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Abstract
In the paper we present lower bounds for the connectivity of a path
graph P2(G) of a graph G. Let δ ≥ 3 be the minimum degree of G. We
prove that if G is a connected graph, then P2(G) is at least (δ−1)-
connected; and if G is 2-connected, then P2(G) is at least (2δ−2)-
connected. We remark that if G is a δ-regular graph then P2(G) is
(2δ−2)-regular, and hence, if G is 2-connected then P2(G) is (2δ−2)-
connected; its theoretical maximum.

1. Introduction and results

Let G be a graph, k ≥ 1, and let Pk be the set of all paths of length k (i.e., with
k+1 vertices) in G. The vertex set of a path graph Pk(G) is the set Pk. Two
vertices of Pk(G) are joined by an edge if and only if the edges in the intersection
of the corresponding paths form a path of length k−1, and their union forms either
a cycle or a path of length k+1. This means that the vertices are adjacent if and
only if one can be obtained from the other by “shifting” the corresponding paths
in G.

Path graphs were investigated by Broersma and Hoede in [3] as a natural gener-
alization of line graphs, since P1(G) is the line graph L(G) of G. We have to point
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out that, in the pioneering paper [3] the number k in Pk(G) denotes the number
of vertices of the paths and not their length. However, in some applications our
notation is more consistent, see e.g. [5]. Traversability of P2-path graphs is studied
in [11], and a characterization of P2-path graphs is given in [3] and [9]. Distance
properties of path graphs are studied in [2], [6] and [7], and [1] and [10] are devoted
to isomorphisms of path graphs.

Let G be a connected graph. It is well-known (and trivial to prove) that P1(G),
i.e., the line graph of G, is a connected graph. However, this is not the case for
Pk-path graphs if k ≥ 2. By [7, Theorem 1], we have:

Theorem A. Let G be a connected graph. Then P2(G) is disconnected if and only
if G contains two distinct paths A and B of length two, such that the degrees of
both endvertices of A are 1 in G.

Hence when studying P2-path graphs, it seems to be reasonable to restrict our-
selves to graphs with minimum degree δ ≥ 2. Let G be a graph with a cycle C
of even length, C = a1, a2, . . . , a2t, in which the vertices a2, a4, . . . , a2t all have
degrees 2. Then P2(G) has a similar cycle, and the connectivity of P2(G) is at
most 2. Similarly, the connectivity of P i

2(G), i ≥ 2, is at most 2 (see the definition
of iterated path graphs below). However, the situation changes rapidly when the
minimum degree of G is at least 3. We prove the following theorem.

Theorem 1. Let G be a connected graph with minimum degree δ ≥ 3. Then P2(G)
is (δ−1)-connected.

Let G′
δ be a connected graph with exactly one vertex of the minimum degree

δ−1, δ ≥ 3. Take two copies of G′
δ , join vertices of the minimum degree by an edge,

and denote the resulting graph by Gδ. Then it is easy to see that the minimum
degree of Gδ is δ, and the connectivity of P2(Gδ) is at most δ−1. Hence, Theorem 1
is best possible.

For 2-connected graphs, the lower bound of Theorem 1 can be increased to
(2δ−2).

Theorem 2. Let G be 2-connected graph with minimum degree δ ≥ 3. Then P2(G)
is (2δ−2)-connected.

If G is δ-regular graph, then P2(G) is (2δ−2)-regular. Hence, Theorem 2 is also
best possible.

Now we focus on iterated path graphs. These graphs are defined as follows:

P i
k(G) =

{
G if i = 0,
Pk(P i−1

k (G)) if i > 0.

As P1(G) is the usual line graph of G, instead of P i
1(G) we write Li(G). It is

easy to see that the vertex set of the path graph P2(G) is identical to the vertex
set of iterated line graph L2(G). However, P2(G) has in general fewer edges than
L2(G). For iterated line graphs we have the following analogues of Theorem 1 and
Theorem 2, see [8, Theorem 1] and [8, Theorem 2], respectively.
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Theorem B. Let G be a connected graph with minimum degree δ ≥ 3. Then
L2(G) is (δ−1)-connected.

Theorem C. Let G be a 4-connected graph. Then L2(G) is (4δ−6)-connected.

We recall that if G is δ-regular graph, then L2(G) is (4δ−6)-regular. Finally, by
[8, Theorem 3] we have:

Theorem D. Let G be a connected δ-regular graph, δ ≥ 3. Then for all i, i ≥ 5,
the connectivity of Li(G) equals the degree of Li(G).

Hence, although the degree of Li(G) grows exponentially as a function of i, the
connectivity of Li(G) attains its theoretical maximum.

For P2-path graphs we have the analogous result. As a straightforward conse-
quence of Theorem 1 and Theorem 2 we have:

Theorem 3. Let G be a connected δ-regular graph, δ ≥ 3. Then for all i, i ≥ 2,
the connectivity of P i

2(G) equals the degree of P i
2(G).

We remark that if G is a connected δ-regular graph, δ ≥ 3, then the degree of
P i

2(G) equals the degree of Li(G). Hence, the degree of P i
2(G) grows exponentially

as a function of i.
All proofs and necessary notions are postponed to the next section.

2. Proofs

We use standard graph-theoretic notation. Let G be a graph. The vertex set and
the edge set of G, respectively, are denoted by V (G) and E(G). For two subgraphs,
H1 and H2 of G, we denote by H1 ∪ H2 the union of H1 and H2. If u is a vertex
of G, then degG(u) denotes the degree of u in G.

Throughout the paper we use the following definition of vertex-connectivity:

Definition. A graph G is k-vertex-connected (or simply k-connected) if and
only if it has at least k+1 vertices, and if for every pair u and v of non-adjacent
vertices of G there are at least k internally-vertex-disjoint u−v paths in G.

We will have occasion to use the following equivalent formulations (see e.g. [4]).
(i) If G is k-connected graph, then for every pair of sets of its vertices U and

V such that |U | = |V | = l ≥ k, there are k vertex-disjoint paths connecting
k vertices of U with k vertices of V .

(ii) If G is k-connected graph, then excluding l < k vertices from G will result
in (k−l)-connected graph.

To simplify the notation we adopt the following convention. We denote the
vertices of P2(G) (as well as the vertices of G) by small letters u, v, . . . , while the
corresponding paths of length 2 will be denoted by capital letters U , V , . . . This
means that if U is a path of length 2 in G and u is a vertex in P2(G), then U must
be the path corresponding to the vertex u. In some places, when no confusion is
expected, we replace a vertex of P2(G) by the corresponding path. To avoid any
misunderstandings, we denote a vertex of P2(G) (i.e., a path of length 2 in G) as a

177



triple of vertices in parentheses, say U = (u0, u1, u2), where the middle vertex (u1

in this case) has degree 2 in U ; while the other paths in G (and also the paths in
P2(G)), we denote without parentheses. That is to say, we denote by P = v1, v2, v3

a path of length 2 starting in v1, passing through v2, and terminating in v3. This
enables us to write an extension of P , by v0 in the beginning and by v4 at the end,
as v0, P, v4.

We introduce some terminology which will be useful in proving our results.
Let G be a graph with minimum degree δ ≥ 3. For every vertex b of G we

define a cyclic permutation (rotation) ρb of the neighbours of b. If x and y are two
neighbours of b, and y is the image of x in the rotation ρb, we write y = ρb(x).

Let P ′ = a1, a2, . . . , at−1 be a nonempty path in G without chords, i.e., whenever
aiaj ∈ E(G), 1 ≤ i, j ≤ t−1, then |i − j| = 1. Let a0 be a neighbour of a1 such
that a0 /∈ V (P ′), and let at be a neighbour of at−1 such that at /∈ V (P ′). Denote
P = a0, P

′, at. Then P is either a path or a cycle, and its length is at least two.
For every i, 1 ≤ i ≤ t−1, by bi,j we denote δ−2 distinct neighbours of ai,

1 ≤ j ≤ δ−2, which are different from ai−1 and ai+1. Moreover, let ci,j be a
neighbour of bi,j such that ci,j = ρbi,j

(ai). Then P -based paths are the following
walks in P2(G):

(1) For every j, 1 ≤ j ≤ δ−2, the j-th path based on P is (a0, a1, b1,j),
(a1, b1,j , c1,j), (b1,j , a1, a2), (a1, a2, b2,j), (a2, b2,j , c2,j), (b2,j , a2, a3), . . . ,
(at−1, bt−1,j, ct−1,j), (bt−1,j, at−1, at).

(2) A straight path based on P is (a0, a1, a2), (a1, a2, a3), . . . , (at−2, at−1, at).

The collection of P -based paths defined above is a bunch of P -based paths,
and we denote this collection by B(P ). Since all edges aibi,j are mutually distinct,
also the edges bi,jci,j are mutually distinct. Consequently, although we may have
ci,j = ai∗ for some i, j and i∗, as δ ≥ 3 all the paths ai, bi,j , ci,j are mutually
distinct. Hence, B(P ) forms a collection of vertex-disjoint paths in P2(G).

Proof of Theorem 1. Let u and v be non-adjacent vertices of P2(G), U = (u0, u1, u2)
and V = (v0, v1, v2). We construct δ−1 internally-vertex-disjoint u − v paths in
P2(G).

If U and V share an edge in common, we may assume that u0 = v0 and u1 = v1,
as u and v are not adjacent. Since degG(u0) ≥ δ, there are δ−1 distinct vertices
in P2(G) of the form (u1, u0, x), x ∈ V (G), and all these vertices are the middle
vertices of paths of length 2 joining u with v. Hence, if U and V are not edge-
disjoint, then there are δ−1 internally-vertex-disjoint u − v paths in P2(G).

Now suppose that U and V are edge-disjoint. By symmetry, there are three
cases to distinguish:

(1) There is a path P ′ in G connecting an endvertex of U with an endvertex of
V , and which avoids both u1 and v1. Moreover, let P ′ be a shortest path of this
type. Then P ′ has no chords. Let P = u1, P

′, v1. Then P is a path or a cycle, and
its length is at least two. Hence, there is a bunch of P -based paths B(P ), and the
paths of B(P ) form a collection of δ−1 vertex-disjoint paths in P2(G). Now as all
first vertices of these paths are adjacent to u and all endvertices are adjacent to v,
there are δ−1 internally-vertex-disjoint u − v paths in P2(G).
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(2) There is a path P ′ in G connecting u1 with v0 and avoiding v1, but there
is no path of type (1). Moreover, let P ′ be a shortest path of this type. Then P ′

has no chords. Let P = u2, P
′, v1. Then P is a path and its length is at least two.

(Recall that there is no path of type (1), and P ′ is a shortest path of type (2) in G.)
All endvertices of vertex-disjoint paths in B(P ) are adjacent to v, and every first
vertex is adjacent to all vertices (u1, u2, x), where x is a neighbour of u2, x �= u1.
As there are δ−1 vertices (u1, u2, x), all these vertices are adjacent to u, and (as u2

is nonadjacent to a vertex of P ′ distinct from u1) they are distinct from the vertices
in B(P ); the paths in B(P ) can be extended to δ−1 internally-vertex-disjoint u−v
paths in P2(G).

(3) There is a path P ′ in G connecting u1 with v1, but there are no paths of
types (1) and (2). This case is similar to case (2), but the construction has to be
applied in both ends of the bunch of P -based paths. �

In the proof of Theorem 2 we use two “modified” bunches of paths to obtain 2δ−2
vertex-disjoint paths. Let P 1 = a1

0, a
1
1, . . . , a

1
t1 and P 2 = a2

0, a
2
1, . . . , a

2
t2 be paths or

cycles, each of length at least 2, such that their subpaths P 1′ = a1
1, a

1
2, . . . , a

1
t1−1 and

P 2′ = a2
1, a

2
2, . . . , a

2
t2−1 are vertex-disjoint and chordless. Moreover, let a1

0, a
1
t1 /∈

V (P 2′) and a2
0, a

2
t2 /∈ V (P 1′). Let P1 = B(P 1) and P2 = B(P 2). As mentioned

above, both P1 and P2 are collections of vertex-disjoint paths, but the paths in
P1 ∪ P2 are not necessarily vertex-disjoint. By the rotations, no problem occurs
if there is a vertex b ∈ V (G) with at least two neighbours in V (P 1′ ∪ P 2′), such
that b /∈ V (P 1′ ∪P 2′). Complications arise if there is an edge a1

i1a
2
i2 in G such that

1 ≤ i1 ≤ t1−1 and 1 ≤ i2 ≤ t2−1.
To obtain a collection of 2δ−2 vertex-disjoint paths from P1 ∪ P2, we check

step by step all the edges a1
i1a

2
i2 , 1 ≤ i1 ≤ t1−1 and 1 ≤ i2 ≤ t2−1, such that the

edge a1
i1a

2
i2 is in a vertex of P1 ∪ P2. Let P = P1 ∪ P2. Observe that if a path

in P1 contains (a1
i1−1, a

1
i1 , a

2
i2), then it contains also (a2

i2 , a
1
i1 , a

1
i1+1); and similarly,

if a path in P2 contains (a2
i2−1, a

2
i2 , a

1
i1), then it contains also (a1

i1 , a
2
i2 , a

2
i2+1). We

proceed according to the following rules:
(i) Suppose that there is a path Q1 in P containing a subpath (a1

i1−1, a
1
i1 , a

2
i2),

(a1
i1 , a

2
i2 , c1), (a2

i2 , a
1
i1 , a

1
i1+1) for some c1, and there is also a path Q2 in P

containing a subpath (a2
i2−1, a

2
i2 , a

1
i1), (a

2
i2 , a

1
i1 , c2), (a1

i1 , a
2
i2 , a

2
i2+1) for some

c2. There are two cases to distinguish.
If Q1 �= Q2, we construct two new paths Q∗

1 and Q∗
2:

Q∗
1 = first part of Q1, (a1

i1−1, a
1
i1 , a

2
i2), (a

1
i1 , a

2
i2 , a

2
i2+1), second part of Q2;

Q∗
2 = first part of Q2, (a2

i2−1, a
2
i2 , a

1
i1), (a

2
i2 , a

1
i1 , a

1
i1+1), second part of Q1.

Denote by P the collection (P−{Q1,Q2})∪{Q∗
1,Q

∗
2}. Then V (Q∗

1∪Q∗
2) ⊂

V (Q1 ∪ Q2), and there is no conflict on the edge a1
i1a

2
i2 in P.

If Q1 = Q2, we construct one new path Q∗
1. Suppose that (a1

i1−1, a
1
i1 , a

2
i2)

preceeds (a2
i2−1, a

2
i2 , a

1
i1) on Q1. The other subcase can be resolved similarly.

Then

Q∗
1 = first part of Q1, (a1

i1−1, a
1
i1 , a

2
i2), (a

1
i1 , a

2
i2 , a

2
i2+1), terminal part of Q1.

179



Denote by P the collection (P−{Q1})∪{Q∗
1}. As above, there is no conflict

on the edge a1
i1a

2
i2 in P.

(ii) Suppose that there is a path Q1 in P containing the subpath (a1
i1−1, a

1
i1 , a

2
i2),

(a1
i1 , a

2
i2 , c1), (a2

i2 , a
1
i1 , a

1
i1+1) for some c1, but no path in P contains the

subpath (a2
i2−1, a

2
i2 , a

1
i1), (a

2
i2 , a

1
i1 , c2), (a1

i1 , a
2
i2 , a

2
i2+1) for any c2. Replace c1

by a2
i2−1 in Q1, and denote the resulting path by Q∗

1. Further, denote by P
the collection (P − {Q1}) ∪ {Q∗

1}. Clearly, there is no conflict on the edge
a1

i1a
2
i2 in P.

(iii) Suppose that there is a path Q2 in P containing the subpath (a2
i2−1, a

2
i2 , a

1
i1),

(a2
i2 , a

1
i1 , c2), (a1

i1 , a
2
i2 , a

2
i2+1) for some c2, but no path in P contains the

subpath (a1
i1−1, a

1
i1 , a

2
i2), (a

1
i1 , a

2
i2 , c1), (a2

i2 , a
1
i1 , a

1
i1+1) for any c1. Replace c2

by a1
i1−1 in Q2, and denote the resulting path by Q∗

2. Further, denote by
P the collection (P − {Q2}) ∪ {Q∗

2}. As above, there is no conflict on the
edge a1

i1a
2
i2 in P.

When all edges a1
i1a

2
i2 , such that 1 ≤ i1 ≤ t1−1 and 1 ≤ i2 ≤ t2−1, are checked,

the resulting collection P of paths is called a modified bunch of P 1, P 2-based
paths, and it is denoted by MB(P1,P2). By construction, MB(P1 ,P2) is a
collection of vertex-disjoint paths.

We remark that MB(X,Y ) is defined similarly for X ⊆ B(P 1) and Y ⊆ B(P 2).
In fact, we use this notation also in the case when one path of B(P 1), say Q1, is
replaced by a path Q∗

1; such that Q∗
1 consists of a straight path based on P 3 (P 3

contains no vertex of P 2, and only the last vertex of P 3 is in P 1), then it continues
with a subpath of Q1, and it terminates with a straight path based on P 4 (P 4

contains no vertex of P 2, and only the first vertex of P 4 is in P 1). But in this case
we write MB((P1−{Q1}) ∪ Q∗

1,P2) to indicate the change.
Further, we remark that if P 1 and P 2 are paths as described above with exactly

one change, namely that a1
0 = a2

1, then MB(P1 ,P2) is not necessarily a collection
of vertex-disjoint paths in P2(G) (here P1 = B(P 1) and P2 = B(P 2)). However, if
we restrict ourselves to subpaths of bunch of P 1-based paths, i.e., if P 3 is defined by
P 1 = a1

0, P
3 and P3 = B(P 3), then MB(P3 ,P2) is a collection of vertex-disjoint

paths. Hence, possible complications occur only in the first two vertices of paths
of P1.

Proof of Theorem 2. Let u and v be non-adjacent vertices in P2(G), U = (u0, u1, u2)
and V = (v0, v1, v2). We construct 2δ−2 internally-vertex-disjoint u − v paths in
P2(G). We remark that if degG(u0) = degG(u2) = δ, then degP2(G)(u) = 2δ−2.
Hence, δ−1 of our u − v paths must leave the vertex u via (u1, u0, x), x ∈ V (G),
and δ−1 of them must pass through (u1, u2, y), y ∈ V (G). Analogously, δ−1 of
the paths must pass through (x, v0, v1), x ∈ V (G), and δ−1 of them must contain
(y, v2, v1), y ∈ V (G).

First suppose that U and V share an edge in common, say u0 = v0 and u1 = v1.
As shown in the proof of Theorem 1, there is a collection T of δ−1 internally-vertex-
disjoint u−v paths of length 2 in P2(G). Further, as G is 2-connected graph, there
is a u2 − v2 path P 1′ = u2, a

1
2, a

1
3, . . . , a

1
t1−2, v2 in G − {u1}. Let P 1 = u1, P

1′, u1,

180



and let Q1 be the straight path based on P 1. Clearly, Q1 contains no vertex of T ,
even if P 1 passes through u0.

Let P 2 = u2, u1, v2, and let P2 = B(P 2). In P2 there is at most one path,
say Q2, containing the vertex (u2, u1, u0). All first vertices of paths in P2 − {Q2}
are adjacent to δ−2 neighbours of u of the form (u1, u2, x), x �= a1

2, and all ter-
minal vertices of paths in P2 − {Q2} are adjacent to neighbours of v of the form
(u1, v2, x), x �= a1

t1−2. Hence, the paths of (P2−{Q2}) ∪ {Q1} can be extended to
δ−1 internally-vertex-disjoint u−v paths, and these paths together with the paths
of T form a collection of 2δ−2 internally-vertex-disjoint u − v paths in P2(G), see
Figure 1 (the numbers 1 and δ−2 denote how many P 1-based and P 2-based paths
of B(P 1) and B(P 2), respectively, are used).

Now suppose that U and V are edge-disjoint. As G is 2-connected, there are
two vertex-disjoint paths, say P 1′ and P 2′, connecting distinct vertices of U with
distinct vertices of V . By symmetry, there are four cases to distinguish:

� �
u0=v0

u1=v1u2 v2

P 1

1

P 2

δ−2

u0=a1
1

u1

u2=a2
1

v0=a1
t1

v1

v2=a2
t2

P 1

δ−1

P 2

δ−1

Figure 1 Figure 2

(1) P 1′ connects u0 with v0 and P 2′ connects u2 with v2. Assume that both P 1′

and P 2′ are as short as possible. Let P 1 = u1, P
1′, v1 and P 2 = u1, P

2′, v1. Then
each of P 1 and P 2 has length at least 2. Denote P1 = B(P 1) and P2 = B(P 2).
Then MB(P1,P2) is a collection of 2δ−2 vertex-disjoint paths, such that all first
vertices of these paths are adjacent to u, and their endvertices are adjacent to v.
Hence, there is a collection of 2δ−2 internally-vertex-disjoint u− v paths in P2(G),
see Figure 2.

(2) P 1′ connects u0 with v0 and P 2′ connects u1 with v2. Assume that both
P 1′ and P 2′ are as short as possible, and moreover, assume that there are no paths
of type (1) in G. Let P 1 = u1, P

1′, v1 and P 2 = u2, P
2′, v1. As usual, we denote

P 1 = a1
0, a

1
1, . . . , a

1
t1 and P 2 = a2

0, a
2
1, . . . , a

2
t2 . If degG(u1) = degG(u0) = δ, then

the paths in any modified bunch of P 1, P 2-based paths are not vertex-disjoint.
As mentioned above, complications may occur only in the first two vertices of
the paths, and in fact, only the vertex (u1, u0, x) appears twice in the paths of
the modified bunch of P 1, P 2-based paths, for suitable x. However, as G is 2-
connected, there is a path P 3 = a3

0, a
3
1, . . . , a

3
t3 in G−{u1} connecting u2 with a

vertex of P 1 ∪P 2 −{u1, u2}. Since there are no paths of type (1) in G, P 3 joins u2

with a vertex a1
p of P 1, see Figure 3 (by dashed lines the range of terminal vertices

of P 3 is denoted). Assume that P 3 is as short as possible, and then we assume
that the index p is as large as possible.
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�
P 1

P 2
P 3

u0=a1
1

u1

u2=a3
0

v0

v1

v2

a1
p=a3

t3

1 δ−1

δ−2 δ−1

Figure 3

Now we define some rotations and labellings, so that the paths of the modified
bunch of P 1, P 2-based paths will fit together with the straight path based on P 3.
If P 3 terminates in u0, i.e. if a3

t3 = a1
p = u0, then we relabel the rotation in u0

so that ρu0(u1) = a3
t3−1. Since u0 is adjacent to an interior vertex u1 = a2

1 of P 2,
there is j∗, 1 ≤ j∗ ≤ δ−2, such that b2

1,j∗ = u0. Then our rotation forces that
c2
1,j∗ = a3

t3−1 if a3
t3 = u0. Further, relabel the b1

i,j’s and c1
i,j ’s so that b1

1,1 = c2
1,j∗

and b1
p,1 = a3

t3−1. Moreover, for all edges a1
i u2 ∈ E(G) (by our assumptions there

are at most two such edges, namely a1
1u2 and a1

2u2) we choose b1
i,1 = u2. As P 3 is

as short as possible, all these relabellings are consistent.
Let P1 = B(P 1), P2 = B(P 2), and let Q be the first path based on P 1. Denote

Q∗ = (u1, u2, a
3
1), straight path based on P 3, (a3

t3−1, a
1
p, a1

p+1),

(a1
p, a

1
p+1, b

1
p+1,1), terminal subpath of Q.

We remark that if a3
t3 = v1, then there is no terminal subpath of Q in Q∗.

It is a matter of routine to check that MB((P1−{Q}) ∪ Q∗,P2) is a collection
of 2δ−2 vertex-disjoint paths. Some first (terminal) vertices of these paths are
already adjacent to u (to v), but some of the paths must be enlarged. Exactly
δ−1 of these paths start with vertices (u2, u1, x), x ∈ V (G). One such path starts
already in u; but the remaining δ−2 we extend, each by one vertex of the form
(y, u2, u1), y �= a3

1, that is already adjacent to u. By the choice of b1
1,j ’s of Q, no

vertex (y, u2, u1), y �= a3
1, appears in MB((P1−{Q}) ∪ Q∗,P2).

Hence, it remains to extend Q∗ at the end in the case a1
p = v1. In this case we

enlarge Q∗ by subpath (a3
t3−1, a

1
p, a1

p−1), (a1
p, a

1
p−1, b

1
p−1,1), v, where a1

p = a3
t3 = v1

and a1
p−1 = v0. We remark that if b1

p−1,1 is an interior vertex of P 2, say b1
p−1,1 = a2

r

and a1
p−1 = b2

r,j′, then choosing c2
r,j′ = a1

p−2 guarantees that all these extended
paths are vertex-disjoint. Hence, there is a collection of 2δ−2 internally-vertex-
disjoint u − v paths in P2(G).

(3) P 1′ connects u0 with v0 and P 2′ connects u1 with v1. Assume that both
P 1′ and P 2′ are as short as possible, and moreover, assume that there are no paths
of types (1) and (2) in G. Let P 1 = u1, P

1′, v1 and P 2 = u2, P
2′, v2. As usual, we

denote P 1 = a1
0, a

1
1, . . . , a

1
t1 and P 2 = a2

0, a
2
1, . . . , a

2
t2 . As G is 2-connected graph,

there is a path P 3′ in G−{u1} connecting u2 with a vertex of P 1 ∪ P 2 − {u1, u2}.
Since there are no paths of types (1) and (2) in G, P 3′ joins u2 with a vertex
a1

p3
of P 1′. Analogously, there is a path P 4′ joining a vertex of P 1′, say a1

p4
,
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with v2. Assume that both P 3′ and P 4′ are as short as possible, and denote
P 3 = u1, P

3′ = a3
0, a

3
1, . . . , a

3
t3 and P 4 = P 4′, v1 = a4

0, a
4
1, . . . , a

4
t4 , see Figure 4.

�
P 1

P 2

P 3 P 4

u0

u1

u2=a3
1

v0

v1

v2=a4
t4−1

a1
p3

=a3
t3

1

a1
p4

=a4
0

1

δ−1

δ−2 δ−1 δ−2

Figure 4

In a3
t3−1 we choose the rotation so that ρa3

t3−1
(a3

t3−2) = a3
t3 = a1

p3
(hence

ρa3
t3−1

(a3
t3) �= a3

t3−2), and in a4
1 we require ρa4

1
(a4

2) = a4
0. If a1

p3
�= a1

p4
, then we

choose b1
p3,1 = a3

t3−1 and b1
p4,1 = a4

1. By our assumptions, if u2a
1
j ∈ E(G), j > 0,

then j = 1 or j = 2. Hence, at most two interior vertices of P 1 are adjacent to u2.
If there is just one interior vertex of P 1 adjacent to u2, then by the previous choice
we have ρa3

t3−1
(a3

t3) = ρu2(a
1
p3

) �= u1. On the other hand if u2a
1
1, u2a

1
2 ∈ E(G), then

we choose either b1
1,1 = u2 or b1

2,1 = u2 (not to abuse the list of the requirements).
In the last case suppose that b1

1,1 = u2 and b1
2,1 �= u2. Then there is j∗ such that

b1
2,j∗ = u2, and we choose (although not corresponding to the rotations) c1

2,j∗ = a1
1.

(The subcase b1
1,1 �= u2 and b1

2,1 = u2 can be solved similarly.) Analogously we
proceed in the case when an interior vertex of P 1 is adjacent to v2.

Let P1 = B(P 1), P2 = B(P 2), and let Q be the first path based on P 1. If
a1

p3
= a1

p4
then we denote

Q∗ = (u1, u2, a
3
2), straight path based on P 3, (a3

t3−1, a
1
p3

, a4
1),

straight path based on P 4, (a4
t4−2, v2, v1),

and if a1
p3

�= a1
p4

then two changes are necessary. If |p3 − p4| > 1, we change
the straight path based on P 1 by replacing the piece between a1

p3
and p1

p4
by the

corresponding subpath of Q, and we denote

Q∗ = (u1, u2, a
3
2), straight path based on P 3, u, subpath of the straight

path based on P 1, v, straight path based on P 4, (a4
t4−2, v2, v1),

where the subpath of the straight path based on P 1 is in a reverse order if p3 > p4,
U = (a3

t3−1, a
1
p3

, a1
p3+1) and V = (a1

p4−1, a
1
p4

, a4
1) if p3 < p4, and if p3 > p4 then

U = (a3
t3−1, a

1
p3

, a1
p3−1) and V = (a1

p4+1, a
1
p4

, a4
1).

Now MB((P1−{Q})∪Q∗,P2) is a collection of 2δ−2 vertex-disjoint paths, and
similarly as in case (2) these paths can be extended to 2δ−2 internally-vertex-
disjoint u − v paths.
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Figure 5

(4) P 1′ connects u0 with v1 and P 2′ connects u1 with v2. Setting P 1 = u1, P
1′, v0

and P 2 = u2, P
2′, v1, this case is similar to case (2), but slight changes have to be

made in both ends of the modified bunch of P 1, P 2-based paths, see Figure 5. �
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