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Abstract 

A sequence S is potentially K4 - e graphical if it has a realization con­
taining a K4 - e as a subgraph. Let 0'(K4 - e, n) denote the smallest 
degree sum such that every n-term graphical sequence S with O'(S) 2: 
a(I{4 - e, n) is potentially K4 e graphical. Gould, Jacobson, Lehel 
raised the problem of determining the value of 0'(K4 e, n). In this pa­
per, we prove that 0'(K4 - e, n) = 2[(317, - 1)/2] for 17, 2: 7 and 17, = 4,5, 
and 0'(I<4 - e, 6) = 20. 

1. Introduction 

If S = (ell, el2 , . .. , eln ) is a sequence of non-negative integers, then it is called graphical 
ifthere is a simple graph G of order 17" 'whose degree sequence (d(vd, d(V2), ... , d(vn )) 

is precisely S. If G is such a graph then G is said to realize S or be a realization of 
S. A graphical sequence S is potentiall'y H graphical if there is a realization of S 
containing H as a subgraph, while S is forcibl'y H graphical if every realization of S 
contains H as a subgraph. \Ve define O'(S) = ri1 + ri2 + ... + eln . If G and G l are 
graphs, then G U G 1 is the disjoint union of G and G 1. If G = G 1, we abbreviate 
G U G l as 2G. Let Kk be a complete graph on k vertices, and C k be a cycle of length 
k. \Ve write [:r] for the largest integer less than or equal to .1:. 

Given a graph H, what is ex(n, H), the maximum number of edges of a graph with 
n vertices not containing H as a subgraph? This problem was proposed for H = C4 

by Erdos [2] in 1938 and in general by Turan [9]. In terms of graphical sequences, the 
number 2ex(n, H)+2 is the minimum even integer m such that every n-term graphical 
sequence S with O'(S) 2: m is forcibly H graphical. Here we consider the following 
variant: determine the minimum even integer m such that every n-term graphical 
sequence S with O'(S) 2: m is potentially H graphical. We denote this minimum m by 
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a-(H, n). Erdos, Jacobson and Lehel [1] showed that CJ(Kk' 'n) 2: (A:-2)(2n-A:+1)+2; 
and conjectured that CJ(Kk' n) = (k - 2)(2n - k + 1) + 2. They proved that if S does 
not contain zero terms, this conjecture is true for k 3, n 2: 6. Li and Song [6,7,8] 
proved that if S does not contain zero terms, this conjecture is true for k = 4, n 2: 8 
and k = 5, n 2: 10, and CJ(Kk' n) s: 2n(k 2) + 2 for n 2: 2k 1. Gould, Jacobson 
and Lehel [3] proved that this conjecture is true for k = 4, n 2: 9; if n = 8 and 
a-(S) 2: 28, then either there is a realization of S containing K4 or S = (47,01

) (i.e. S 
consists of seven integers 4 and one integer 0); CJ(pK2' n) = (p - 1)(2n - 2) + 2 for 
p 2: 2; CJ(C4, n) = 2[(371, 1)/2] for 17, 2: 4, CJ(C4, n) s: CJ(I(4 - e, 17,) s: CJ(I<4' n); and 
they raised the problem of determining the value of CJ(K4 -e, 71,). Lai [4,5] proved that 
a(C2m+1 , n) = 'n7,(2n-m-1)+2, for 'Tn 2: 2,17, 2: 3m; CJ(C2m+2, 17,) m(2n-m-1)+4, 
for m 2: 2, n 2: 5m - 2. 

In this paper, we determine the values of CJ(K4 - e, n). 

2. a(K4 - e, n) 

Theorem 1. For n 4,5 and 17, 2: 7 

{ 
317, 1 if n is odd 

CJ(K4 - e,n) = 37' _ 2 'f . 
" 1 n IS even. 

For n = 6, if S is a 6-term graphical sequence with CJ(S) 2: 16, then either there is a 
realization of S containing K4 - e or S = (36

). (Thus CJ(K4 - e, 6) = 20.) 
Proof. By [3), for n 2: 4, 

{ 
3n-1 
3n - 2 

if n is odd 
if n is even. 

We need to show that if S is an 71,-term graphical sequence with CJ(S) 2: 317, - 1 if 71, 
is odd, or CJ(S) 2: 317, - 2 if n is even, then there is a realization of 5 containing a 
K4 - e (unless S = (36

)). 

For n = 4, if a graph has size q 2: 5, then clearly it contains a ](4 - e, so that 
CJ(K4 - e, 17,) s: 317, 2. 

For n = 5, we have q 2: 7. There are exactly four graphs of order 5 and size 7 
and each contains a ](4 - e. Thus CJ(K4 - e, 17,) s: 3n - 1. 

Vve proceed by induction on n. Take n 2: 6 and make the inductive assumption 
that for 5 :::; t < n, whenever Sl is a t-term graphical sequence such that 

CJ(Sd 2: { 3t - 1 .if t .is odd 
3t 2 If t IS even 

then either Sl has a realization containing a K4 - e or Sl = (36
). 

We first consider even n. Let S be an 71,-term graphical sequence with CJ(5) 2: 
3n - 2. Let G be a realization of S. Assume d1 2: d2 2: ... 2: dn 2: o. 

Case 1: Suppose CJ(S) = 371, - 2. If dn :::; 1, let S' be the degree sequence of 
G 'Un' Then CJ (5') 2: 3n - 2 - 2 = 3 (n 1) 1. By induction, S' has a realization 
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containing a K4 - e. Therefore 5 has a realization containing a 1(1 e. Hence, we 
may assume that dn 2:: 2. Since 0'(5) = 3n - 2, then dn dn - l = 2. Let 'Un be 
adjacent to .1: and y. 

If x = 'Un -l or y = 'Un-I, let 5" be the degree sequence of G - Vn 'Un-I. Then 
0'(5") = 371, - 2 6 = 3(n _. 2) - 2. Clearly 5" =f. (36

). By induction, 5" has a 
realization containing a J{4 - e. Hence, 5 has a realization containing a J{4 - e. 

Suppose :r: i: 'On -1 and y i: 'Un-I, and 'Un-l is adjacent to x and y. If x is adjacent 
to y, then G contains a J{4 - e. If.1: is not adjacent to y, then the edge interchange 
that removes the edges .1:'On -l and YVn and inserts the edges xy and 'Un V n -1 produces 
a realization G' of 5 containing Vn-l V n , and we are done as before. 

Suppose :1; i: 'Un-l and y i: V n -l, and V n -l is not adjacent to x. Let Vn -l be 
adjacent to ZI and Z2. We first consider the case that 2: is not adjacent to Zl. Then 
the edge interchange that removes the edges Vn -1 ZI and '/)11.2; and inserts the edges 
XZl and 'Un-1Vn produces a realization G' of 5 containing Vn -l'Un ' vVe have reduced 
this case to a graph G' as above. If x is not adjacent to Z2, as in the previous case, 
we can prove that 5 has a realization containing a J{4 - c. Finally, consider what 
happens if .1: is adjacent to both ZI and Z2. If ZI is adjacent to Z2, then G contains 
a J{4 - e. If Zl is not adjacent to Z2, then the edge interchange that removes the 
edges 'On-IZl, 'Un-lZ2 and 'UnX and inserts the edges 'Un-l'Un , Z1Z2 and 'Un-IX produces 
a realization G' of 5 containing 'Un -l 'Un, and we are done as before. 

The case that :r: i: 'Un-l and y i: Vn -l, and Vn -1 is not adjacent to y is of course 
similar to the previous case. 

Case 2: Suppose 0'(5) = 3n. If dn ::; 2, let 5' be the degree sequence of G V n . 

Then 0'(5') 2:: 3n - 4 = 3(n - 1) 1. By induction, 5' has a realization containing 
a J{4 - e. Hence, 5 has a realization containing a J{4 - e. Thus, we may assume 
that dn 2:: 3, and so 5 = (3n

). If n = 6 then 5 = (36
) (and clearly no realization of 

5 contains a 1(4 e). Let G 1 be a realization of (36
). If n 4p (p 2:: 2), then PJ{4 is 

a realization of 5 (3 n ) which contains a 1(4 - c. And if n 4p + 2 (p 2:: 2), then 
G 1 U (p 1)1<4 is a realization of 5 = (371

) which contains a 1(4 e. 
Case 3: Suppose 3n + 2 ::; 0'(5) ::; 4n 2. Then dn ::; 3. Let 5' be a degree 

sequence of G 'Un, then 0'(5') 2:: 3n + 2 - 6 = 3(n 1) - 1. By induction, 5' has a 
realization containing a J{4 - e. Hence, 5 has a realization containing a J{4 - e. 

Case 4: Suppose 0'(5) 2:: 4n. If n 2:: 8, by Proposition 2 and Theorem 4 of [3], 5 
has a realization containing a K 4 • Now consider n = 6. If 4n ::; 0'(5) ::; 571 - 2, then 
dn s: 4. Let 5' be a degree sequence of G - 'Un, so 0'(5') 2:: 4n 8 = 16 = 3(n -1) + 1. 
By induction, S' has a realization containing a 1(4 e. Hence, 5 has a realization 
containing a K4 - e. If 0'(5) 2:: 5n = 30, then 0'(5) = 30. The realization of 5 is K6 
which contains K4 e. This completes the discussion for even n. 

Now we consider odd n. Let 5 be an n-term graphical sequence with 0'(5) ~ 
3n 1. Let G be a realization of 5. Assume d1 2:: d2 2:: ... 2:: dn -2:: o. 

Case 1: Suppose 0'(5) = 3n - 1. Then dn ::; 2. Let 5' be the degree sequence of 
G V n , so 0'(8') ~ 3n-I 4 3(n 1) - 2. By induction, either 5' has a realization 
containing a K4 e or 5' = (36 ). Therefore either 5 has a realization containing a 
J{4 e or S ( 41 , 35, 11). Clearly, (41 , 35, 11) has a realization containing a J{ 4 - e 
(see Figure 1). In either event, 5 has a realization containing a K4 e. 
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(41,35 ,11) 

Figure 1 

Figure 2 

• 

Case 2: Suppose 3n + 1 ::; 0-(5) ::; 4n 2. Then dn ::; 3. Let 5' be the degree 
sequence of G - V n , so 0-(5' ) :2 3n + 1 6 3( n - 1) 2. By induction, either 5' has 
a realization containing a f{ 4 - e or 5' = (36

). Therefore either 5 has a realization 
containing a f{'1 e or S = (42,34 ,21 ),5 = (43 ,34

). Clearly, both (42,34 ,21) and 
(43,34

) have a realization containing a 1<4 - e (see Figure 2). In any event, 5 has a 
realization containing a f{4 e. 

Case 3: Suppose 0-(5) :2 4n. If n ~ 9, then by Theorem 4 of [3], 5 has a 
realization containing a f{4' Next, if n = 7 and if 4n ::; o-(S) ::; 5n - 1, then dn ::; 4. 
Let 5' be a degree sequence of G - Vn . Then 0-(5' ) ~ 4n 8 = 3n 1 = 3(n - 1) + 2. 
Clearly 5' -I- (36

), so by induction, 5' has a realization containing f{4 -- e. Thus 5 
has a realization containing a f{4 - e . Finally, suppose that 0-(5) ;::: 5n + 1 = 36. 
Clearly, (66 ,01

) is not graphical. Hence d7 ~ 1 and by Theorem 2.2 of [6], 5 has a 
realization containing a f{4. 

This completes the discussion for odd n, and so finishes the inductive step. The 
Theorem is proved. 
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