
Extensions of PG(3, 2) with bases

Joseph L. Yucas

Department of Mathematics
Southern Illinois University-Carbondale

Carbondale, Il. 62901-4408
U.S.A.

Abstract

If one hopes to extend AG(4, 2) to an S(4, 5, 17), an extension of
PG(3, 2) with bases is necessary. A geometric construction of such an ex-
tension of PG(3, 2) is given along with some remarks on further extending
AG(4, 2) to an S(4, 5, 17).

1 Introduction

A t-(v, k, λ)-design is a pair (P,B) where P is a v-element set of points and B is
a collection of k-subsets of P called blocks such that every t-element subset of P is
contained in exactly λ blocks. If the t is omitted we assume t = 2. If λ = 1 then the
design is called a Steiner system and denoted by S(t, k, v).

If D = (P,B) is an S(t, k, v) and p is a point of D then the pair Dp consisting of
the point set P − {p} with blocks {B − {p}|p ∈ B ∈ B} is an S(t − 1, k − 1, v − 1)
called the Steiner system derived from D with respect to p. In this case we say that
D is an extension of Dp. Basic results and terminology on Design Theory can be
found in [2], [3] and [4].

Let V be a 4-dimensional vector space over GF(2). The 15 non-zero vectors of
V together with the 35 blocks of the form {α, β, α + β} form an S(2, 3, 15), denoted
PG(3, 2). This is the design coming from the 3-dimensional projective geometry
over GF(2). The blocks of PG(3, 2) will be called lines. The non-zero vectors of
3-dimensional subspaces of V will be called planes.

It is well-know that PG(3, 2) can be extended to an S(3, 4, 16). One simply adds
a new point, say 0, to the fifteen points of PG(3, 2) and takes as blocks all sets
of the form {� ∪ {0} | � is a line of PG(3, 2)} and all sets of the form {π − � | π
is a plane of PG(3, 2), � is a line of PG(3, 2) and � ⊂ π}. This extension comes
from the 4-dimensional affine geometry over GF(2) and will be denoted by AG(4, 2).
Equivalently, AG(4, 2) is the collection of all cosets of all 2-dimensional subspaces
of V. The sets π − � have the form {α, β, γ, α + β + γ} where α, β, γ are linearly
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independent. These are called ovals. The main concern of this paper will be with
the construction of a different type of S(3, 4, 16) extending PG(3, 2).

It is not yet known whether a Steiner system S(4, 5, 17) exists. A Steiner sys-
tem S(4, 5, 17) would have 476 blocks, each point occurring 140 times, each pair of
points occurring 35 times and each triple occurring 7 times. One possible way of
constructing such a Steiner system of course would be to extend AG(4, 2). In order
to extend AG(4, 2) we must add a point, say ∞, to V and then add ∞ to each of the
140 blocks of AG(4, 2). The 35 blocks of the form {0, α, β, α + β,∞} will be called
projective sets. The 105 blocks of the form {α, β, γ, α + β + γ,∞} will be called oval
sets.

There are then 336 new blocks of size 5 that need to be constructed. The point
∞ already occurs 140 times so it cannot occur again. The point 0 occurs 35 times
in the projective sets and does not appear at all in the oval sets. Consequently, 0
must occur 105 more times. Since the 105 ovals and the 35 4-tuples of the form
� ∪ {0} already occur, these remaining 105 blocks containing 0 must have the form
{0, α, β, γ, δ} where {α, β, γ, δ} is a basis for V. We will call these basis sets.

Notice that if this extension of AG(4, 2) does exist then the derived design with
respect to 0 is an S(3, 4, 16) on (V\{0}) ∪ {∞}. Now, the projective sets contain
both 0 and ∞. Consequently, the 105 bases in the basis sets must extend PG(3, 2)
to an S(3, 4, 16) on (V\{0})∪{∞}. It is this extension with which we are concerned
here. In [1] we showed, under a certain uniformity condition, that this extension
could not exist. Surprisingly, V. Tonchev [5], with a computer search, found 105
basis sets not satisfying this uniformity condition. In the next section we give a
geometric construction of a family of such basis sets. Tonchev’s example is one of
these. It would be interesting to know if there are other non-isomorphic extensions
of PG(3, 2) containing 105 basis sets. Finally, in the third section, we give some
remarks on then extending AG(4, 2) to an S(4, 5, 17).

2 The Basis Sets

In this section we extend PG(3, 2) to an S(3, 4, 16) whose new blocks are bases for
V. Fix a plane Π of PG(3, 2) and let L be the collection consisting of the 7 lines of
Π. Let φ : Π −→ L be any bijection acting on the points of Π satisfying:

α ∈ φ(β) =⇒ β /∈ φ(α).

Example 2.1 Such bijections do exist. For example, fix a basis {α1, α2, α3} for
Π. Define φ by:

α1 −→ α2 α3 α2 + α3

α2 −→ α3 α1 + α2 α1 + α2 + α3

α3 −→ α1 + α2 α1 + α3 α2 + α3

α1 + α2 −→ α1 α2 + α3 α1 + α2 + α3

α1 + α3 −→ α1 α2 α1 + α2

α2 + α3 −→ α2 α1 + α3 α1 + α2 + α3

α1 + α2 + α3 −→ α1 α3 α1 + α3
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Proposition 2.2 (i) α /∈ φ(α). (ii) If α �= β and α /∈ φ(β) then β ∈ φ(α).

Proof: (i) is clear; for (ii) suppose α /∈ φ(β). By (i), β /∈ φ(β). There are only
two lines in L not containing α or β. Call these lines l1 and l2 and suppose φ(β) = l1.
Assume β /∈ φ(α). By (i) and the fact that φ is a bijection we have φ(α) = l2. Both
l1 and l2 contain α + β hence α, β /∈ φ(α + β). Consequently, φ(α + β) = φ(α) or
φ(β) contradicting φ being a bijection.

Proposition 2.3 If a point p is on a line φ(q) and if φ(p) ∩ φ(q) is known then
φ can be completely determined.

Proof: Suppose φ(p) ∩ φ(q) = {i}. We show that φ is given by:

q −→ i p p + i
p −→ i q + p + i q + p
p + q −→ q p + i q + p + i
i −→ p + q p + i q + i
p + i −→ p p + q + i q + i
q + i −→ p q p + q
p + q + i −→ q q + i i

To begin we have i, p ∈ φ(q), hence φ(q) = {i, p, p + i}. Now, p, q /∈ φ(p) so
this leaves only two possible lines of Π for φ(p). Both of these lines contain p + q.
Consequently, φ(p) = {i, p + q, p + q + i}. The other five lines are determined
by using Proposition 2.2(ii). For example, p + q, q + i, p + q + i /∈ φ(q) implies
q ∈ φ(p + q), q ∈ φ(q + i) and q ∈ φ(p + q + i).

Fix a point outside of Π. Throughout, this point will be denoted by x. From
each point p ∈ Π, we construct six bases of V. Suppose φ(p) = {α, β, α + β}. The
bases are the rows of the following array:

α β x + α + β p + α + β
α α + β x + β p + β
β α + β x + α p + α
x p + α p + β p + α + β
p x + p + α x + p + β x + p + α + β
x + p x + α x + β x + α + β

Since {p, α, β, x} is a basis for V, it is easy to see that these six rows are also.
This gives us 42 of the 105 bases we desire.

From a pair p, q, of distinct points of Π we derive three more bases of V. By
Proposition 2.2(ii), either p ∈ φ(q) or q ∈ φ(p). Say p ∈ φ(q). Let φ(p) ∩ φ(q) = {i}
and consider the rows of the following array:
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p p + x q + x q + i
q p + q + i i + x p + q + i + x
x p + x p + q p + i + x

Again, since {p, q, i, x} is a basis for V so are these rows. This gives us the
3 · C(7, 2) = 63 other bases we need.

Theorem 2.4 The 105 bases for V constructed above extends PG(3, 2) to an
S(3, 4, 16) on (V\{0}) ∪ {∞}.

Proof: Since each line occurs exactly once in PG(3, 2) it suffices to show that each
triple of linearly independent points occurs exactly once within the 105 bases. We
have 105·C(4, 3) = 420 of these triples occurring and there is a total of C(15, 3)−35 =
420 of these triples. Hence we show that the triples occurring are distinct. Listed
below are the various types of triples that we have occurring. The first group lists
the triples containing x. The second group lists the triples containing three points
from Π. The third group lists all triples containing three points outside Π none of
which is x. The fourth group lists all triples containing exactly one point of Π and
not x and the fifth group lists the triples containing exactly two points from Π but
not containing x. In all cases α and β are points in φ(p).

1
x p + x p + q
x p + x p + i + x
x p + q p + i + x
x p + α p + β

2 3
α β p + α + β x + p + α x + p + β x + p + α + β
p + α p + β p + α + β x + p x + α x + β

x + α x + β x + α + β

4 5
p + x q + x p p q + i p + x
p + x q + x q + i p q + i q + x
i + x p + q + i + x q q p + q + i i + x
i + x p + q + i + x p + q + i q p + q + i p + q + i + x
p + x p + i + x p + q α β α + β + x
x + p + α x + p + β p α p + α + β α + β + x

α α + β x + β
α p + β x + β
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Notice that triples from different groups cannot be equal. But, there are still
several cases involving triples from within a group. Each case is simple, however,
just depending on Propositions 2.2 and 2.3. We provide proofs of some representative
cases and leave the remaining cases for the reader.

Case(i) Suppose {x, p1 + x, p1 + q1} = {x, p2 + q2, p2 + i2 + x}. Here p1 = p2 + i2
and p1 + q1 = p2 + q2. By Proposition 2.3, with p = p2 and q = q2, we have p2 + i2 ∈
φ(p2 + q2) = φ(p1 + q1). With p = p1 and q = q1, we have p2 + i2 = p1 /∈ φ(p1 + q1).
This is a contradiction.

Case(ii) Suppose {α1, β1, p1 +α1 +β1} = {p2 +α2, p2 +β2, p2 +α2 +β2}. Assume
first that α1 = p2 + α2, β1 = p2 + β2 and p1 + α1 + β1 = p2 + α2 + β2. Then
p2 + α2 + β2 = p1 + α1 + β1 = p1 + p2 + α2 + p2 + β2 = p1 + α2 + β2. Hence p1 = p2.
Now α1 ∈ φ(p1) = φ(p2) implies α1 ∈ {α2, β2, α2 + β2}. If α1 = α2 then p2 = 0,
a contradiction. If α1 = β2 then p1 = p2 = β1 + α1 ∈ φ(p1), a contradiction. If
α1 = α2 + β2 then β1 = 0, a contradiction. The other subcases are similar.

Case(iii) Suppose {x+p1+α1, x+p1+β1, x+p1+α1+β1} = {x+p2, x+α2, x+β2}.
Assume first that p1+α1 = p2, p1+β1 = α2 and p1+α1+β1 = β2. Then α1 = p2+p1 �=
p2, β1 = p1 + α2 = α1 + p2 + α2 �= p2 and α1 + β1 = p2 + p1 + p1 + α2 = p2 + α2 �= p2.
Hence, p2 /∈ φ(p1), and thus p1 ∈ φ(p2). If p1 = α2 then β1 = 0, a contradiction.
If p1 = β2 then α1 = β1, a contradiction. If p1 = α2 + β2 then p1 = α1 ∈ φ(p1), a
contradiction. The other subcases are similar.

Case(iv) Suppose {p1 + x, q1 + x, p1} = {p2 + x, p2 + i2 + x, p2 + q2}. Then
p1 = p2 + q2 and {p1, q1} = {p2, p2 + i2}. If p1 = p2 then q2 = 0, a contradiction. If
p1 = p2 + i2 then p2 + q2 = p2 + i2 and hence q2 = i2 ∈ φ(q2), a contradiction.

Case(v) Suppose {p1, q1 + i1, p1 + x} = {q2, p2 + q2 + i2, p2 + q2 + i2 + x}. Here
p1 = p2 + q2 + i2 and {p1, q1 + i1} = {q2, p2 + q2 + i2}. If q2 = p1 then p2 = i2 ∈ φ(p2),
a contradiction. If q2 = q1 + i1 then by Proposition 2.3, φ(q2) = φ(q1 + i1) =
{p1, q1, p1 + q1}. On the other hand, φ(q2) = {p2, i2, p2 + i2}. If p1 = p2 then
q2 = i2 ∈ φ(q2), a contradiction. If p1 = i2 then p2 = q2, a contradiction. Finally, if
p1 = p2 + i2 then q2 = 0, a contradiction.

3 Line sets and ovoid sets

We begin this section with some results observed by A. Baartmans and the author
when working on [1] which were not needed and hence not published there. Continue
with our hypothetical extension of AG(4, 2) to an S(4, 5, 17). So far we have seen
that it must contain 35 projective sets, 105 oval sets, and 105 basis sets. There are
still 231 blocks to consider.

In our extension, a line � = {α, β, α + β} occurs once so far, so it must occur 6
more times. We have then blocks of the form {α, β, α+β, γ, δ}. Notice that δ cannot
be linearly dependent on α, β and γ for otherwise this block would contain an oval
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which already appears in the oval sets. Consequently, we must have 35 · 6 = 210
blocks of this form with {α, β, γ, δ} being a basis for V. We will call these line sets.

There are still 21 blocks unaccounted for. Now, there are 840 bases for V with
105 of them appearing in the basis sets and 210 · 3 = 630 of them appearing in the
line sets. Consequently, we must cover 105 bases with 21 blocks. The only way to
do this is to have the 21 blocks covering 5 bases each. This can be done only with
ovoids; that is, with blocks of the form {α, β, γ, δ, α + β + γ + δ} where {α, β, γ, δ}
is a basis for V. These 21 blocks will be called ovoid sets.

In summary,
Theorem 3.1 If an extension of AG(4, 2) exists it must consist of the following

five types of blocks:

(i) 35 projective sets;
(ii) 105 oval sets;
(iii) 105 basis sets;
(iv) 210 line sets;
(v) 21 ovoid sets.

Now, a nonzero vector α of V occurs in 7 lines of PG(3, 2). Since each line must
occur 6 times in the line sets, α occurs 42 times in the line sets as a point on the
line. Consider the 6 line sets containing a given line � with α /∈ �. Each of these
line sets contains 2 points not on �, 12 points total in the 6 line sets. Now, there
are 12 points not on �. A point not on � cannot appear twice in these 6 line sets for
otherwise a 4-tuple would be repeated. Consequently, α must occur exactly once in
these line sets. Since α is not on 28 lines, we see that α occurs 28 times in the line
sets as a point not on the line. We have:

Proposition 3.2 The 210 line sets must form a 1-(15, 5, 70)-design.

We now know that a nonzero vector of V occurs 7 times in the projective sets,
28 in the oval sets, 28 in the basis sets, and 70 times in the line sets. It must occur
140 times total, hence we have:

Proposition 3.3 The 21 ovoid sets must form a 1-(15, 5, 7)-design.

Notice that the ovoid sets cannot form a 2-design. It would be a 2-(15, 5, 2)-design.
This is a residual of a symmetric (22, 7, 2)-design which does not exist (see[3]). A
pair of non-zero vectors of V must occur 35 times in an S(4, 5, 17). Since each pair
occurs once in the projective sets, 6 times in the oval sets, and 6 times in the basis
sets, pairs cannot occur the same number of times in the line sets since then they
are forced to occur the same number of times in the ovoid sets. Consequently, the
line sets cannot form a 2-design either. It may be that the existence of an S(4, 5, 17)
implies the existence of a (15, 5, 2)-design thus explaining the non-existence of an
S(4, 5, 17).

However, we end on a brighter note and give a possible strategy for the construc-
tion of the line sets and ovoid sets. There are 168 ovoids. 21 of these must be chosen
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for the ovoid sets. The basis sets eliminate 105 of these ovoids from consideration
for else a 4-tuple would occur twice. Consequently, 21 ovoids must be chosen from
the remaining 63. Which ones to choose is the first problem. Once these are chosen,
the remaining 42 ovoids contain 5 bases each, none of which appeared so far. Hence,
they must appear in the line sets. This observation leads to a possible construction
of the line sets.

Consider one of these 42 remaining ovoids, say {α, β, γ, δ, α + β + γ + δ}. Since
each 4-tuple contained in this ovoid must appear in the line sets we must have 5 line
sets with the following form:

α β γ δ −−−−−
α β γ α + β + γ + δ −−−−−
α β δ α + β + γ + δ −−−−−
α γ δ α + β + γ + δ −−−−−
β γ δ α + β + γ + δ −−−−−

The second problem is then how to fill in the −−−−−s. To be line sets each blank
must be filled in with the sum of two of the previous four. There are six possibilities
for each, and we must keep in mind that we want each line occurring exactly 6 times
in the line sets. If this can be accomplished then we have the 42 · 5 = 210 line sets
that we desire.
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