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Abstract

A set D of vertices in a graph G is a distance-k dominating set if
every vertex of G either is in D or is within distance k of at least one
vertex in D. A distance-k dominating set of G of minimum cardinality
is called a minimum distance-k dominating set of G. For any graph G
and for a subset F' of the edge set of G the set F' is an edge dominating
set of G if every edge of G either is in D or is adjacent to at least one
edge in D. An edge dominating set of G of minimum cardinality is
called a minimum edge dominating set of G. We characterize trees with
unique minimum distance-k dominating sets, which is a generalization
of a result of Gunther, Hartnell, Markus, and Rall. Further, we give
a characterization of trees with unique minimum edge dominating sets,
which contains some results of Topp.

1 Terminology and Introduction

For any graph G the vertex set and the edge set of G are denoted by V(G) and
E(G), and n(G) = |V(G)| and m(G) = |E(G)|. The number of components of G
is denoted by x(G). For any subset A C V(G) we define the induced subgraph
G[A] as the graph with vertex set A and edge set {ab € E(G) | a,b € A}. For
any set A C V(G) and any vertex z € V(G) we define G — A = G[V(G) \ 4]
and G — z = G — {z}. For two vertices z and y in a connected graph G the
distance d(z,y) between x and y is the minimum number of edges of a path in
G from z to y. If we define e(v) = max,cy(q) d(v, w), then the diameter of G is
diam(G) = maxyev(g) e(v) and the radius of G is rad(G) = min,ey(g)e(v). For
any vertex x € V(G) the open k-neighborhood of x, denoted Ni(zx), is the set
Ni(z) ={y € V(G) | y # z and d(x,y) < k} and the set Ni[z] = Ni(z) U {z}
is called the closed k-neighborhood of z. If A C V(G), then Ny(A) = Ugea Ni(2)
and Ni[A] = Ni(4) U A. For a subset D of V(G) and a vertex € D the set
Pi(x, D) = Nilx] \ Ni[D\ {x}] is called the private k-neighborhood of x with regard
to D and a vertex y € Py(z, D) is called a private k-neighbor of x with regard to D.
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A set D C V(QG) is a distance-k dominating set of G if Ni[D] = V(G). The minimum
cardinality of a distance-k dominating set is called the distance-k domination number
denoted by v<x(G). A distance-k dominating set D of G with cardinality vy<x(G)
is called a y<j-set or a minimum distance-k dominating set. Note that the case
k =1 leads to the ordinary domination. There are several publications on distance
domination as e.g. [1], [2], [13], [14] and the chapter ‘Distance domination in graphs’
by M.A. Henning in [11].

For any subset B C E(G) we define the subgraph G(B) as the graph with edge set
B and vertex set {v,w € V(G) | vw € B}. For any set B C E(G) and any edge
e € E(G) we define G — B = G(E(G) \ B) and G — e = G — {e}. Notice that the
subgraphs G — B and G — e contain no isolated vertices. A subset F' of the edge set
E(G) is an edge dominating set of G if every edge in G either is in F or is adjacent to
at least one edge in F'. The edge domination number v'(G) is the smallest cardinality
of all edge dominating sets and an edge dominating set of cardinality 7/(G) is called
a minimum edge dominating set of G. The edge domination is studied in numerous
publications as e.g. in [3], [4], [12], [15], and in [18].

For other graph theory terminology we follow [10].

2 Unique minimum distance domination in trees

Theorem 2.1 Let T be a tree of order at least 3, let D be a subset of V(T), and let
k be a positive integer. Then the following conditions are equivalent:

(i) D is the unique y<g-set of T.

(i) D is a distance-k dominating set of T' such that every vertex in D has at least
two private k-neighbors v and w with d(v,w) = 2k.

(11i) D is a y<p-set of T such that y<x(T — x) > v<x(T) for every vertex x € D.

Proof.

(i) = (ii): Let D be the unique y<g-set of T'. Then, we have |Py(x, D)| > 2 for every
vertex € D. Suppose there is a vertex 2 € D such that d(a,b) < 2k for every pair
of vertices in Py(x, D). If d(a,z) < k for every vertex a in Py(z, D), then for some
arbitrary, fixed z € Ni(z) we have d(a, z) < k for every vertex a in Py(z, D), and
(D\ {z}) U{z} is a y<g-set of T different from D, which is a contradiction. Hence,
there is a vertex a € Py(x, D) with d(z,a) = k. Let z € Ny(z) with d(z,a) =k — 1.
Suppose there is a vertex b € Py(x, D) with d(z,b) > k. Then d(z,b) = k and
the vertex z lies on the unique path from a to b. This yields the contradiction
d(a,b) = d(a,z) + d(z,b) = 2k. Therefore d(z,b) < k for every b € Py(z,D) and
(D\ {z})U{z} is a y<p-set of T different from D, which again is a contradiction.
(ii) = (i): We prove this by induction on the order n(T'). If a tree T has a distance-
k dominating set D as in (ii), then the diameter of T is greater or equal 2k and
n(T) > 2k + 1. First, let T be a tree of order n(T) = 2k + 1, that has a distance-k
dominating set D as in (ii). Since the diameter of T is greater or equal 2k, the tree T’
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is isomorphic to the path x12s ... zoy1 and D = {x1}. Obviously, D is the unique
~v<k-set of T'. Assume the claim holds for every tree T” of order 2k + 1 < n(T") < n.
Now, let T be a tree of order n(T') = n, and let D be a distance-k dominating set of
T as in (ii). Suppose there exists a y<-set of 1" different from D. Let D" # D be a
~v<k-set of T' such that |D N D’| is maximal. There is at least one vertex z € D\ D’
and there are two vertices y1,y2 € Pyr(z, D) with d(y1,y2) = 2k. Hence, we have
d(z,y1) = d(x,y2) = k and z lies on the unique path from y; to yo in 7. Let
T1,Ts, ..., T, be the components of T — x such that y; € V(T;) for i = 1,2. Further,
let D; = DNV(T;) and D, = D' NV (T;) for i = 1,2. Since D; does not distance-
k dominate the vertex y; but D} dominates T;, there is a vertex z; € D; \ D; with
d(zi,y;) < kfori=1,2. Theset D" = (D'\(D{UD}))U(D1UDyU{z}) is a distance-
k dominating set of T', which implies |D"| > |D’'| and |Dy| + |Da| + 1 > |D}| + | Dj].
If |Di| > |D1| and |Dj| > |Ds|, then we obtain a contradiction. Hence, without loss
of generality, we have |D}| < |D;|. Let P be the unique path in T from z to y, and
let TV = T[V(T1) UV (P)]. It is easy to see that Dy U{z} is a distance-k dominating
set of T" that fulfils (ii). If n(7") = n(T), then 7o = P — x and Ny[zs] C Nglx].
Hence, D" = (D' \ {#z2}) U{z} is a y<-set of T" with |D" N D| > |D' N D|. Since
7z € D"\ D, we have D” # D, and this is a contradiction to the maximality of
|D'' N D|. Hence, let n(T") < n(T). Then, by the induction hypothesis, the set
D; U {z} is the unique y<g-set of T". But D] U {z} is also a distance-k dominating
set of T" with |Dj U {z}| < |D; U{z}| and z; € D} \ Dy, which is a contradiction to
the uniqueness of Dy U {z}.

(i) = (iii): Let D be the unique v<g-set of T, let « € D arbitrary, let Kk = k(T — )
and let T, Ty, . . ., T); be the components of T'—x. Further, let D’ be a y<j-set of T'—z
and for every 1 <i < s let D; = DNV(T;), and D, = D'NV(T;). Forevery 1 <i <k
the set D = (D \ D;) U D} is a distance-k dominating set of T', which implies that
either D; = D} or |D;| < |Dj|. By (i) = (ii), the vertex x has at least two private k-
neighbors x1,zy in T with d(x1, z5) = 2k. Without loss of generality, let 21 € V(T})
and x5 € V(T3). Then, for ¢ = 1,2, the set D; is not a distance-k dominating set of
T;, in contrary to the set D]. Hence, we have D; # D, and |D;| < |D}| for i = 1,2,
which implies 7<(T — 2) = [D'| = S5, |DI| = 24 50, D = 1+ D] > 7ei(T).
(iii) = (i): Let D be a y<j-set of T such that y<;(T — x) > v<x(T) for every vertex
x € D. Suppose that there is a y<;-set D' # D of T. Since there exists at least
one vertex x € D\ D', the set D" is distance-k dominating set of T'— z. Hence,
v<r (T — x) < |D'| = y<x(T") for some x € D, which is a contradiction. O

For k =1, Theorem 2.1 yields immediately the next corollary.

Corollary 2.2 [Gunther, Hartnell, Markus, Rall [9]] Let T' be a tree of order at least
3. Then the following conditions are equivalent:

(i) T has the unique vy-set D.

(i1) T has a y-set D for which every vertex in D has at least two private neighbors
other than itself.

(i1i) T has a ~y-set D for which (T — x) > ~v(T') for every vertex x € D.
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Remark 2.3 Since the problem of finding a minimum dominating set (i.e. a min-
imum distance-1 dominating set) in an arbitrary graph is NP-complete, this is also
NP-complete for minimum distance-k dominating sets.

Let G* denote the k-th power graph of G with the vertex set V(G) and the edge set
{uwv | u,v € V(G),dg(u,v) < k}. Tt is easy to see that v<x(G) equals <, (G*) =
v(G*). Further, G.J. Chang and G.L. Nemhauser [2] have proved that y<,(T) =
a(T?) = 0(T?) for any tree T, where a(G) denotes the cardinality of a maximum
independent set of G and 6(G) denotes the minimum number of cliques in G that
cover G. Hence, in view of [2], the following problems are equivalent:

a) The problem of finding a minimum distance-k dominating set of any tree.

b) The problem of finding a minimum (distance-1) dominating set of a graph G
which is the k-th power graph of some tree.

¢) The problem of finding a maximum independent set of a graph G which is the
2k-th power graph of some tree.

d) The problem of finding a minimum clique covering of a graph G which is the
2k-th power graph of some tree.

Lubiw [17] has shown that powers of strongly chordal graphs are also strongly chordal.
Trees are strongly chordal, and G.J. Chang and G.L Nemhauser have noticed in [2]
that we can construct the strongly chordal graph T* in O(n?) time for any tree T
of order n. They have also mentioned that therefore we can use every algorithm for
finding the cardinality of a minimum dominating set, a maximum independent set,
or a minimum clique covering on strongly chordal graphs to determine the distance-k
domination number of a tree in polynomial time. There are efficient such algorithms
by M. Farber [5], A.W.J. Kolen [16], A. Lubiw [17], A. Frank [6], and F. Gavril
[8]. For example, the algorithm of M. Farber [5] solves the domination problem for
strongly chordal graphs, and the algorithm of A. Frank [6] solves the independent
problem for chordal graphs, both in linear time.

Remark 2.4 We are able to check in polynomial time whether a given tree T has
a unique minimum distance-k dominating set or not by constructing T* (or T2,
respectively) and by using one of the mentioned algorithms and Theorem 2.1.

3 Unique minimum edge domination in trees

First, we need some further definitions. For any graph G and any edge e € E(G)
we define N'(e) = {f € E(G) | f adjacent to e} and the set N'[e] = N'(e) U {e}. If
B C E(G), then N'(B) = U.eg N'(e) and N'[B] = N'(B) U B. For a subset F of
E(G) and an edge e € F we define the set P'(e, F) = N'[e]\ N'[F'\ {e}], and we call
an edge f € P'(e, I') a private adjacent edge of e with regard to F'.

The first lemma contains a simple necessary condition for unique minimum edge
dominating sets in graphs. It is a generalization of a result of Topp (Proposition 2.8
in [18]).
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Lemma 3.1 Let G be a connected graph of order at least 3 and let F' be a unique
minimum edge dominating set of G. Then the set F is independent, and every edge
e € F contains at least two non adjacent edges in P'(e, F).

Proof. Let e € F be arbitrary. Since F is minimal, we have P'(e, F) # (. If
P'(e,F) = {e}, then we can take any edge f adjacent to e and (F'\ {e}) U {f} is
a minimum edge dominating set of G different from F', which is a contradiction. If
f € Ple,F)\{e} #0 and every edge in P'(e, F) \ {f} is adjacent to f, then again
(F\{e}) U{f} is a minimum edge dominating set of G different from F, which
is a contradiction. Hence, for every edge e € F the set P'(e, F') contains two non
adjacent edges. This also implies that no two edges in F' are adjacent. O

The next theorem is a characterization of trees with unique minimum edge domi-
nating sets similar to the characterization in Corollary 2.2. One part of this theorem
says that, for trees, the necessary condition in Lemma 3.1 is also sufficient. The con-
verse does not hold in general, as we can see with the simple graph G with vertex set
V(GQ) = {u,v,w,x}, edge set E(G) = {uv, uw, uz, vw} and with the two minimum
edge dominating sets {uv} and {uw}.

Theorem 3.2 Let T be a tree of order at least 3 and let ' be a subset of E(T).
Then the following conditions are equivalent:

(i) F is the unique minimum edge dominating set of T.

(i1) F is an edge dominating set of T such that every edge e in F has at least two
non adjacent edges in P'(e, F).

(iii) F is an independent edge dominating set of T' such that every edge e in F has
at least two non adjacent edges in P'(e, F).

() F is a minimum edge dominating set of T such that ' (T —e) > /(T for every
edge e € F.

Proof.

(i) = (iii): Follows immediately from Lemma 3.1.

(iii) = (ii): Obviously.

(ii) = (i): Let F be an edge dominating set of T" as in (ii). For any subset B of the
edge set of T we define V(B) = {u,v’ € V(T) | wu’ € B}. Thus, for every edge
e = vw € F there are two edges vv’ and ww’ with v’ # w" and v, v', w, w' & V(F\{e}).
Hence, no two edges in F' are adjacent. Suppose there is a minimum edge dominating
set F' # F of T. Then, |F'\ F'| > |F'\ F|. Let the set B = (F\ F')U (F"\ F) and
H =T[V(B)]. Let F| = {vw € F'\ F |v,w € V(F\ F')}, Fj = {vw € F'\ F |
{v,w}NV(F\F')| =1}, and Fj = {vw € F'\F |v,w ¢ V(F\ F')}. Theset "\ F
is the disjoint union of FY, F} and F}. We get for the vertex set of H

V(H)| = [V(B)] <2[F\ F'| + [F3| + 2| F3].
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By (ii), for every vertex v € V(F \ F’) there is an edge vw € F \ F’ and an
edge vv' # vw such that v,v" & V(F \ {e}). Since F’ is an edge dominating set
of T, we get that v or v/ is in V(F). If v € (V(F)\ V(F')) C V(F \ F’), then
e (V(F)Y\V(F)) CV(F'\ F) and vv' € E(H)\ B. This implies that

|[E(H)\ B| 2 [V(F)\ V(F')| 2 2| F\ F'| = 2|F{| — | 3.
Hence, we obtain for the cardinality of F(H)

[E(H)| = |[F\F'[+|F'\ F|+ |E(H)\ B
20"\ F + 2[F\ F'| = 2|F{| — | Ky )

= 2(1FY| + [F3| + [F3]) + IF\ F'| = 2|F{| — | F3))
|Fyl + 2 | + 2| F\ F]

[V (H)].

But, since H is a forest, we have m(H) = n(H) — x(H) < n(H), which is a contra-
diction.
(i) = (iv): Let F be the unique minimum edge dominating set of T', let e = vjv9 € F
be arbitrary, and let 77 and T be the components of T — e where v; € V(T;) for
i=1,2.

Further, let F’ be a minimum edge dominating set of T — e and for ¢ = 1,2
let F; = FNE) and F/ = F''n E(T;). By (i) = (ii), the edge e is adjacent
to at least two edges viw; € E(T)) and vaws € FE(T3) that are not adjacent to
any other edge in F. Hence, the set F; is not an edge dominating set of T;, con-
trary to F/ for i € {1,2}. Thus, we have F; # F/ for i = 1,2. Since the set
F!'= (F\ F,)UF] # F is an edge dominating set of T, we get |F;| < |F/|. This
yields o/(T' —e) = |F'| = [F{| + |F3| = |F1| + [ Fo[ + 2 = [F| + 1 > +/(T).

(iv) = (i): Let F' be a minimum edge dominating set of 7" such that v'(T'—e) > ~/(T")
for every edge e € F. Suppose that there is a minimum edge dominating set F’ # F
of T. There exists at least one edge e € F\ F’ and the set F”’ is an edge dominating set
of T'—e. Hence, /(T —e) < |F'| = +/(T) for some e € F, which is a contradiction. O

v

v

As a corollary of Theorem 3.2 we obtain a characterization of caterpillars with
unique minimum edge dominating sets by Topp (Corollary 3.1 in [18]). Further, we
get the following corollary, that also contains a result of Topp (Theorem 2.11 in [18]).

Corollary 3.3 Let T be a tree of diameter at least 3, let F' be a minimum edge
dominating set of T, and let e € F arbitrary. Then F is the unique minimum edge
dominating set of T if and only if every component of the forest H =T — N'[e] is of
order at least 4 and H has the unique minimum edge dominating set F\ {e}.

Proof. Let F be a minimum edge dominating set of 7" and let e € F' be arbitrary.
First, let F' be unique. Hence F' fulfils (ii) in Theorem 3.2, and this implies that
F\ {e} fulfils (ii) for the forest H. Thus each component of H is of order at least 4.
If we use Theorem 3.2 on these components, then we get that H has the unique mini-
mum edge dominating set F'\ {e}. Now, let F'\{e} be the unique edge dominating set
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of H and every component of H be of order at least 4. By Theorem 3.2, the set F'\{e}
fulfils (ii). This implies that F' fulfils (ii) for 7. Thus F is unique, by Theorem 3.2. O

Remark 3.4 There are some algorithms known to determine minimum edge domi-
nating sets in special classes of graphs ([3],[4],[7],[12].[15]). For trees a linear time
algorithm to determine minimum edge dominating sets is given by S. Hedetniemi
and S. Mitchell [12], and a linear time algorithm to determine minimum indepen-
dent edge dominating sets is given by F. Gavril and M. Yannakakis [7]. Further,
G.J. Chang and S.-F. Hwang [3] found a linear time algorithm to determine min-
imum edge dominating sets in block graphs. Hence, we can inspect in linear time
whether a given tree has a unique minimum edge dominating set or not, by using one
of these algorithms and Theorem 3.2.
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