Let
z; € N(y,)NW. Since at least one of z;, and z;, is not z;, we assume z;, # 2y
with f > 4,. By Proposition 7, there exist j| = max{i | 1 < ji, w; € N(wg)} and
fi=min{i | > fi, &; € N(z1)} such that

Ay R -3 = - «
iy P B, Pact 3, 1T Pyzp Papm Pap Pray - -xp Pany Py
-

c=lVr Qr Wy wg Qr wj, i Ti, if d is odd .

= —
iy P Ty, Pd 1Ty Pray P nag Py, Pyay,ay, Pym, Py
Yr Q, Wi we Q wj, pl z;, if d is even

is a cycle passing through e with length at least d(z1) + d(x:) + 1. This contradicts
the maximality of j + k.

Similarly, we have

Proposition 10. N{y,) N(u U ) = 0.

From Proposition 9 and Algorithm 1.4, we know that

V(QT“H) ﬂ{mhx% e ):L'c«l} ={.

Therefore V(Q,) {z1, e, Te—1} = @ for r = 0,1,2,--,7* and hence Proposi-
tions 7-10 hold for every 7.

Let 7% = byby -+ bg = v+ v and j < I. Then d(v;) < j+ 1 and d{v) < 1, Le. v
and v; are a pair of characteristic points. Let G' = G \ {z.}. Then there exist two
{1, 79, ++, Teo1 } — V (r*) chains py(x;,, b;,) and po(ziy, bj,) with empty intersection.

By Lemma 1 and the choice of y; and po, there exists a (b;,,b;,) path R, such
that

i) RN Ry = 0 and Ry N(p1 U pa) € {01, 0o }5

i) V(Ry) 2 T(w) \ {=} or V(Rs) 2 D'(wg) \ {zc}

Let C = RyURyUpiUpg. Then C is a cycle passing through e with length at
least d(v;) +d(vg) + 1 or d(v;) + d(v;) + 1. This contradicts the maximality of j + &
or j+1.

Case 2. p > q.

In this case, we may suppose that there exists a pair of positive integers p’ and
¢ such that z; € N(zy), zg € N(z,), p' > ¢ and p' — ¢’ is minimized.

Lemma 2. ¢ +1<s<p.

Proof. Firstly, N(z;)NN*(z;) C {z,} (If there exist some ¢ # s such that
z; € N(z1) N N*(z), then the cycle (z ﬁ Ti1Ty fa:,ml is a hamiltonian cycle
passing through e, which leads to a contradiction). If s < p’ or s > ¢’ + 1, the cycle
C= <a:1 P Ty P x,,:xl) contains e and all the elements in {z1} U N{(z1) UNT (2:)\

{zg41}). Therefore |C| > d(z) + d(z;) — 1. This contradicts the maximality
of j + k. Now it is easy to see that N(z{)N\N(z:) C {z,,2,}. When ¢ # ¢/,
N($1)ﬂ{$q+1, o ',Z'ql} = @ When p 7é p’v N(wt) n{zp'v e ,xp—»l} = m

Algorithm 2.1

Let ig = max{i | z; € N(z1), 1 < s — 1} and jo = min{i | z; € N(z¢), ¢ > p}.




Step 0. Set S = {1, . Tig-1} U{s, -, Tp1}, R = {zps1,- - @}, 7 ¢ 1and
W = {Zi,**, Ts—1}

Step 1. Find a path P (zj,,x;,) from S to R such that the intersection of
P.(xj,,z;,) and P is {z,, 2, } and [, is maximized.

Step 2. i) If I, < l,—1, then stop and set ¢ = l,_;.

it) If I, > jo, then stop.

iii) If I, < Jo, let S + SU{Er_1, 21}, R {z,41,- -, 24} and return to
Step 1.

Similar to Algorithm 1.1, the above algorithm will not stop at ii) of Step 2.

Algorithm 2.2 .

Step 0. Set 7 < 0, Qo = Tcy1 P Tty Yo ¢ Tes1:

Step 1. If [N(y) \ {zc}] € V(Q,), go to Step 3. Otherwise, go to Step 2.

Step 2. Choose v in N(y,) \ [V(Qr) U{z.}] such that the index [ is maximized.
Let Yry1 = Vs, Yr+1@r = Qr41 and 7 < 7+ 1. Return to Step 1.

Step 3. Let @, = (v---vg). If i < 1is true for every v; € IN(w)NQ:™,
then stop. Otherwise, choose v; in [N(u) N Q,]” such that i is maximized. Let
Qry1 = Y ér vy C}; vg and 7 ¢ 7 + 1. Return to Step 1.

Forr = 0,1,2,--,7%, V(Q,) = w1+ wp, wy = ¢, and w, = Ty It is easily seen
that V(Qr) 2 {Zet1, Tesa, * + +» e} In addition, N(w) € V(Q,)U{z.} due toc < jo.

We will prove V(Q,) N{z1,22, ) Te—1} = @ recursively. When r = 0, V(Qo) =
{Zer1, Tora, Tt} The equality holds trivially. Suppose the equality is true for
some 7 < r*. We consider the case r + 1. Let h = max{i | w; € N(w1)}. By
assumption, V(Q,) N{z1, 22, -, %c-1} = 0. Since G is 3-connected and z. ¢ V(Qr),
there exist two {z1, %2, ", Te-1} — V(Qr) chains 1 (®iy, wiy) and pra(@i,, wy,) in G —
{z.}. Assume i; < iy and choose p and pp to maximize j,. We have w, = 2.
By Algorithm 2.2, {z;,,%;,} € W. Assume i; < 4, without loss of generality. Let
Ry = x;, 1+5 Ty }3 z;,. Then R; contains e and all the elements in I'(z1). Thus
[Ry| > d(z1) + 1.

Proposition 11. h > j;.

Proof. Suppose h < ji. Note that N(w;) C V(Q,)U{z.} and G — {z.} is
9-connected. Applying the proof of i) and ii) of Lemma 1 to G — {z.} and CS,, we
know from Algorithm 2.1 and the choice of y; and pg that there exists a (wj,, wj,)
path R, such that

i) V(Rp) 2 T'(wi) \ {2}

ii) Ry O(Rl UpmUpe) € {wjnwjz}‘

Let C = Ry U RaUpy Uy Then C is a cycle passing through e with length at
least d(z1) + d(w;) -+ 1. This contradicts the maximality of j + [.

Proposition 12. N(y,) N{z1,22, ", Te1} = 0.

Proof. V(Q,) N{x1, 22, ,Zc-1} = B by assumption. Since Q, is connected and
V(QT) 2 {.’l)c+1, Let2y 'y Et}, we have N(yf) n{zla T2y s "EC—I} C w by applylng
Algorithm 2.2. We will prove N(y,)NW = 0. Suppose N(y,) W # 0. Then we
take z; € N(r,)NW.

i) ¢ # ¢. In this case, we assume f < g without loss of generality. Let f' =
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min{i | z; € N(wg}. Then C =, P frun @; W p P Z,2; contains e and all
the elements in I(z1) UT'(w;) — {z.}. Hence |C| > d(z;) + d(w;) — 1.

it) ¢ =¢'. If f = g, the proof is similar to i). If f # g,then G" = G — {z., 24} is a
connected graph. Hence there exists a {21, -+, Zq-1, Tqy1, > Be1} — V(@y) chain
13(Tig, 25 ). Therefore, the cycle

- «— - —
C =1 P Tig 3wy Qr Wy Qp - wpZy P TpT1
contains e and has length d(z;) +d(w;) — 1. This contradicts the maximality of j+1.

Similarly, the following proposition can be proven.

Proposition 13. N(y.) N1 Upz) = 0.

We can infer that V(Q,1) N{z1, 22, -, 2,1} = O from Proposition 11 and Al-
gorithm 2.2. Hence V(Q,) N{z1, 22, +, Te-1} =0 for r = 0,1,2,--+,7*. Meanwhile
Propositions 11-13 are true for all r.

According to Algorithm 2.2, r* = ¢j¢y- - ¢, = v+ -+ v, since G is a finite graph.
Assume j < l. Then d(v;) < j+1, d(v)) < I, i.e. vj and v, are a pair of charac-
teristic points. Let G’ = G\ {@.}. Then there exist two {@1, 29, +, 1} — V(r*)
chains py (24, ¢5,) and py(z;,, cj,) with empty intersection, and we have ¢;, = ;. By
Lemma 1 and the choice of py and p,, there exists a (cj,, ¢j,) path Ry such that

) RiNRe =0, RN Upe) € {ejpr el

i) V(R;) 2 D(wn) \ {z.}.

Let C' = Ry URyUp1 U pa. Then C' is a cycle passing through e with length at
least d(v;) + d(v;) — 1. This contradicts the maximality of j -+ [.

4 Proof of Theorem 2 and Theorem 3

Theorem 2 Let G be a 3-connected graph with verter set V = {v1,va, -+, vn} and
d(v) € d(v) < -+ < d{wy). If the following hold for every pair of characteristic
vertices v, and v, (a < b):

i) d(v,) +d(ve) = m fora+b2>n;

i) d(ve) + d(vp) > min{b +3,m} fora+b < n,
then, for every e € G, there exists a cycle passing through e with length at least m—1.

Proof. Based on the proof of Theorem 1, we can obtain, by applying Algorithm
1.2 and 1.4 or 2.2, two pairs of characteristic points v;, v and v;, v, either for p > ¢
orp<gand 2<s<gq.

For such v; and v (§ < 1), we have that

d(vy) +d(w) < [{wi | vjoi € B, i # fH+ 1+ |[(N(w) ~ {z.}) N Q1T +1
< ]{vi I v; € V(G), ZSI}‘+2=Z+2
We consider two possible cases. If j +1 > n, then d(v;) +d(v;)) > m. If j+1 < n,
then [+ 2 > d(v;) + d(v;) > min{l + 3,m}. Hence d(v;) + d(v) 1 ) > m for both cases.
Ifp<qand 2 < s <p, it is clear that N~ (v;) NN (vg) = @. In this case,

d(vj) + d(vi) = |N7(v;)] + [N*(vy)]
<o | v € B, i # fY 4+ 1+ o | u € BY
SHuilu€eV(G), i<kH+1=k+1
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If p > g, then [N~ (v;) NNt (v)| < 1 by Lemma 2.

When [N~ (vj) ﬂN+(vk)f =1,letv; € N~(v;) NN*(v). Then v = zg, v = zp
and e = v v; or vui. Hence it is impossible that vy € N~ (vy) ﬂN+ (vi).

d(vj) +d(ve) = [N~ (v)] + [N¥(ve)]

IN=(v;) UNT ()] + [N~ (v;) NN (wg)]
{v; v e V(G), i<k} +1+1=k+2
When N~ (v;) NNt (v) = 0,
d(v;) + d(ve) = N7 () + IN*(ox)]
< Wi |vjvfF € B, i# fH+1+{vi|wwy € B, i # h}|+1
<HvilveV(G), i<k} +2=k+2

Thus d(v;) + d(vy) > m due to the condition in this theorem. Theorem 1 shows
that there is a cycle of length at least m — 1 passing through any arbitrary edge of
G, if the related condition is satisfied.

Theorem 3. d*(G) > m — 1 under the condition of Theorem 2.

Proof. Given two vertices z and y, let G' = G + zy. Then G' satisfies the
requirements in Thereom 2. Therefore, the edge zy is contained in a cycle of length

at least m — 1. This means that = and y are connected by a path in G with length
at least m — 2.
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