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Abstract
We investigate Laguerre near-planes of order 4 and classify all such
planes. We further develop a description of these planes in terms of
a single map and characterise those Laguerre near-planes that can be
extended to the Miquelian Laguerre plane of order 4.

1. Introduction and result

A finite Laguerre plane of order n where n ≥ 2 is an integer consists of a set P
of points, a set C of circles and a set G of generators (subsets of P ) such that the
following four axioms are satisfied:

(P) P contains n(n + 1) points.
(G) G partitions P and each generator contains n points.
(C) Each circle intersects each generator in precisely one point.
(J) Three points no two of which are on the same generator can be uniquely

joined by a circle.

From this definition it readily follows that a Laguerre plane of order n has n + 1
generators, that every circle contains exactly n + 1 points and that there are n3

circles. Labelling the generators from 1 to n + 1 and the points on each generator
from 1 to n and identifying each circle with the (n + 1)-tuple (c1, . . . , cn+1) where
ci is the unique point of the circle on generator i, we see that a Laguerre plane
of order n corresponds to an orthogonal array of strength 3 on n symbols (levels),
n + 1 constraints and index 1, cf. [1].

All known models of finite Laguerre planes are of the following form. Let O be
an oval in the Desarguesian projective plane P2 = PG(2, pm), p a prime. Embed
P2 into 3-dimensional projective space P3 = PG(3, pm) and let v be a point of P3

not belonging to P2. Then P consists of all points of the cone with base O and
vertex v except the point v. Circles are obtained by intersecting P with planes of
P3 not passing through v. In this way one obtains an ovoidal Laguerre plane of
order pm. If the oval O one starts off with is a conic, one obtains the Miquelian
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Laguerre plane of order pm. All known finite Laguerre planes of odd order are
Miquelian.

The internal incidence structure Ap at a point p of a Laguerre plane has the
collection of all points not on the generator through p as point set and, as lines,
all circles passing through p (without the point p) and all generators not passing
through p. This is an affine plane, the derived affine plane at p. A circle K
not passing through the point of derivation p induces an oval in the projective
extension of the derived affine plane at p which intersects the line at infinity in the
point corresponding to lines that come from generators of the Laguerre plane; in
Ap one has a parabolic curve. (The derived affine planes of the Miquelian Laguerre
planes are Desarguesian and the parabolic curves are parabolae whose axes are
the verticals, i.e., the lines that come from generators of the Laguerre plane.) A
Laguerre plane can thus be described in one derived affine plane A by the lines
of A and a collection of parabolic curves. This planar description of a Laguerre
plane, which is the most commonly used representation of a Laguerre plane, is then
extended by the points of one generator where one has to adjoin a new point to
each line and to each parabolic curve of the affine plane. It follows from [7] that
every parabolic curve in a finite Desarguesian affine plane of odd order is in fact
a parabola. Furthermore, using a simple counting argument it was shown in [2]
that a finite Laguerre plane of odd order that admits a Desarguesian derivation is
Miquelian.

The spatial description of an ovoidal Laguerre plane as the geometry of plane
sections of an oval cone is related to the planar description in one derived plane
by stereographic projection from one point of the cone onto a plane not passing
through the point of projection. In this description all points of the Laguerre plane
except the points on the generator through the point of projection are covered.

In this note we consider the restriction of a finite Laguerre plane to one of its de-
rived affine planes. When verifying the axioms of a Laguerre plane in such a planar
representation one always has to consider special cases involving the extra points.
We now ask to what extend the description in a derived affine plane determines
the Laguerre plane. A partial solution to this problem was given in [9] in the case
of odd order and under the assumption that a point exists at which the internal
incidence structure (defined in exactly the same way as for Laguerre planes) can
be extended to a Desarguesian affine plane. To be more precise, a Laguerre near-
plane of order n ≥ 3 is an incidence structure of n2 points, circles and generators
satisfying the axioms (G), (C) and (J) from above. This definition extends the
terminology for Minkowski near-planes and Möbius near-planes adopted in [5] and
[8], respectively. Laguerre near-planes occur as special Laguerre semi-planes in [6]
but have not been further investigated there. Also note that a Laguerre near-plane
is not a restricted L1-space as defined in [11] since the restriction made in [11] on
the number of points and lines in an internal incidence structure at a point is not
satisfied.

Clearly, there are n generators, every circle contains exactly n points and there
are n3 circles. Like for Laguerre planes we see that a Laguerre near-plane of order
n corresponds to an orthogonal array of strength 3 on n symbols, n constraints and
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index 1. By [1], an orthogonal array of strength 3, n symbols, size n3 and index
1 can have at most n + 2 constraints. In fact, if n is odd one has at most n + 1
constraints. In terms of orthogonal arrays the question is whether such an array
on n constraints can be extended to one on n+1 constraints and if so in how many
essentially different ways.

One obviously obtains a Laguerre near-plane of order n by deleting a generator
from a Laguerre plane of order n. In the case of the Miquelian Laguerre plane
we obtain in this way the parabola model: its circles are graphs of polynomials of
degree at most 2, that is,

C = {{(u, au2 + bu + c) | u ∈ Fq} | a, b, c ∈ Fq}
where Fq denotes the Galois field of order q. The axiom (J) is readily verified in
this model.

Conversely, it is not clear how to extend circles in order to construct a Laguerre
plane from a Laguerre near-plane since all circles have the same length. Even
worse, if an extension exists, it may not be unique.

In [9] all Laguerre near-planes of order at most seven, except order 4 are covered.
Furthermore, an example was given that a Laguerre near-plane of even order may
be extended in more than one way to a Laguerre plane of the same order. This
basically is due to the fact that in even order one can replace a point of an oval
in a projective plane by its nucleus and again obtain an oval. Moreover, Laguerre
near-planes of order 4 were used in [8] to construct Möbius near-planes of order 4.
Also note that the case of order 4 stands out in that the derived incidence structure
at a point of a Laguerre near-plane of order 4 may not extend to an affine plane,
see [9] and [4].

In this paper we investigate Laguerre near-planes of order 4. We develop a
representation of such planes in terms of a single map. We determine, up to
isomorphism, all Laguerre near-planes of order 4. The results obtained in this note
can be summarized as follows.

Theorem. Let f : F
3
4 → F4 where F4 = {0, 1, ω, ω2}, ω2 = ω + 1, denotes the

Galois field of order 4 be a map such that for each x0, y0, z0 ∈ F4 the functions
x �→ f(x, y0, z0), y �→ f(x0, y, z0) and z �→ f(x0, y0, z) are permutations of F4.
Such a map describes a Laguerre near-plane L(f) of order 4 as follows. The point
set is F4 × F4 and generators are the verticals {c} × F4 for c ∈ F4. Circles are of
the form

{(1, x), (ω, y), (ω2 , z), (0, f(x, y, z))}
for x, y, z ∈ F4. Conversely, every Laguerre near-plane of order 4 can be uniquely
described in this way by such a map.

A Laguerre near-plane L(f) can be uniquely extended to the Miquelian Laguerre
plane of order 4 by adjoining the points of one generator if and only if one of the
following holds.

(1) f + f(0, 0, 0) is additive;
(2) the circle set {(x, y, z, f(x, y, z)) | x, y, z ∈ F4} (i.e., the graph of f) forms

an affine subspace of F
4
4 over the Galois field F2 of order 2;
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(3) f is of degree at most 3.

Up to isomorphism, there are precisely five Laguerre near-planes of order 4.
These planes are described by the maps

f0(x, y, z) =x + y + z,

f1(x, y, z) =(x2 + x)(y2 + y) + (y2 + y)(z2 + z) + (x2 + x)(z2 + z) + x + y + z,

f2(x, y, z) =(x2 + x)(z2 + z) + x + y + z,

f3(x, y, z) =(x2 + x)(y2 + y)(z2 + z) + x + y + z,

f4(x, y, z) =(x2 + ω2x)(y2 + ωy)(z2 + ωz) + (x2 + ω2x)(y2 + ω2y)

+ (x2 + ω2x)(z2 + ω2z) + (y2 + ωy)(z2 + ωz) + x + y + z.

Note that a Laguerre plane of order 4 is Miquelian so that the Laguerre near-
planes described by f1, f2, f3 or f4 cannot be extended to Laguerre planes, that is,
the corresponding orthogonal arrays are maximal. The Laguerre near-plane L(f0)
extends to the Miquelian Laguerre plane of order 4 and this plane in turn can be
extended by adding one generator through the nucleus of the conic over which the
Miquelian Laguerre plane is constructed in 3-dimensional projective space P3, that
is, one has the geometry of plane intersections of a cone over an hyperoval with
planes of P3 not passing through the vertex of the cone. This leads to orthogonal
array with 6 constraints.

Replacing in axiom (J) in the definition of a Laguerre near-plane the number of
points by k one obtains an interpolating system of rank k. By the above theorem
there are essentially five interpolating systems of rank 3 over F4. Clearly there is
only one interpolating system of rank 4 over F4. An interpolating system of rank
2 corresponds to an affine plane of order 4, so that there is only one interpolating
system of rank 2 over F4.

We deal with Laguerre near-planes of order 4 exclusively and sometimes omit
order 4 when speaking of Laguerre near-planes.

2. A representation of Laguerre near-planes of order 4

We denote by F4 = {0, 1, ω, ω2}, ω2 = ω + 1, the Galois field of order 4. Then
the point set of a Laguerre near-plane of order 4 can be identified with F4×F4 and
generators being the verticals {c} × F4.

Since ω is a generator of the multiplicative group of F4, the non-zero elements
of F4 can be written in the form ωi for i = 0, 1, 2. We use the notation ω∞ = 0
and

I = {0, 1, 2,∞}.
Then

F4 = {ωi | i ∈ I}.
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2.1. A representation of Laguerre near-planes of order 4 in terms of
a single map. Each circle has four points and is uniquely determined by these
points. Each circle is therefore described by some (c0, c1, c2, c∞) ∈ F

4
4 as

Cc0,c1,c2,c∞ = {(1, c0), (ω, c1)(ω2, c2), (0, c∞)} = {(ωi, ci) | i ∈ I}.
There are 256 vectors in F

4
4 and 64 of them describe circles as above. We denote

the collection of all circle describing vectors again by C. In this representation
axioms (G) and (C) of a Laguerre near-plane are clearly satisfied. Axiom (J) is
equivalent to saying that for any three mutually distinct i1, i2, i3 ∈ I and any three
y1, y2, y3 ∈ F4 there is a unique solution (c0, c1, c2, c∞) in C such that cik

= yk for
k = 1, 2, 3. In particular, for ik = k − 1 we obtain that c∞ is a function f of c0, c1

and c2, that is, circles in C are represented by vectors of the form (x, y, z, f(x, y, z))
for x, y, z ∈ F4 where f : F

3
4 → F4 is some map. Hence, we can write C in the form

C = {(x, y, z, f(x, y, z)) | x, y, z ∈ F4}
and C can then be viewed as a hypersurface in F

4
4.

Furthermore, choosing a different set of mutually distinct indices i1, i2, i3 axiom
(J) shows that for fixed x0, y0, z0 ∈ F4 the functions fy0,z0 : x �→ f(x, y0, z0),
fx0,z0 : y �→ f(x0, y, z0) and fx0,y0 : z �→ f(x0, y0, z) are permutations of F4.

Conversely, every map f with this property describes a circle set C and thus
defines a Laguerre near-plane of order 4. We denote this plane by L(f).

2.2. An alternative description. Each circle determines a unique polynomial
of degree at most 3, that is, each circle is described by some (c3, c2, c1, c0) ∈ F

4
4 as

C′
c3,c2,c1,c0

= {(u, c3u
3 + c2u

2 + c1u + c0) | u ∈ F4}.
In order to describe how this description of circles relates to the preceding one let
u1, u2, u3, u4 be the four elements of F4. Each polynomial

pu4(X) = (X − u1)(X − u2)(X − u3)

vanishes at u1, u2 and u3 and has value 1 at u4 because (u4−u1)(u4−u2)(u4−u3)
equals the product of all non-zero elements in F4. Expanding we explicitly have
the following four polynomials

p0(X) =X3 + 1,

p1(X) =X3 + X2 + X,

pω(X) =X3 + ωX2 + ω2X,

pω2(X) =X3 + ω2X2 + ωX.

Using these four polynomials, then

Cc0,c1,c2,c∞ = {(u, c0p1(u) + c1pω(u) + c2pω2(u) + c∞p0(u)) | u ∈ F4}.
Expanding c0p1(u) + c1pω(u) + c2pω2(u) + c∞p0(u) in powers of u yields

Cc0,c1,c2,c∞ = C′
c0+c1+c2+c∞,c0+c1ω+c2ω2,c0+c1ω2+c2ω,c∞ .

In the parabola model of a Laguerre near-plane of order 4, all circles are graphs
of polynomials of degree at most 2. Thus c0 + c1 + c2 + c∞ = 0 for all circles in
this plane, that is, a describing map f as in 2.1 is f(x, y, z) = x + y + z.
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Lemma 2.3. The parabola model of a Laguerre near-plane of order 4 can be rep-
resented in the form L(f) for f(x, y, z) = x + y + z.

With every map f : F
3
4 → F4 we can associate a unique polynomial in X, Y and

Z of degree at most 3 in each of the three variables, i.e.,

f(X,Y,Z) =
3∑

ijk=0

aijkXiY jZk

for some aijk ∈ F4. Each of the above restricted maps then is described by a
polynomial in one variable of degree at most 3. However, there are only a few such
polynomials that define permutations of F4, cf. [3] , §7.
Lemma 2.4. A polynomial p(X) =

∑3
i=0 aiX

i of degree at most 3 over F4 defines
a permutation of F4 if and only if a3 = 0 and either a2 = 0 or a1 = 0. The latter
condition is equivalent to a3

2 + a3
1 = 1.

Proof. The polynomial p(X) defines a permutation of F4 if and only if the evalua-
tion map p : F4 → F4 : x �→ p(x) is one-to-one. Since translations and homotheties
are permutations, we may assume that the leading coefficient of p(X) is 1 and that
the constant term equals 0.

Suppose that p(X) has degree 3 so that p(X) = X3 + a2X
2 + a1X. If a1 = 0,

then p(0) = p(a2) = 0 and p is not injective for a2 �= 0. If a2 = a1 = 0, then
p(1) = p(w) = 1 and again p is not injective. We now assume that a1 �= 0. Since
p(X) defines a permutation of F4 if and only if p( 1

a1
X) defines a permutation of

F4, we may assume that a1 = 1 so that p(X) = X3 + a2X
2 + X. But then

p(1) = p(a2) = a2 and p is not injective. This proves that p(X) has degree at most
2, i.e., a3 = 0.

Suppose that p(X) has degree 2. Then p(X) = X2 + a1X and p(0) = p(a1) = 0
so that p is not injective for a1 �= 0. Clearly, x �→ x2 is a permutation of F4 so that
a quadratic polynomial defines a permutation of F4 if and only if the linear term
equals 0.

Since u3 = 0 or 1 for u = 0 or u �= 0, respectively, it readily follows that
u3 + v3 = 1 for u, v ∈ F4 if and only if either u = 0, v �= 0 or u �= 0, v = 0. �

Note that maps of the form x �→ a2x
2 + a1x for a2, a1 ∈ F4 are additive, that is,

they are linear over F2, the Galois field of order 2. Hence each such permutation
of F4 represents an element of GL(2, 2), the group of all invertible 2 × 2 matrices
over the field F2. This group has order 6 and obviously the maps for a2 �= 0,
a1 = 0 and a2 = 0, a1 �= 0 belong to it. Therefore we must have already covered
all permutations of this form.

From this point of view one further obtains the inverse of x �→ a2x
2 + a1x for

a2, a1 ∈ F4, a3
2 + a3

1 = 1, in closed form. Let

a1x + a2x
2 = u;

then
a2
2x + a2

1x
2 = u2.
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In matrix notation we have(
a1 a2

a2
2 a2

1

)
·
(

x
x2

)
=

(
u
u2

)
.

Since the coefficient matrix of this system of linear equations has determinant
a3
1 + a3

2 = 1, one finds
x = a2

1u + a2u
2.

We now consider the partial map z �→ f(x, y, z) which is described by a polyno-
mial in Z. By the preceding lemma the coefficient of Z3 must be 0. Therefore

3∑
i,j=0

aij3x
iyj = 0

for all x, y ∈ F4. Hence the polynomial p(X,Y ) =
∑3

i,j=0 aij3X
iY j vanishes

identically. This implies aij3 = 0 for all i and j. Considering the other partial maps,
we similarly find that ai,3,k = a3,j,k = 0 for all i, j and k from 0 to 3. Therefore
f(X,Y,Z) reduces to f(X,Y,Z) =

∑2
ijk=0 aijkXiY jZk for some aijk ∈ F4.

Furthermore,

(
2∑

i,j=0

aij2x
iyj)3 + (

2∑
i,j=0

aij1x
iyj)3 = 1

for all x, y ∈ F4. In particular, for x = y = 0 we obtain a3
002 + a3

001 = 1 so that
either a002 = 0 or a001 = 0 and the respective other term being non-zero.

By looking at the other partial maps we obtain the following characterisation.

Proposition 2.5. f(X,Y,Z) =
∑2

ijk=0 aijkXiY jZk describes a Laguerre near-
plane if and only if

(
2∑

i,j=0

aij2x
iyj)3 + (

2∑
i,j=0

aij1x
iyj)3 = 1

(
2∑

i,k=0

ai2kxizk)3 + (
2∑

i,k=0

ai1kxizk)3 = 1

(
2∑

j,k=0

a2jkyjzk)3 + (
2∑

j,k=0

a1jkyjzk)3 = 1

for all x, y, z ∈ F4. In particular, a3
002 + a3

001 = a3
020 + a3

010 = a3
200 + a3

100 = 1.

It seems that the corresponding polynomial identities cannot be algebraically
used in general to simplify the form of f a great deal although we shall come back
to them later on. Note, however, that the above conditions do not involve the
coefficient a000. In fact, up to isomorphism, we can always assume that a000 = 0,
see 5.1.
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Corollary 2.6. The inverses of the partial maps with respect to x, y and z are
given by

f−1
y,z(x) =fx

2 (y, z)x2 + fx
1 (y, z)2x + fx

0 (y, z)2fx
2 (y, z) + fx

0 (y, z)fx
1 (y, z)2,

f−1
x,z(y) =fy

2 (x, z)y2 + fy
1 (x, z)2y + fy

0 (x, z)2fy
2 (x, z) + fy

0 (x, z)fy
1 (x, z)2,

f−1
x,y(z) =fz

2 (x, y)z2 + fz
1 (x, y)2z + fz

0 (x, y)2fz
2 (x, y) + fz

0 (x, y)fz
1 (x, y)2,

respectively, where fx
2 (y, z), fx

1 (y, z), fx
0 (y, z), fy

2 (x, z), fy
1 (x, z), fy

0 (x, z), fz
2 (x, y),

fz
1 (x, y) and fz

0 (x, y) are the respective coefficient functions, i.e.,

f(x, y, z) =fx
2 (y, z)x2 + fx

1 (y, z)x + fx
0 (y, z)

=fy
2 (x, z)y2 + fy

1 (x, z)y + fy
0 (x, z)

=fz
2 (x, y)z2 + fz

1 (x, y)z + fz
0 (x, y).

Proof. Let f(x, y, z) = fz
2 (x, y)z2 + fz

1 (x, y)z + fz
0 (x, y). We can write the inverse

f−1
x,y of the partial map with respect to z in the form f−1

x,y(z) = g2(x, y)z2+g1(x, y)z+
g0(x, y). Expanding the identity f−1

x,y(f(x, y, z)) = z one finds

g2(x, y)fz
1 (x, y)2 + g1(x, y)fz

2 (x, y) = 0,

g2(x, y)fz
2 (x, y)2 + g1(x, y)fz

1 (x, y) = 1,

g2(x, y)fz
0 (x, y)2 + g1(x, y)fz

0 (x, y) + g0(x, y) = 0.

This is a system of linear equations for g2(x, y), g1(x, y) and g0(x, y). Since its
determinant is fz

2 (x, y)3 + fz
1 (x, y)3 = 1 by Proposition 3.5, this system has a

unique solution and one readily finds

g2(x, y) = fz
2 (x, y),

g1(x, y) = fz
1 (x, y)2,

g0(x, y) = fz
0 (x, y)2fz

2 (x, y) + fz
0 (x, y)fz

1 (x, y)2.

The inverses of the other partial maps are found likewise. �
Examples 2.7.

(1) Let f(x, y, z) = (x2 +x)(z2 + z)+x+y+ z. Then f is a Laguerre near-plane
describing map. The inverses of the partial maps with respect to x, y and z are
w �→ (w2 + w + y2 + y)(z2 + z) + w + y + z2, w �→ (x2 + x)(z2 + z) + w + x + z,
w �→ (w2 + w + y2 + y)(x2 + x) + w + x2 + y, respectively, where w = f(x, y, z).

(2) Let f(x, y, z) = (x2+x)(y2+y)+(y2+y)(z2+z)+(x2+x)(z2+z)+x+y+z.
Then f is a Laguerre near-plane describing map. The inverses of the partial maps
with respect to x, y and z are w �→ f(w, y2, z2), w �→ f(x2, w, z2), w �→ f(x2, y2, w),
respectively, where w = f(x, y, z).

(3) Let f(x, y, z) = (x2 + x)(y2 + y)(z2 + z) + x + y + z. Then f is a Laguerre
near-plane describing map. The inverses of the partial maps with respect to x,
y and z are w �→ f(w, y, z), w �→ f(x,w, z), w �→ f(x, y,w), respectively, where
w = f(x, y, z).
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3. Isomorphisms and Linear Laguerre near-planes of order 4

3.1. Isomorphisms of Laguerre near-planes of order 4. The obvious defi-
nition of an isomorphism between Laguerre near-planes of the same order is that
we have a bijection between the point sets that takes generators to generators and
circles to circles. Using the representation 2.1 for Laguerre near-planes of order 4,
every isomorphism is of the form

F
4
4 → F

4
4 : (u, v) �→ (α(u), βu(v))

where α and βu are permutations of F4 for each u ∈ F4.
Clearly, the group of permutations of F4 is the symmetric group S4. Every

even permutation can be written as u �→ au + b for some a, b ∈ F4, a �= 0. The
automorphism u �→ u2 of F4 is an odd permutation of F4 – in fact, a transposition
– and every odd permutation of F4 is of the form u �→ au2 + b for some a, b ∈ F4.

The collection of all permutations of F4 × F4 as above forms a group Γ of order
(4!)4 = (24)5 = 215 ·35. We give a set of generators for Γ as permutations of F4×F4

and determine how circles and Laguerre near-planes of order 4 are transformed.
(1) (u, v) �→ (u, βu(v)) where βu are permutations of F4 for each u ∈ F4. These

permutations take Cc0,c1,c2,c∞ to Cβ1(c0),βω(c1),βω2 (c2),β0(c∞). A Laguerre
near-plane L(f) is taken to L(f ′) where

f ′(x, y, z) = β0(f(β−1
1 (x), β−1

ω (y), β−1
ω2 (z))

for x, y, z ∈ F4.
(2) (u, v) �→ (u + t, v) for t ∈ F4. These permutations take Cc0,c1,c2,c∞ to

Cd0,d1,d2,d∞ where

(d0, d1, d2, d∞) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(c0, c1, c2, c∞), if t = 0,
(c∞, c2, c1, c0), if t = 1,
(c2, c∞, c0, c1), if t = ω,

(c1, c0, c∞, c2), if t = ω2.

A Laguerre near-plane L(f) is taken to L(f ′) where f ′ = f for t = 0
and f ′ is an inverse of a partial map of f with the other two variables
exchanged given by f ′(f(x, y, z), z, y) = x, f ′(z, f(x, y, z), x) = y and
f ′(y, x, f(x, y, z)) = z for t = 1, ω and ω2, respectively, that is, the maps
(x, y, z) �→ f−1

z,y (x), (x, y, z) �→ f−1
z,x(y) and (x, y, z) �→ f−1

y,x(z), respectively.
(3) (u, v) �→ (ru, v) for r ∈ F4, r �= 0. These permutations take Cc0,c1,c2,c∞ to

Cc3−k,c1−k,c2−k,c∞ where r = ωk, k = 0, 1, 2, and the indices 3−k, 1−k and
2 − k are taken modulo 3. A Laguerre near-plane L(f) is taken to L(f ′)
where

f ′(x, y, z) =

⎧⎪⎨
⎪⎩

f(x, y, z), if r = 1,
f(y, z, x), if r = ω,

f(z, x, y), if r = ω2.

(4) (u, v) �→ (u2, v). This permutation takes Cc0,c1,c2,c∞ to Cc0,c2,c1,c∞ . A
Laguerre near-plane L(f) is taken to L(f ′) where f ′(x, y, z) = f(x, z, y).
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Note that inverses of partial maps can be obtained as a composition of permu-
tations of types (2), (3) and (4). More precisely, the inverse of the partial map
with respect to x, y and z can be found after the permutation (u, v) �→ (u2 + 1, v),
(u, v) �→ (ω(u2 + 1), v) and (u, v) �→ (ω2(u2 + 1), v), respectively.

3.2. Linear Laguerre near-planes of order 4. A nice class of examples are
the linear Laguerre near-planes of order 4. In this case, C is an affine subspace of
F

4
4, that is, C is of the form

C = {(c0, c1, c2, c∞) ∈ F
4
4 | a0c0 + a1c1 + a2c2 + a∞c∞ = b}

for some a0, a1, a2, a∞, b ∈ F, (a0, a1, a2, a∞) �= (0, 0, 0, 0). For C to be a hyper-
surface as described in 2.1 we have to require that each ai, i ∈ I, is non-zero.
Furthermore, because (a0, a1, a2, a∞, b) and λ(a0, a1, a2, a∞, b) for λ ∈ F, λ �= 0,
describe the same linear Laguerre near-plane, we can assume that a∞ = 1. The
associated map f then is

f(x, y, z) = a0x + a1y + a2z + b.

We denote this Laguerre near-plane by L(a0, a1, a2, b). Clearly, the parabola model
of a Laguerre near-plane of order 4 is of this form. More precisely, it can be obtained
for (a0, a1, a2, b) = (1, 1, 1, 0). In fact, all affine subspaces essentially yield the same
model. From 3.1 we see that the permutation of type (1)

(u, v) �→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(u, a0v), if u = 1,
(u, a1v), if u = ω,

(u, a2v), if u = ω2,

(u, v + b), if u = 0,

yields an isomorphism from L(a0, a1, a2, b) to L(1, 1, 1, 0). Hence, we have the
following result.

Proposition 3.3. Every linear Laguerre near-plane of order 4 is isomorphic to
the Laguerre near-plane L(1, 1, 1, 0) obtained from the Miquelian Laguerre plane of
order 4 by deleting one generator.

As for models of Laguerre near-planes of order 4 that are not isomorphic to
L(1, 1, 1, 0) we begin with a closer description of circles of L(1, 1, 1, 0). They are of
the form

{(u, au2 + bu + c) | u ∈ F4}
for a, b, c ∈ F4, and they fall into three classes. First, there are the graphs of the
four constant polynomials obtained for a = b = 0. Then there are the graphs of
the 24 permutation polynomials obtained for a = 0, b �= 0 and a �= 0, b = 0. Third,
there are the graphs of the remaining 36 polynomials obtained for a, b �= 0; these
polynomials take on exactly two values and each of these values occurs exactly
twice.

Note that the same picture emerges if we delete a different generator from the
Miquelian Laguerre plane of order 4 because the automorphism group of this plane
is transitive on the point set.

154



Example 3.4. We now modify the above model to obtain a new Laguerre near-
plane of order 4. To this end, we consider the circles that are entirely contained
in

S = F4 × {ω,ω2}.
There are 8 such circles, two of the first kind and six of the third kind.

These 8 circles cover 32 admissible triples of points, that is, triples of points
such that no two of the points are on the same generator. We now replace these
circles by 8 new circles covering the same 32 admissible triples of points. From
this property it will be clear that we again obtain a Laguerre near-plane of order
4. The new circles are obtained as the images of the 8 old circles under the map

φ : (u, v) �→
{

(u, v), if u �= 0,
(u, v2), if u = 0;

that is, the points (0, ω) and (0, ω2) are swapped and all other points remain
unchanged.

However, since we still have circles of all three types and the new circles where
one of the values ω or ω2 occurs thrice and the other once, this Laguerre near-plane
cannot be obtained from a Laguerre plane of order 4 by deleting one generator.

In order to represent this Laguerre near-plane by a function f as in 2.1 one at
the eight circles that are replaced. In the parabola model these circles are described
as

Cx,y,z,x+y+z

for all x, y, z ∈ {ω,ω2}. These circles are replaced by

Cx,y,z,x+y+z+1.

Hence f(x, y, z) = x+ y + z + g(x, y, z) where g(x, y, z) is a function that has value
1 if x, y, z ∈ {ω,ω2} and value 0 else. Now g(x, y, z) can be found as

g(x, y, z) =pω(x)pω(y)pω(z) + pω(x)pω(y)pω2(z)

+ pω(x)pω2(y)pω(z) + pω(x)pω2(y)pω2(z)

+ pω2(x)pω(y)pω(z) + pω2(x)pω(y)pω2(z)

+ pω2(x)pω2(y)pω(z) + pω2(x)pω2(y)pω2(z)

=(pω(x) + pω2(x))(pω(y) + pω2(y))(pω(z) + pω2(z))

=(x2 + x)(y2 + y)(z2 + z)

Therefore
f(x, y, z) = (x2 + x)(y2 + y)(z2 + z) + x + y + z;

see Example 2.7.3 for f being a Laguerre near-plane describing map.
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4. The Classification

We return to the permutations of type (1) listed in 3.1 and and have a closer
look at how they transform a Laguerre near-plane L(f).

4.1 Normal form. Each permutation of F4 is generated by permutations of the
form u �→ u + t, u �→ ru and u �→ u2 for some r, t ∈ F4, r �= 0. Correspondingly,
permutations of type (1) listed in 3.1 are generated by the following transforma-
tions.

(1a) (u, v) �→ (u, v + tpw(u)) =
{

(u, v), if u �= w,

(u, v + t), if u = w,
for t, w ∈ F4 takes L(f)

to L(f ′) where

f ′(x, y, z) = f(x + tpw(1), y + tpw(ω), z + tpw(ω2)) + tpw(0)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f(x, y, z) + t, if w = 0,
f(x + t, y, z), if w = 1,
f(x, y + t, z), if w = ω,

f(x, y, z + t), if w = ω2.

(1b) (u, v) �→
{

(u, v), if u �= w,

(u, rv), if u = w,
for r,w ∈ F4, r �= 0, takes L(f) to L(f ′)

where

f ′(x, y, z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

rf(x, y, z), if w = 0,
f(r2x, y, z), if w = 1,
f(x, r2y, z), if w = ω,

f(x, y, r2z), if w = ω2.

(1c) (u, v) �→
{

(u, v), if u �= w,

(u, v2), if u = w,
for w ∈ F4 takes L(f) to L(f ′) where

f ′(x, y, z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f(x, y, z)2, if w = 0,
f(x2, y, z), if w = 1,
f(x, y2, z), if w = ω,

f(x, y, z2), if w = ω2.

Note that permutations of type (1a) can be used to yield a map that takes (0,0,0)
to 0 whereas permutations of type (1b) and (1c) allow us to replace any of the coor-
dinates by a fixed multiple or by its square, respectively. Recall that permutations
of type (3) and (4) allow us to obtain any permutation of the coordinates x, y and
z. This can be applied to obtain some normalizations for some of the coefficients
of f . In particular, applying an isomorphism of type (1a), we can achieve that
a000 = 0. This means that C0,0,0,0 is then a circle in our Laguerre near-plane.
Furthermore, since a3

002 + a3
001 = a3

020 + a3
010 = a3

200 + a3
100 = 1, see 2.5, we can

use isomorphisms of type (1c), if necessary, to achieve a002 = a020 = a200 = 0.
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Finally, using isomorphisms of type (1b), if necessary, we can further assume that
a001 = a010 = a100 = 1. Then f(x, 0, 0) = x, f(0, y, 0) = y and f(0, 0, z) = z
for all x, y, z ∈ F4. We say that f is in normal form if the above identities are
satisfied. All examples 2.7 are in normal form. With this notation we have proved
the following.

Proposition 4.2. A Laguerre near-plane L(f) is isomorphic to a Laguerre near-
plane L(f ′) where f ′ is in normal form.

Note that normal form is preserved under isomorphisms of type (3) and (4) and
the transformations (u, v) �→ (u, rv), r �= 0, (type (1b)), and (u, v) �→ (u, v2) (type
(1c)).

A map f in normal form can obviously be written in the form f(x, y, z) =
g(x, y, z) + x + y + z where the polynomial g(X,Y,Z) corresponding to g has no
pure terms Xi, Y j or Zk.

Proposition 4.3. A Laguerre near-plane L(f) is isomorphic to the Laguerre near-
plane obtained from the Miquelian Laguerre plane of order 4 by deleting one gen-
erator if and only if f + f(0, 0, 0) is additive, that is,

f(x, y, z) = a2x
2 + a1x + b2y

2 + b1y + c2z
2 + c1z + d

for some a2, a1, b2, b1, c2, c1, d ∈ F4, a3
2 + a3

1 = b3
2 + b3

1 = c3
2 + c3

1 = 1.
A Laguerre near-plane L(f) with f in normal form is isomorphic to the parabola

model of a Laguerre near-plane of order 4 if and only if f(x, y, z) = x + y + z.

Proof. Each permutation of the form (1) takes an affine subspace of the affine space
F

4
4 over the prime field F2 to such a subspace. Furthermore, each such subspace that

meets each parallel of the coordinates axes in exactly one point can be described
by a function f as in the proposition. Hence every Laguerre near-plane isomorphic
to L(1, 1, 1, 0) can be represented in this form.

Conversely, L(f) with f as above is isomorphic to L(f ′) for some f ′ in normal
form. Furthermore, f ′ still has the same overall form. Hence f ′(x, y, z) = x+y+z,
that is, L(f ′) is the parabola model. �

In the proof of Proposition 4.3 we found another characterization of the parabola
model.

Corollary 4.4. A Laguerre near-plane L(f) is isomorphic to the parabola model of
a Laguerre near-plane of order 4 if and only if the graph of f is an affine subspace
of F

4
4 over F2.

Let f(x, x, y) =
∑2

ijk=0 aijkxiyjzk for some aijk ∈ F4. We say that f has degree
n if n = max{i + j + k | aijk �= 0}. Note that isomorphisms of types (1a), (1b), (3)
and (4) do not change the degree. In the following we discuss the degrees from 1 to
4 separately and do a computer search for degrees 5 and 6. Using an isomorphism
of type (1a), if necessary, we may always assume that a000 = 0.

Degree 1. In this case, we clearly have f(x, y, z) = ax+by+cz for some a, b, c ∈ F4,
a, b, c �= 0, and L(f) is isomorphic to L(1, 1, 1, 0) by Proposition 4.3.
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Degree 2. In this case, f(x, y, z) = a200x
2 + a020y

2 + a002z
2 + a110xy + a101xz +

a011yz +a100x+a010y +a001z for some aijk ∈ F4 where at least one coefficient aijk

is non-zero for i + j + k = 2. Rewriting f as a partial map in x we have

f(x, y, z) =a200x
2

+ (a110y + a101z + a100)x

+ a020y
2 + a002z

2 + a011yz + a010y + a001z.

By Lemma 2.4 we have either a200 = 0 or a110y + a101z + a100 = 0 for all y, z ∈
F4. If a200 �= 0, then we obtain a110 = a101 = a100 = 0; if a200 = 0, then
a110y + a101z + a100 �= 0 for any y, z ∈ F4 and one finds a110 = a101 = 0. Therefore
a110 = a101 = 0 in any case. Considering the partial map in y one likewise obtains
a011 = 0. Hence a110 = a101 = a011 = 0 and L(f) is isomorphic to L(1, 1, 1, 0) by
Proposition 4.3.

Degree 3. Writing f as a partial map in z we have

f(x, y, z) =(a102x + a012y + a002)z2

+ (a201x
2 + a111xy + a021y

2 + a101x + a011y + a001)z

+ a210x
2y + a120xy2 + a200x

2 + a110xy + a020y
2

+ a100x + a010y

for some aijk ∈ F4 where at least one coefficient aijk is non-zero for i + j + k = 3.
Equating the coefficient of z2 to 0 describes a line unless a102 = a012 = 0.

Equating the coefficient of z to 0 describes a conic or a line unless a201 = a111 =
a021 = a101 = a011 = 0. Since a line has four points and a conic has at most eight
points (in case of a degenerate conic representing two parallel lines), a line and a
conic or line cannot cover all 16 points of F

2
4. Therefore, both coefficients of z2 and

z must be constant so that f(x, y, z) = a002z
2+a001z+a210x

2y+a120xy2+a200x
2+

a020y
2+a110xy+a100x+a010y. In particular, a102 = a012 = a201 = a111 = a021 = 0.

A simimlar argument for the partial map in x shows that a210 = a120 = 0 – a
contradiction to f being of degree 3. Hence degree 3 cannot occur.

Since example 2.7.1 gives us a map f of degree 4, and by Proposition 4.3 and
the above we have the following characterization.

Proposition 4.5. A Laguerre near-plane describing map f cannot have degree 3.
Furthermore, L(f) is isomorphic to the parabola model L(1, 1, 1, 0) if and only if f
has degree at most 3.

Degree 4. Let

f(x, y, z) =a220x
2y2 + a022y

2z2 + a202x
2z2

+ a211x
2yz + a121xy2z + a112xyz2

+ a210x
2y + a201x

2z + a120xy2 + a021y
2z + a102xz2 + a012yz2

+ a111xyz

+ a200x
2 + a020y

2 + a002z
2 + a110xy + a011yz + a101xz

+ a100x + a010y + a001z
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for some aijk ∈ F4 where at least one coefficient aijk is non-zero for i + j + k = 4.
There are two types of terms of degree 4, one involving all three variables (like in
xyz2) and the other involving only two variables (like in x2y2).

We now suppose that terms of the first type occur. Using isomorphisms of types
(3) and (4), we may assume that a112 �= 0. Rewriting f as a partial map in z we
have

f(x, y, z) =(a202x
2 + a112xy + a022y

2 + a102x + a012y + a002)z2

+ (a211x
2y + a121xy2 + a201x

2 + a111xy + a021y
2

+ a101x + a011y + a001)z

+ a220x
2y2 + a210x

2y + a120xy2 + a200x
2 + a110xy + a020y

2

+ a100x + a010y.

Equating the coefficient c2(x, y) of z2 to 0 describes a nondegenerate quadric which
has at least one point and at most five points or a pair of intersecting lines which
have seven points. Equating the coefficient c1(x, y) of z to 0 yields at most ten
points unless this coefficient is identically 0. (The equation (a121x + a021)y2 +
(a211x

2 + a111x + a011)y + a201x
2 + a101x + a001 = 0 has at most two solutions

y for each x unless a121X + a021 is a common factor of a211X
2 + a111X + a011

and a201X
2 + a101X + a001 in which case one may have 4 + 3 · 2 = 10 solutions;

if the coefficient of y2 is identically 0, then a similar consideration shows that at
most 10 solutions can occur.) By Lemma 2.4 the sets of zeros Z2 = {(x, y) ∈
F4 × F4 | c2(x, y) = 0} and Z1 = {(x, y) ∈ F4 × F4 | c1(x, y) = 0} parition
F4 × F4; furthermore the first set is nonempty. Hence, in order to cover 16 points,
c2(x, y) = 0 must describe a pair of intersecting lines and Z1 must contain nine
points. To get this number of points we must have a121 �= 0 (otherwise c1(x, y) = 0
has only at most eight points) and a121X + a021 must be a common factor of
a211X

2 +a111X +a011 and a201X
2 +a101X +a001. Hence all points on the vertical

line {a−1
211a101} × F4 are solutions. However, such a line intersects at least one of

the two non-parallel lines determined by c2(x, y) = 0 – a contradiction to the fact
that the two sets Z2 and Z1 must be disjoint.

This shows that terms of the first type cannot occur. We thus have a112 =
a121 = a211 = 0.

The isomorphism (u, v) �→
{

(u, v), if u �= ω2,

(u, v2), if u = ω2,
replaces f by the map f ′ given

by f ′(x, y, z) = f(x, y, z2), see 3.1. Moreover, f ′ has the same degree as f . Apply-
ing the same argument as before to f ′ we then see that a111 = 0.

Using isomorphisms of types (3) and (4) we may now assume that a202 �= 0. Con-
sidering f as a partial map in z as before we see that the equations c2(x, y) = 0
and c1(x, y) = 0 describe a quadric or a quadric/line, respectively. Such a config-
uration can cover 16 points if and only if we have degenerate quadrics describing
two parallel lines in both cases; together, one has a full bundle of parallel lines. In
particular a201 �= 0.

Using the isomorphism (u, v) �→
{

(u, v), if u �= ω2,

(u, v2), if u = ω2,
, if necessary, we may now
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assume that a002 = 0. Note that the degree has not changed. Using isomorphisms
of type (1b), we may further assume that a202 = 1, a001 = 1 and a022 = 0 or 1. Let
a = a022. Since x2 + ay2 + a102x + a012y = 0 describes a pair of parallel lines, we
must have a102 �= 0 and we can achieve that a102 = 1 by an isomorphism of type
(1b). But then a012 = a and the coefficient c2(x, y) of z2 now has the form

x2 + ay2 + x + ay = (x + ay)(x + ay + 1).

(Note that a = 0 or 1 so that a2 = a.) Since c1(x, y) = 0 must represent the two
remaining parallel lines in the bundle, one finds that

a201x
2 + a021y

2 + a101x + a011y + 1 = a201(x + ay + ω)(x + ay + ω2)

= a201(x2 + ay2 + x + ay + 1);

In particular, a201 = 1.
We now rewrite f as a partial map in x. We find

f(x, y, z) =(z2 + z + a220y
2 + a210y + a200)x2

+ (z2 + z + a120y
2 + a110y + a100)x

+ ay2z2 + ayz2 + ay2z + ayz + a020y
2 + a010y + z.

After applying the isomorphism (u, v) �→
{

(u, v), if u �= 1,
(u, v2), if u = 1,

, if necessary, we

may assume that a200 = 0 and a100 �= 0. Note that the substitution of x by x2 in
f does not change the degree. Equating the coefficients of x2 and x to 0 gives us
again two quadrics and these must describe four parallel lines between them. Let
b = a210. Then a220 = b2 and z2 + z +a120y

2 +a110y +a100 = z2 + z + b2y2 + by+1
as before. Hence a100 = 1, a110 = b and a120 = b2.

Finally, rewriting f as a partial map in y, we find

f(x, y, z) =(az2 + az + b2x2 + b2x + a020)y2

+ (az2 + az + bx2 + bx + a010)y

+ (x2 + x)(z2 + z) + x + z.

Using the isomorphism (u, v) �→
{

(u, v), if u �= ω,

(u, v2), if u = ω,
, if necessary, we may assume

that a020 = 0 and a010 �= 0. Note that the substitution of y by y2 in f does not
change the degree. The same arguments as before yield the following form for f :

f(x, y, z) = (x2 + x)(z2 + z) + a(y2 + y)(z2 + z) + b(x2 + x)(y2 + y) + x + y + z

where a, b ∈ {0, 1}.
Clearly, (a, b) = (0, 1) and (a, b) = (1, 0) yield isomorphic Laguerre near-planes;

we just swap the roles of x and y. (a, b) = (0, 0) yields the plane in Example
2.7.1. Furthermore, in this case, the inverse of the partial map with respect to x
essentially is the above map with (a, b) = (0, 1), see 2.7.1. Hence (a, b) = (0, 1),
(a, b) = (1, 0) and (a, b) = (0, 0) yield isomorphic Laguerre near-planes of order 4.
In summary, we have obtained the following result.
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Proposition 4.6. A Laguerre near-plane L(f) with f of degree 4 is isomorphic
to a Laguerre near-plane L(f1) or L(f2) where f1 and f2 are the maps defined by

f1(x, y, z) = (x2 + x)(y2 + y) + (y2 + y)(z2 + z) + (x2 + x)(z2 + z) + x + y + z

and
f2(x, y, z) = (x2 + x)(z2 + z) + x + y + z,

respectively.

As a consequence of Propositions 4.5 and 4.6 we obtain that if L(f) is a Laguerre
near-plane where f has degree at least 5, then for any isomorphic model L(f ′) the
describing function f ′ also has degree at least 5. So we may assume that the
function f is in normal form in the following.

Degrees 5 and 6. For these last two remaining cases we did a computer search for
functions f . In fact, we searched for all functions f in normal form, not necessarily
of degree 5 or 6. Let

f(x, y, z) =a222x
2y2z2 + a221x

2y2z + a212x
2yz2 + a122xy2z2+

a220x
2y2 + a022y

2z2 + a202x
2z2

+ a211x
2yz + a121xy2z + a112xyz2

+ a210x
2y + a201x

2z + a120xy2 + a021y
2z + a102xz2 + a012yz2

+ a111xyz

+ a110xy + a011yz + a101xz + x + y + z

be in normal form where aijk ∈ F4. Furthermore, under an isomorphism (x, y) �→
(x, ry), r ∈ {ω,ω2}, we can replace f by (x, y, z) �→ rf(r2x, r2y, r2z). Then the
coefficients a222 of X2Y 2Z2 and a111 of XY Z are replaced by ra222 and ra111,
respectively. Hence we may further assume that

a222 = 0 or 1 and a111 = 0 or 1 if a222 = 0

We proceed in three steps.
Step 1: We determine all coefficients bij ∈ F4, i = 0, 1, 2, j = 1, 2, such that
(b22x

2 + b12x + b02)3 + (b21x
2 + b11x + b01)3 = 1 for all x ∈ F4. We found 96

solution vectors b = (b22, b12, b02, b21, b11, b01). Note that one can restrict the search
to b0,2 = 0 and b01 = 1; this yields 16 solution vectors. These vectors are

b22 0 0 0 0 0 0 0 1 1 1 ω ω ω ω2 ω2 ω2

b12 0 0 0 0 0 0 0 1 ω ω2 1 ω ω2 1 ω ω2

b02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b21 0 1 1 ω ω ω2 ω2 1 ω ω2 ω2 1 ω ω ω2 1
b11 0 ω ω2 1 ω 1 ω2 1 ω2 ω ω 1 ω2 ω2 ω 1
b01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

.
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All other solution vectors are then obtained by multiplication by ω and ω2 and by

exchanging the roles of bi2 and bi1, i.e., multiplying b by
(

03 I3

I3 03

)
where 03 and

I3 denotes the 3 × 3 zero and identity matrix, respectively.
Step 2: We determine all coefficients bijk ∈ F4, i = 0, 1, 2, j = 0, 1, 2, k = 1, 2,
where b222 = 0, 1 and b111 = 0, 1 if b222 = 0 such that (b222x

2y2+b212x
2y+b202x

2+
b122xy2 + b112xy + b102x + b022y

2 + b012y + b002)3 + (b221x
2y2 + b211x

2y + b201x
2 +

b121xy2 + b111xy + b101x + b021y
2 + b011y + b001)3 = 1 for all x, y ∈ F4.

For each y ∈ F4 we obtain an identity in x, see Lemma 2.4 and Proposition 2.5.
More precisely, we find that

(b202x
2 + b102x + b002)3 + (b201x

2 + b101x + b001)3 = 1

(y = 0),

[(b222 + b212 + b202)x2 + (b122 + b112 + b102)x + b022 + b012 + b002]3

+[(b221 + b211 + b201)x2 + (b121 + b111 + b101)x + b021 + b011 + b001]3 = 1

(y = 1),

[(b222ω
2 + b212ω + b202)x2 + (b122ω

2 + b112ω + b102)x + b022ω
2 + b012ω + b002]3

+[(b221ω
2 + b211ω + b201)x2 + (b121ω

2 + b111ω + b101)x + b021ω
2 + b011ω + b001]3

= 1

(y = ω) and

[(b222ω + b212ω
2 + b202)x2 + (b122ω + b112ω

2 + b102)x + b022ω + b012ω
2 + b002]3

+[(b221ω + b2,1,1ω2 + b201)x2 + (b121ω + b111ω
2 + b101)x + b021ω + b011ω

2 + b001]3

= 1

(y = ω2) for all x ∈ F4. Hence the vectors

b0 =(b202, b102, b002, b201, b101, b000)

b1 =(b222 + b212 + b202, b122 + b112 + b102, b022 + b012 + b002,

b221 + b211 + b201, b121 + b111 + b101, b021 + b011 + b001)

bω =(b222ω
2 + b212ω + b202, b122ω

2 + b112ω + b102, b022ω
2 + b012ω + b002,

b221ω
2 + b211ω + b201, b121ω

2 + b111ω + b101, b021ω
2 + b011ω + b001)

bω2 =(b222ω + b212ω
2 + b202, b122ω + b112ω

2 + b102, b0,2,2ω + b012ω
2 + b002,

b221ω + b2,1,1ω2 + b201, b121ω + b111ω
2 + b101, b021ω + b011ω

2 + b001)

must appear in the list found in Step 1. Furthermore,

b0 + b1 + bω + bω2 = 0.
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Thus, going through the list found in Step 1 one looks for triples (b0, b1, bω) such
that b0 + b1 + bω is also in this list. The coefficients bijk are then determined by

(b222, b212, b202) =(b1
0, b

1
1, b

1
ω) · S

(b221, b211, b201) =(b4
0, b

4
1, b

4
ω) · S

(b122, b112, b102) =(b2
0, b

2
1, b

2
ω) · S

(b121, b111, b101) =(b5
0, b

5
1, b

5
ω) · S

(b022, b012, b002) =(b3
0, b

3
1, b

3
ω) · S

(b021, b011, b001) =(b6
0, b

6
1, b

6
ω) · S

where bi
c denotes the ith entry of bc, c = 0, 1, ω, and

S =

⎛
⎝ω2 ω 1

ω ω2 0
1 1 0

⎞
⎠ .

A total of 4056 solution vectors (bijk)ijk were found.
Step 3: We determine all coefficients aijk ∈ F4 of a Laguerre near-plane describing
map in normal form where a222 equals 0 or 1 and a111 equals 0 or 1 if a222 = 0.
Note that a222 and a111 appear as b222 and b111 in each of the three identities
associated with the three partial maps so that we can directly use the list found
in Step 2. Looking at the partial map with respect to z we see that aijk = bijk

for i, j = 0, 1, 2 and k = 1, 2. For the partial map with respect to y we now have
aijk = bikj for i, k = 0, 1, 2 and j = 1, 2. Finally, for the partial map with respect
to x we obtain aijk = bjki for j, k = 0, 1, 2 and i = 1, 2. Hence we search through
the list found in step 2 for triples of vectors b1 = (b1

ijk), b2 = (b2
ijk) and b3 = (b3

ijk)
that show the following identities

b1
222 =b2

222=b3
222 b1

211=b2
121=b3

112

b1
221 =b2

212=b3
122 b1

121=b2
211=b3

121

b1
212 =b2

221=b3
212 b1

112=b2
112=b3

211

b1
122 =b2

212=b3
221 b1

111=b2
111=b3

111

b1
022 =b2

022 b1
202=b3

202 b2
202=b3

022

b1
021 =b2

012 b1
201=b3

102 b2
201=b3

012

b1
012 =b2

021 b1
102=b3

201 b2
102=b3

021

b1
011 =b2

011 b1
101=b3

101 b2
101=b3

011

Then
aijk = b1

ikj for i, k = 0, 1, 2 and j = 1, 2,

aij0 = b2
i0j for i = 0, 1, 2, and j = 1, 2.
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Note that a200 = 0, a100 = 1 and a000 = 0 by our assumptions.
A total of 36 maps were found. Of these one is of degree 1, 21 are of degree 4

and 14 are of degree 6. The map of degree 1 is (x, y, z) �→ x + y + z. The maps f1

and f2 are among the 21 maps of degree 4 all of which can be transformed to either
f1 or f2. This observation agrees with (and confirms) our previous results on maps
of degrees at most 4. The 14 maps of degree 6 are listed in the table below where
column i shows the coefficients of map i.

Each of these maps can be transformed to f3 (column 1) or f4 (column 14), see
the proposition below. In fact, colums 2 to 8 transform into column 1 and columns
9 to 13 transform into column 14. For example, one can use an isomorphism of
type (1c) to replace f by (x, y, z) �→ f(x2, y2, z2)2. This has the effect that each
coefficient is squared so that 0 and 1 are fixed and ω and ω2 are exchanged. Hence
the coefficent vectors in columns 10, 11 and 13 can be transformed into those in
columns 14, 12 and 9, respectively. The coefficent vectors in columns 9 and 13
are transformed into those in column 14 by swapping x with y and x with z,
respectively.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
a222 1 1 1 1 1 1 1 1 1 1 1 1 1 1
a221 1 1 1 1 1 1 1 1 ω ω2 ω ω2 ω2 ω
a212 1 1 1 1 1 1 1 1 ω2 ω2 ω2 ω ω ω
a122 1 1 1 1 1 1 1 1 ω ω ω2 ω ω2 ω2

a220 0 1 0 1 0 1 0 1 1 1 1 1 1 1
a211 1 1 1 1 1 1 1 1 1 ω 1 1 1 ω2

a202 0 0 0 0 1 1 1 1 1 1 1 1 1 1
a121 1 1 1 1 1 1 1 1 ω2 1 1 1 ω 1
a112 1 1 1 1 1 1 1 1 1 1 ω ω2 1 1
a022 0 0 1 1 0 0 1 1 1 1 1 1 1 1
a210 0 1 0 1 0 1 0 1 ω2 ω ω2 ω ω ω2

a201 0 0 0 0 1 1 1 1 ω ω ω ω2 ω2 ω2

a120 0 1 0 1 0 1 0 1 ω2 ω2 ω ω2 ω ω2

a111 1 1 1 1 1 1 1 1 ω ω2 ω2 ω ω2 ω
a102 0 0 0 0 1 1 1 1 ω ω ω ω2 ω2 ω2

a021 0 0 1 1 0 0 1 1 ω2 ω2 ω ω2 ω ω
a012 0 0 1 1 0 0 1 1 ω2 ω2 ω ω2 ω ω
a200 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a110 0 1 0 1 0 1 0 1 ω ω2 ω ω2 ω2 ω
a101 0 0 0 0 1 1 1 1 ω2 ω2 ω2 ω ω ω
a020 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a011 0 0 1 1 0 0 1 1 ω ω ω2 ω ω2 ω2

a002 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a100 1 1 1 1 1 1 1 1 1 1 1 1 1 1
a010 1 1 1 1 1 1 1 1 1 1 1 1 1 1
a001 1 1 1 1 1 1 1 1 1 1 1 1 1 1
a000 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Proposition 4.7. A Laguerre near-plane L(f) with f of degree > 4 is isomorphic
to a Laguerre near-plane L(f3) or L(f4) where f3 and f4 are the maps defined by

f3(x, y, z) = (x2 + x)(y2 + y)(z2 + z) + x + y + z

and

f4(x, y, z) =(x2 + ω2x)(y2 + ωy)(z2 + ωz) + (x2 + ω2x)(y2 + ω2y)

+ (x2 + ω2x)(z2 + ω2z) + (y2 + ωy)(z2 + ωz) + x + y + z,

respectively. There are no Laguerre near-planes L(f) where f has degree 5.

Proof. Examining the 36 solutions one finds that either all coefficients a222, a221,
a212, a122, a211, a121, a112 and a111 are non-zero or they are all zero. It is clear
that under an isomorphism of type (1a), (1b) (1c), (3) or (4), this property is
preserved. From Corollary 2.6 it follows that under an isomorphism of type (2)
these coefficients are permuted among themselves and perhaps squared so that
they remain all non-zero or all zero. Since for a map of degree 5 some of these
coefficients would have to be zero and some others would have to be non-zero, the
above argument shows that there are no Laguerre near-plane describing maps of
degree 5. Furthermore, if f has degree 6 it must be tranformed into one of the
maps of degree 6 found in Step 3. This proves the proposition. �

So far we have established that a Laguerre near-plane of order 4 is isomorphic
to one of the Laguerre near-planes L(fi), i = 0, 1, 2, 3, 4. In [10] we investigated
the automorphism groups Γ(fi) of the Laguerre near-planes L(fi) and gave char-
acterisations of some of these planes in terms of their automorphism groups. We
found that Γ(fi) has order 210 · 32, 210 · 3, 29, 27 · 3 and 27 for i = 0, 1, 2, 3, 4,
respectively. Hence the Laguerre near-planes L(fi), i = 0, 1, 2, 3, 4, are mutually
non-isomorphic. In summary we obtain the following classification result.

Proposition 4.8. A Laguerre near-plane of order 4 is isomorphic to percisely one
of the planes L(fi), i = 0, 1, 2, 3, 4.
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