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Abstract

In this paper, some new families of integral trees with diameters 4,
6 and 8 are given. All these classes are infinite. They are different
from those in the existing literature. We also prove that the problem of
finding integral trees of diameters 4, 6 and 8 is equivalent to the problem
of solving Pell’s diophantine equations. The discovery of these integral
trees is a new contribution to the search for such trees.

I. Introduction

All graphs considered here are simple. For a graph G, let V (G) denote the vertex
set of G and E(G) the edge set. All other notation and terminology can be found in
[1–3].

The notion of integral graphs was first introduced by F. Harary and A.J. Schwenk
in 1974. A graph G is called integral if all the zeros of the characteristic polynomial
P (G, x) are integers. The 23rd open problem of reference [4] is about trees with
purely integral eigenvalues. All integral trees with diameters less than 4 are given in
[4, 7]. Results on integral trees with diameters 4, 5, 6 and 8 can be found in [4–14].

Various families of integral balanced trees were studied in [4–7,13,14]. A tree T
is called balanced if the vertices at the same distance from the center of T have the
same degree. According to the parity of the diameter of a tree, balanced trees split
into two families. We shall code a balanced tree of diameter 2k by the sequence
(nk, nk−1, · · · , n1) or the tree T (nk, nk−1, · · · , n1), where nj (j = 1, 2, · · · , k) denotes
the number of successors of a vertex at distance k − j from the center. Let the
tree K1,s • T (m, t) of diameter 4 be obtained by identifying the center w of K1,s
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and the center v of T (m, t). Let the tree K1,s • T (r, m, t) of diameter 6 be obtained
by identifying the center w of K1,s and the center u of T (r, m, t). Integral trees
T (r, m, t), K1,s • T (m, t) and K1,s • T (r, m, t) were investigated in [5–7,12–14].

In this paper, some new families of integral trees with diameters 4, 6 and 8 are
given. All these classes are infinite. They are different from those of [4–14]. We also
prove that the problem of finding integral trees of diameters 4, 6 and 8 is equivalent
to the problem of solving Pell’s diophantine equations. This is a new contribution
to the search for integral trees. We believe that it is useful for constructing other
integral trees.

The following Lemmas 1 and 2 can be found in [1].

Lemma 1 Let G1 ∪ G2 denote the union of two disjoint graphs G1 and G2. If
u ∈ V (G1), v ∈ V (G2) and G = G1 ∪ G2 + uv, then

P (G, x) = P (G1, x)P (G2, x) − P (G1 − u, x)P (G2 − v, x).

Lemma 2 Let G be a graph. If u ∈ V (G), v �∈ V (G) and G∗ = G + uv, then

P (G∗, x) = xP (G, x) − P (G − u, x).

The following Lemmas 3 and 4 can be found in [5].

Lemma 3
1) P (T (m, t), x) = xm(t−1)+1(x2 − t)m−1[x2 − (m + t)].
2) P (T (r, m, t), x) = xrm(t−1)+r−1(x2 − t)r(m−1)[x2 − (m + t)]r−1

×[x4 − (m + t + r)x2 + rt].

Lemma 4 The tree T (r, m, t) of diameter 6 is integral if and only if both t and m+t
are perfect squares, and x4−(m+ t+r)x2 +rt can be factorized as (x2−a2)(x2−b2).

Clearly the following result in [13] and [14] is a corollary of Lemma 4.

Corollary 1 The tree T (r, m, t) is integral if and only if t = k2, m = n2 + 2nk,
r = a2b2

k2 , where a, b, k, n are positive integers satisfying

(k2 − b2)(a2 − k2) = k2(n2 + 2nk), b < k < a.

The following Lemmas 5, 6 and 7 can be found in [12].

Lemma 5
1) P [K1,s • T (m, t), x] = xm(t−1)+(s−1)(x2 − t)m−1[x4 − (m + t + s)x2 + st].
2) P [K1,s • T (r, m, t), x] = xrm(t−1)+r+(s−1)(x2 − t)r(m−1)[x2 − (m + t)]r−1

×[x4 − (m + t + r + s)x2 + rt + s(m + t)].

Lemma 6 The tree K1,s•T (m, t) of diameter 4 is integral if and only if t is a perfect
square, and x4 − (m + t + s)x2 + st can be factorized as (x2 − a2)(x2 − b2).
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Lemma 7 The tree K1,s • T (r, m, t) of diameter 6 is integral if and only if t and
m+ t are perfect squares, and x4 − (m+ t+ r + s)x2 + rt+ s(m+ t) can be factorized
as (x2 − a2)(x2 − b2).

Theorem 1 The tree T (q, r, m, t) of diameter 8 is integral if and only if both t and
m+t are perfect squares, x4−(m+t+r)x2+rt can be factorized as (x2−a2)(x2−b2),
and x4 − (q + m + t + r)x2 + rt + q(m + t) can be factorized as (x2 − c2)(x2 − d2).

Proof We assume that the vertex u is the center of the tree T (r, m, t), and the
vertex w is the center of the tree T (q, r, m, t). Suppose that

G1 = T (r, m, t), G2 = T (q − 1, r, m, t).

By Lemma 1, we know that

P (T (q, r, m, t), x)
= P (T (r, m, t), x)P (T (q − 1, r, m, t), x) − P r(T (m, t), x) × P q−1(T (r, m, t), x)
= P (T (r, m, t), x)[P (T (q − 1, r, m, t), x) − P r(T (m, t), x) × P q−2(T (r, m, t), x)]

By induction on q, we have

P (T (q, r, m, t), x) = P q−1(T (r, m, t), x)[P (T (1, r, m, t), x) − (q − 1)P r(T (m, t), x)],

where the graph T (1, r, m, t) denotes a tree by joining the center of the tree T (r, m, t)
to a new vertex w. By Lemma 2, we have

P (T (q, r, m, t), x) = P q−1(T (r, m, t), x)[xP (T (r, m, t), x) − qP r(T (m, t), x)]

By Lemma 3, we have

P (T (q, r, m, t), x) = xqrm(t−1)+q(r−1)+1(x2 − t)qr(m−1)[x2 − (m + t)]q(r−1)

×[x4 − (m + t + r)x2 + rt]q−1

×[x4 − (q + m + t + r)x2 + rt + q(m + t)].

Thus, the theorem is proved.

Corollary 2 If q = t, then the tree T (q, r, m, t) is integral if and only if all t, m + t
and m + t + r are perfect squares, and x4 − (m + t + r)x2 + rt can be factorized as
(x2 − a2)(x2 − b2).

The following result in [13] is a corollary of Theorem 1.

Corollary 3 The tree T (q, r, m, t) is integral if and only if t = k2, m = n2 + 2nk,
r = a2b2

k2 ,q = c2d2−a2b2

(n+k)2
, where a, b, c, d, k, n are positive integers satisfying

(k2 − b2)(a2 − k2) = k2(n2 + 2nk),

c2 + d2 = (n + k)2 +
a2b2

k2
+

c2d2 − a2b2

(n + k)2
,

and
b < k < a.
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II. Some facts in number theory

Lemma 8 If a, b, c and d are real numbers, then

(a2 + b2)(c2 + d2) = (ad + bc)2 + (ac − bd)2.

Proof It is easy to check.

The following Lemmas 9, 10, 11 and 12 can be found in [15].

Lemma 9 An odd prime p can be expressed as the sums of two squares if and only
if p ≡ 1(mod 4). Moreover, the unordered sum of such two squares is unique.

Lemma 10 Every positive integer m can be uniquely expressed as m = k2l, where
k2 is a square, and l is 1 or can be written as the product of primes. Then, m can
be written as the sums of two squares if and only if l = 1 or each prime divisor p of
l is the form p ≡ 1(mod 4).

Lemma 11 If a positive integer m can be written as m = 2lpl1
1 pl2

2 · · · pls
s , then m

can be expressed as the sums of two mutually prime squares if and only if l = 0 or
1, and pi ≡ 1(mod 4), for i = 1, 2, · · · , s. There are 2s−1 ways for the expression
m = a2 + b2.

Lemma 12 There are infinitely many primes of the form p ≡ 1(mod 4).

The following Lemma 13 can be found in [2].

Lemma 13 If x > 0, y > 0, z > 0, (x, y) = 1 and 2|y, then all solutions of the
diophantine equation x2 + y2 = z2 are given by

x = r2 − s2, y = 2rs, z = r2 + s2,

where (r, s) = 1, r > s > 0 and 2 � |r + s.

Theorem 2 There exist positive integers N = 2lpl1
1 pl2

2 · · · pls
s , where l = 0 or 1,

s ≥ 2, and pi are primes of the form pi ≡ 1(mod 4), for i = 1, 2, · · · , s, such that N
can be expressed as

a2 + b2 = c2 + d2 (1)

satisfying a|cd or b|cd, where a, b, c and d are positive integers with c > a, b > d,
(a, b) = 1 and (c, d) = 1. In particular, there are such N ’s with N = (p1p2 · · · ps)

2.

Proof By Lemma 11, N can be expressed in the form (1). By Lemmas 8, 11 and
13, if N = (p1p2 · · · ps)

2, then N can also be expressed in the form (1). For the proof
of the existence of N satisfying all other conditions of the theorem, we simply list
the following examples.
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(i) For N = 2lpl1
1 pl2

2 · · · pls
s , we have

1) 5 × 13 = 72 + 42 = 82 + 12, 2) 5 × 17 = 72 + 62 = 92 + 22,
3) 5 × 41 = 132 + 62 = 142 + 32, 4) 5 × 53 = 122 + 112 = 162 + 32,
5) 5 × 101 = 192 + 122 = 212 + 82, 6) 13 × 17 = 112 + 102 = 142 + 52,
7) 13 × 37 = 162 + 152 = 202 + 92, 8) 13 × 53 = 202 + 172 = 252 + 82,
9) 13 × 97 = 302 + 192 = 352 + 62, 10) 13 × 113 = 372 + 102 = 382 + 52,
11) 13 × 181 = 472 + 122 = 482 + 72, 12) 13 × 313 = 622 + 152 = 632 + 102,
13) 13 × 317 = 612 + 202 = 642 + 52, 14) 13 × 337 = 592 + 302 = 662 + 52,
15) 13 × 613 = 872 + 202 = 882 + 152, 16) 13 × 733 = 772 + 602 = 852 + 482,

17) 13 × 757 = 792 + 602 = 962 + 252, 18) 17 × 37 = 232 + 102 = 252 + 22,
19) 17 × 53 = 262 + 152 = 302 + 12, 20) 17 × 257 = 632 + 202 = 652 + 122,
21) 17 × 73 = 292 + 202 = 352 + 42, 22) 17 × 137 = 402 + 272 = 482 + 52,
23) 17 × 193 = 412 + 402 = 552 + 162, 24) 29 × 37 = 282 + 172 = 322 + 72,
25) 29 × 41 = 302 + 172 = 332 + 102, 26) 29 × 61 = 372 + 202 = 402 + 132,
27) 29 × 89 = 412 + 302 = 502 + 92, 28) 29 × 281 = 572 + 702 = 902 + 72,
29) 29 × 389 = 842 + 652 = 1052 + 162, 30) 41 × 61 = 492 + 102 = 502 + 12,
31) 5 × 13 × 17 = 242 + 232 = 322 + 92,
32) 5 × 13 × 17 = 312 + 122 = 322 + 92,
33) 5 × 13 × 17 = 312 + 122 = 332 + 42,

34) 5 × 13 × 17 × 37 = 1672 + 1142 = 1942 + 572,
35) 257 × 65537 = 40952 + 2722 = 40972 + 2402.

(ii) For N = (p1p2 · · · ps)
2, we have

1) (5 × 13)2 = 562 + 332 = 632 + 162,
2) (5 × 29)2 = 1432 + 242 = 1442 + 172,
3) (13 × 17)2 = 1712 + 1402 = 2202 + 212,
4) (17 × 37)2 = 4602 + 4292 = 6212 + 1002,
5) (41 × 61)2 = 23012 + 9802 = 24992 + 1002.

Remark 1 We found the above positive integers by checking 5p1, 13p2, 17p3, 29p4,
where each prime pi ≡ 1(mod 4), for i = 1, 2, 3, 4 such that 13 ≤ p1 ≤ 1009, 17 ≤
p2 ≤ 1009, 29 ≤ p3 ≤ 229 and 37 ≤ p4 ≤ 557; while other positive integers are
obtained from one by one checking. In addition, we note that some of them are
Fermat primes Fn = 22n

+ 1, for n = 1, 2, 3, 4.

For Theorem 2, we raised the following problems, which are not only useful for
the finding of integral trees but also interesting purely as problems in number theory.

Problem 1 Find all the solutions of positive integers for the diophantine equation

N = x2 + y2 = z2 + w2 (2)

such that x|zw or y|zw, where z > x, y > w, (x, y) = 1 and (z, w) = 1.

Problem 2 For Problem 1, we conjecture that there are infinitely many solutions
for diophantine equation (2). In particular, if N is a perfect square, is it true?

33



Problem 3 Find all solutions for Problem 1, for special N = (5p1)
α, (5 × 13 ×

p1)
α, (p1 × p2)

α, (p1 × p2 × p3)
α, · · ·, where α = 1, 2, 3, 4, · · ·, pi are primes with pi ≡

1(mod 4), for i = 1, 2, 3, · · ·.
The motivation to raise the above problems is as follows. (i) Construct the inte-

gral trees T (r, m, t) and K1,s •T (m, t) from any positive integer solution of diophan-
tine equation (2). (ii) Construct the integral trees K1,s • T (r, m, t) and T (s, r, m, t)
from any positive integer solution of diophantine equation (2) of the second part
of Problem 2 above. So, it is very important to find all solutions of diophantine
equation (2).

For Problem 1 and the first part of Problem 2, we shall give an affirmative answer
from the following two different ways.

On the one hand, we find infinitely many solutions of the diophantine equation
(2) for Problem 1.

Theorem 3 Let k be any positive integer, and let u > 1 be even. Construct x, y,
z and w by one of the following formulas.

(1) x = 3u2 − 1, y = 2u(u2 − 1), z = 2u3 and w = u2 − 1.
(2) x = 36k2 + 6k + 1, y = 18k2 + 6k, z = 36k2 + 12k and w = 18k2 − 6k − 1.
(3) x = 36k2 + 30k + 7, y = 18k2 + 18k + 4, z = 36k2 + 36k + 8 and

w = 18k2 + 6k − 1.
Then x2 + y2 = z2 +w2 such that y divides zw, with z > x, y > w, (x, y) = 1 and

(z, w) = 1.

Proof (1) Because u (u > 1) is even, x = 3u2 − 1, y = 2u(u2 − 1), z = 2u3 and
w = u2 − 1, we have that

x2 + y2 = z2 + w2, z − x = u2(2u − 3) + 1 > 0, z − y = 2u > 0, z − w =
u2(2u − 1) + 1 > 0, x − w = 2u2 > 0, y − w = u[u(2u − 1) − 2] + 1 > 0, and y|zw,
where (z, w) �= 2, (x, y) �= 2.

We assume that (z, w) = d �= 1, 2. Then d|z = 2u3, d|w = u2 − 1. We get that
d|u. Let u = kd, k a positive integer. Then w = u2 − 1 = k2d2 − 1. Hence, d � |w,
This is a contradiction.

We assume that (x, y) = m �= 1, 2. Then m|x, d|y = 2u(u + 1)(u − 1). We know
that there exists m1 �= 1, 2 such that m1|m. We discuss the following three cases.

Case 1 If m1|u, then u = km1, where k is a positive integer. We get that
x = 3u2 − 1 = 3k2m2

1 − 1. Hence, m1 � |x. This is a contradiction.
Case 2 If m1|(u + 1), then u + 1 = km1, where k is a positive integer. We get

that x = 3u2 − 1 = 3k2m2
1 − 6km1 + 2. Hence, m1 � |x. This is a contradiction.

Case 3 If m1|(u − 1), then u − 1 = km1, where k is a positive integer. We get
that x = 3u2 − 1 = 3k2m2

1 + 6km1 + 2. Hence, m1 � |x. This is a contradiction.
Therefore, we have that (z, w) = 1 and (x, y) = 1.
For (2) and (3), it is easy to check by this similar method.

Remark 2 In fact, we note that it is not easy to find all the solutions of positive
integers of the diophantine equation (2) of Problem 1. But we also can construct
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different integral trees if we omit the conditions (x, y) = 1 and (z, w) = 1 for the
diophantine equation (2) of Problem 1.

Theorem 4 Let k, u and q be any positive integers, and u > 1 be odd. Construct
x, y, z and w by one of the following formulas.

(1) x = 3u2 − 1, y = 2u(u2 − 1), z = 2u3 and w = u2 − 1.
(2) x = 2k2 + 2k + 2, y = k(k + 2), z = 2k(k + 2) and w = k2 − 2k − 2.
(3) x = |k2 − 3q2|, y = 4kq, z = k2 + 3q2 and w = 2kq, where 0 < k < q or

k > 3q, and 2|(k + q).
(4) x = k2 + 3q2, y = 2kq, z = 4kq and w = |k2 − 3q2|, where q < k < 3q.
Then x2 + y2 = z2 + w2 such that y divides zw, with z > x, y > w,

Proof It is easy to check.

On the other hand, we only discuss the case y|zw for diophantine equation (2) of
Problem 1. The following cases are distinguished.

(i) If (y, w) = 1, let z = cy; then diophantine equation (2) is changed into

x2 − (c2 − 1)y2 = w2. (3)

Now, we assume that w = 1; then diophantine equation (3) is changed into

x2 − (c2 − 1)y2 = 1. (4)

(ii) If (y, w) = h, let y = hY , z = cY and w = hW ; then diophantine equation
(2) is changed into

x2 − (c2 − h2)Y 2 = h2W 2, (5)

where c > h, c and h are positive integers, and c2 − h2 is not a perfect square.

Remark 3 If z = w, then diophantine equation (2) is changed into

x2 + y2 = 2z2. (6)

From [5, 7], one can find all solutions of diophantine equation (6). Also, from any
positive integer solution of equation (6) one can construct integral trees T (r, m, t) of
diameter 6 and K1,s • T (m, t) of diameter 4 in [5, 7, 12].

Now, by the following results for diophantine equations in Number Theory, we
shall study whether there exist solutions for diophantine equations (3), (4) and (5).

The following Lemmas 14 and 15 can be found in [2].

Lemma 14 Let x1, y1 be the least positive solution of the diophantine equation

x2 − dy2 = 1, (7)

where d (d > 1) is a positive integer that is not a perfect square. Then all the positive
solutions xk, yk are given by

xk + yk

√
d = (x1 + y1

√
d)k, (8)
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for k = 1, 2, 3, · · ·.
Lemma 15 Let u, v be the least positive solution of diophantine equation (7), where
d (d > 1) is a positive integer that is not a perfect square. Then the diophantine
equation

x2 − dy2 = −1 (9)

has solutions if and only if there exist positive integer solutions s and t for the
equations

s2 + dt2 = u, 2st = v,

and moreover s and t are the least positive solution of diophantine equation (9).

The following Lemma 16 can be found in [3].

Lemma 16 Let x1, y1 be the least positive solution of diophantine equation (9),
where d (d > 1) is a positive integer that is not a perfect square. Then

(1) All the positive integer solutions xk, yk of equation (9) are given by

xk + yk

√
d = (x1 + y1

√
d)k, (10)

for k = 1, 3, 5, · · ·.
(2) All the positive integer solutions xk, yk of equation (7) are given by

xk + yk

√
d = (x1 + y1

√
d)k, (11)

for k = 2, 4, 6, · · ·.
The following Lemma 17 can be found in [2].

Lemma 17
(1) If there is a solution for the diophantine equation

x2 − dy2 = m, (12)

where m is an integer and d (d > 1) is a positive integer that is not a perfect square,
then diophantine equation (12) has infinitely many solutions.

(2) Let x1, y1 be the least positive solution of diophantine equation (7). Let u1, v1

be the least positive solution of diophantine equation (12). Then all the positive
integer solutions uk, vk of equation (12) are given by

uk + vk

√
d = (x1 + y1

√
d)k(u1 + v1

√
d), (13)

for k = 1, 2, 3, · · ·.
(3) Let x1, y1 be the least positive solution of the diophantine equation

x2 − dy2 = 4, (14)

where d (d > 1) is a positive integer that is not a perfect square. Then all the positive
integer solutions xk, yk of equation (14) are given by

xk + yk

√
d

2
= (

x1 + y1

√
d

2
)k, (15)
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for k = 1, 2, 3, · · ·.
Theorem 5 Let x1, y1 be the least positive solution of diophantine equation (4),
where c (c > 1) is a positive integer. Then all the positive integer solutions xk, yk of
equation (4) are given by

xk + yk

√
c2 − 1 = (x1 + y1

√
c2 − 1)k, (16)

for k = 1, 2, 3, · · ·.
Proof This follows directly from Lemma 14.

Theorem 6 If there is a solution for the diophantine equation

x2 − (c2 − h2)y2 = h2w2, (17)

where c > h, c, h and w are positive integers, and c2 − h2 is not a perfect square, let
x1, y1 be the least positive solution of diophantine equation

x2 − (c2 − h2)y2 = 1. (18)

Let u1, v1 be the least positive solution of diophantine equation (17). Then all the
positive integer solutions xk, yk of equation (17) are given by

xk + yk

√
c2 − h2 = (x1 + y1

√
c2 − h2)k(u1 + v1

√
c2 − h2), (19)

for k = 1, 2, 3, · · ·.
Proof This follows directly from Lemma 17.

From Theorems 5 and 6, we shall construct infintely many Pell’s diophantine
equations from every identity in the list of Theorem 2.

Example 1 Note that 5×13 = 72+42 = 82+12. Then we get the Pell’s diophantine
equation (4), where c (c > 1) is a positive integer.

Choosing c = 2, 3, 4, · · · , successively in the above diophantine equation (4), we
get the following Pell’s diophantine equations

x2 − 3y2 = 1, x2 − 8y2 = 1, x2 − 15y2 = 1, · · · .

Example 2 Note that 5×17 = 72+62 = 92+22. Then we get the Pell’s diophantine
equation

x2 − (c2 − 4)y2 = 4, (20)

where c (c > 2) is a positive integer and c2 − 4 is not a perfect square.
Choosing c = 3, 4, 5, · · · , successively in the above diophantine equation (20), we

get the following Pell’s diophantine equations

x2 − 5y2 = 4, x2 − 12y2 = 4, x2 − 21y2 = 4, · · · .
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Example 3 Note that 13 × 37 = 162 + 152 = 202 + 92. Then we get the Pell’s
diophantine equation

x2 − (c2 − 9)y2 = 81, (21)

where c (c > 3) is a positive integer and c2 − 9 is not a perfect square.
Choosing c = 4, 6, 7, · · · , successively in the above diophantine equation (21), we

get the following Pell’s diophantine equations

x2 − 7y2 = 81, x2 − 27y2 = 81, x2 − 40y2 = 81, · · · .

The following Lemma 18 can be found in [2].

Lemma 18 Let m be a positive integer; if 2 � |m or 4|m, then there exist positive
integer solutions for the diophantine equation

x2 − y2 = m. (22)

Remark 4 We shall give a method by the following case for finding the solutions
of the diophantine equation (22). We discuss m. Suppose that m = m1m2. Let
x − y = m1, x + y = m2 and 2|(m1 + m2). Then the solutions of the diophantine
equation (22) can be found.

III. Integral trees with diameters 4, 6 and 8

In this section, we shall construct infinitely many integral trees with diameters 4, 6
and 8. These classes are different from those in [4–14].

Theorem 7 Let m1, t1, r1, a, b, c and d be positive integers satisfying the following
conditions:

m1 + t1 + r1 = a2 + b2 = c2 + d2,

where c > a, b > d, (a, b) = 1, (c, d) = 1 and a|cd or b|cd. For the tree T (r, m, t) of
Lemma 3, we have

(1) If a|cd, for any positive integer n, let m = m1n
2, m1 = b2 − ( cd

a
)2, t = t1n

2,
t1 = ( cd

a
)2, r = r1n

2 and r1 = a2. Then T (r, m, t) is an integral tree with diameter 6.
(2) If b|cd, for any positive integer n, let m = m1n

2, m1 = a2 − ( cd
b
)2, t = t1n

2,
t1 = ( cd

b
)2, r = r1n

2 and r1 = b2. Then T (r, m, t) is an integral tree with diameter 6.

Proof By Lemma 4 and Theorem 2, this is easy to check.

Example 4 Note that 5 × 13 = 72 + 42 = 82 + 12. From Theorem 7, if we let
t = 4n2, r = 16n2 and m = 45n2 for any positive integer n, then the tree T (r, m, t)
is an integral one with diameter 6. Its sprectrum is

Spec(T (16n2, 45n2, 4n2) =(
0 ±n ±2n ±7n ±8n

2880n6 − 720n4 + 16n2 − 1 1 720n4 − 16n2 16n2 − 1 1

)
.
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If n = 1, we know that the tree T (16, 45, 4) is an integral one with diameter 6, the
order of which is 3617, which is much smaller than those given in [5–9].

In fact, by the same methods as in Example 4, we can construct a family of
integral trees with diameter 6 from every identity in the list of Theorem 2. The
family of integral trees given in Example 4 is obtained exactly from the first identity
in the list of Theorem 2.

We also note that the integral tree T (36n2, 120n2, 49n2) can be constructed from
the identity 5 × 41 = 132 + 62 = 142 + 32, which is Theorem 3 of [4].

Theorem 8 For the tree T (q, r, m, t) of diameter 8, let the numbers m, t, r, m1, t1,
r1, a, b, c and d be the same as those in Theorem 7, and let q = t and m1 + t1 + r1 be
a perfect square. Then T (q, r, m, t) is an integral tree with diameter 8, and T (r, m, t)
is an integral tree with diameter 6.

Proof By Corollary 2, Lemma 4 and Theorem 2, this is easy to check.

Remark 5 From Theorem 8 and Lemma 3, it is interesting to observe that the
trees T (t, r, m, t), T (r, m, t), T (m, t) and K1,t are all integral ones. We call this kind
of tree T (t, r, m, t) serially integral.

Example 5 Note that (5 × 13)2 = 562 + 332 = 632 + 162. From Theorem 8, if we
let t = q = (18n)2, m = 765n2 and r = (56n)2 for any positive integer n, then the
tree T (q, r, m, t) is an integral one with diameter 8. Its sprectrum is

Spec(T (324n2, 3136n2, 765n2, 324n2) =

(
0 ±16n ±18n ±33n ±63n ±65n
a b c d b 1

)
,

where a = 251841623040n8 − 777288960n6 + 1016064n4 − 324n2 + 1, b = 324n2 − 1,
c = 777288960n6 − 1016064n4 + 1 and d = 1016064n4 − 324n2. To our knowledge,
this is the first time infinitely many integral trees with diameter 8 have been found.
By setting n = 1, we get a minimal integral tree T (324, 3136, 765, 324) with diameter
8 in this class, the order of which is 252,619,928,389.

In fact, by the same methods as in Example 5, we can construct a family of
integral trees with diameter 8 from every identity in the second half of the list in
Theorem 2. All these classes are different from those of [13].

Theorem 9 Let u and n be positive integers, and u > 1, s = 4u2(u2 − 1)2, m =
8u4 − 6u2 + 1 and t = u4. Then K1,sn2 • T (mn2, tn2) and K1,tn2 • T (mn2, sn2) are
integral trees with diameter 4.

Proof By Lemma 4 and Theorem 3, this is easy to check.

Remark 6 We can also find that the tree T (sn2, mn2, tn2) is an integral one with
diameter 6 from Theorem 3 of [14] and Theorem 3.5 of [13].

Theorem 10 Let k, q and n be positive integers; let m = m1n
2,t = t1n

2, r = r1n
2,
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(1) m1 = 3(6k + 1)(72k2 − 6k − 1), t1 = 4(18k2 − 6k − 1)2, r1 = (18k2 + 6k)2,
(2) m1 = 9(2k+1)(72k2 +42k+5), t1 = 4(18k2 +6k−1)2, r1 = (18k2 +18k+4)2,
(3) m1 = 12(2k + 1)(k − 1)(k + 1), t1 = 4(k2 − 2k − 2)2, r1 = k2(k + 2)2, k > 2,

(4) m1 = (k2 − 3q2)2 − (k2+3q2

2
)2, t1 = (k2+3q2)2

4
, r1 = 16k2q2, where 0 < k < q or

k > 3q, and 2|(k + q).
(5) m1 = 3(k2 − q2)(9q2 − k2), t1 = 4(k2 − 3q2)2, r1 = 4k2q2, where q < k < 3q.
Then K1,r •T (m, t), K1,t •T (m, r) and T (r, m, t) are integral trees with diameter

4, 4, and 6, respectively.

Proof By Lemmas 4 and 6 and Theorems 3, 4 and 7, this is easy to check.

Theorem 11 For any positive integer n, let t = t1n
2, m = m1n

2, r = r1n
2 and

s = s1n
2, and t1, m1, r1 and s1 are given in the following table. Then K1,s•T (r, m, t)

is an integral tree with diameter 6.

Proof By Lemma 7, this is easy to check.

t1 m1 r1 s1 t1 m1 r1 s1

4 672 225 616 9 9792 1225 6336
9 9792 1225 38784 16 105 144 676
16 560 729 360 16 560 729 2736
36 693 1600 1209 · · · · · · · · · · · ·

Remark 7 In [13], the authors used a computer to find 182 “small” solutions t1, m1,
r1 and s1, and constructed integral trees T (s1n

2, r1n
2, m1n

2, t1n
2) with diameter 8.

Here, we construct integral trees K1,s•T (r, m, t) with diameter 6 by these parameters.
These integral trees are different from those of [5–9,12–14].

Theorem 12 If there exists a solution for the diophantine equation (17), then we
let c, h, w, u1,v1,xk and yk (k = 1, 2, · · ·) be the same as those of Theorem 6. For any
positive integer n, if t = (cwn)2, m = [x2

k − (cw)2]n2 and r = (hykn)2, then T (r, m, t)
is an integral tree with diameter 6, and K1,r • T (m, t) and K1,t • T (m, r) are integral
trees with diameter 4.

Proof By Theorems 2, 5, 6 and Lemmas 4 and 6, it is not difficult to prove the
theorem.

Remark 8 We know that integral trees T (r, m, t) and K1,r • T (m, t) were stud-
ied in [5–7,12–14]. Here, from Theorems 2, 6 and 11, we get infinitely many such
new integral trees, which are different from those of [5–7,12–14] because the Pell’s
diophantine equations (3), (4) and (17) are not the same as those of [5–7,12–14].

We know that trees of diameter 4 can be formed joining the centers of r stars
K1,m1 , K1,m2 , · · · , K1,mr to a new vertex v. Let the tree be denoted by S(r, mi) or
S(r; m1, m2, · · · , mr).

The following Lemma 19 can be found in [5].

Lemma 19 If m2 = m3 = · · · = mr, then S(r, mi) is integral if and only if m2 is a
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perfect square, and x4 − (m1 +m2 + r)x2 +m1(r− 1)+m2(m1 +1) can be factorized
as (x2 − a2)(x2 − b2).

Theorem 13 Let m1 = a(a + 1) − ε, r = a(a + 1) + ε − c2 + 1, (ε ∈ {−c, c}),
m2 = m3 = · · · = mr = c2, r > 1, m1 > 0, c > 0, and a, c be positive integers. Then
S(r, mi) is an integral tree with diameter 4.

Proof By Lemma 19, we know that

{
a2 + b2 = m1 + m2 + r
a2b2 = m1(r − 1) + m2(m1 + 1)

Let m2 = c2; then we get that

a2 + b2 = m1 + c2 + r (23)

a2b2 = m1(r − 1 + c2) + c2 (24)

By (23) and (24) and Lemma 18, we have (ab+c)(ab−c) = (a2+b2−c2−r)(r−1+c2).
We assume that a2+b2−c2−r = ab−ε, and r−1+c2 = ab+ε, where ε ∈ {−c, c}, then
we get (a−b)2 = 1. Thus, let b = a+1. Hence, m1 = a(a+1)−ε, r = a(a+1)+ε−c2+1,
(ε ∈ {−c, c}), m2 = m3 = · · · = mr = c2, r > 1, m1 > 0, c > 0.

The proof is complete.

The following result in [7] is a corollary of Theorem 13.

Corollary 4 If m1 = a(a+1)− ε, r = a(a+1)+ ε, (ε ∈ {−1, 1}), m2 = m3 = · · · =
mr = 1 and a is a positive integer, then S(r, mi) is an integral tree with diameter 4.

Theorem 14 Let m1 = b2 + k, r = a2 − c2 − k(> 1), m2 = m3 = · · · = mr = c2

and k be a positive integer. If there is a positive integer solution a, b and c for the
diopantine equation

kx2 − (k + 1)y2 + z2 = k2 + k, (25)

then S(r, mi) is an integral tree with diameter 4.

Proof By Lemma 19, m2 is a perfect square. We have that

x4 − (m1 + m2 + r)x2 + m1(r − 1) + m2(m1 + 1)
= x4 − (b2 + k + c2 + a2 − c2 − k)x2 + (b2 + k)(a2 − c2 − k − 1) + c2(b2 + k + 1)
= x4 − (a2 + b2)x2 + a2b2 + ka2 − (k + 1)b2 + c2 − k2 − k
= (x2 − a2)(x2 − b2)

Thus, the theorem is proved.

Corollary 5 Let k = 1; if m1 = b2 + 1, r = a2 − c2 − 1 (r > 1), m2 = m3 = · · · =
mr = c2 and a, b and c are positive integers solutions for the diopantine equation

x2 − 2y2 + z2 = 2, (26)

then S(r, mi) is an integral tree with diameter 4.
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Remark 9 (1) Let a > 2 be a positive integer; then x = a, y = a− 1 and z = a− 2
are positive integers solutions of the diophantine equation (26).

(2) Let z = 2; the diophantine equation (26) is changed

x2 − 2y2 = −2. (27)

Then all the positive integer solutions xk, yk of the diophantine equation (27) are
given by

xk + yk

√
2 = (3 + 2

√
2)k(4 + 3

√
2), k = 0, 1, 2, · · · .

The following result in [8] is a corollary of Theorem 14.

Corollary 6 For the diophantine equation (25), let k = z = 1. If a and b are
positive integer solutions of the diophantine equation x2 − 2y2 = 1, let m1 = b2 + 1,
r = a2 − 2 (or m1 = a2 − 2, r = b2 + 1) and m2 = m3 = · · · = mr = 1. Then S(r, mi)
is an integral tree with diameter 4.

We shall give this method by the following cases for finding the solutions of the
diophantine equation (25). We discuss k and z. Choosing (1) k = z = 2, (2) k = 2,
z = 3, (3) k = z = 3, · · ·, we get the following corollary.

Corollary 7 (1) If m1 = b2 + 2, r = a2 − 6 (r > 1), m2 = m3 = · · · = mr = 4 and
a, b are positive integers satisfying the diophantine equation

2x2 − 3y2 = 2, (28)

then S(r, mi) is an integral tree with diameter 4.
(2) If m1 = b2 + 2, r = a2 − 11 (r > 1), m2 = m3 = · · · = mr = 9 and a, b are

positive integers satisfying the diophantine equation

2x2 − 3y2 = −3, (29)

then S(r, mi) is an integral tree with diameter 4.
(3) If m1 = b2 + 3, r = a2 − 12 (r > 1), m2 = m3 = · · · = mr = 9 and a, b are

positive integers satisfying the diophantine equation

3x2 − 4y2 = 3, (30)

then S(r, mi) is an integral tree with diameter 4.

For the diophantine equations (28), (29) and (30), they can be changed into the
diophantine equations

x2 − 6(
y

2
)2 = 1, (31)

y2 − 6(
x

3
)2 = 1, (32)

x2 − 12(
y

3
)2 = 1. (33)

Using Lemma 16 and Theorem 5, we get the following results.
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(1) All the positive solutions xk, yk of the diophantine equation (31) are given by

xk +
yk

2

√
6 = (5 + 2

√
6)k, k = 1, 2, · · · .

(2) All the positive solutions xk, yk of the diophantine equation (32) are given by

yk +
xk

3

√
6 = (5 + 2

√
6)k, k = 1, 2, · · · .

(3) All the positive solutions xk, yk of the diophantine equation (33) are given by

xk +
yk

3

√
12 = (7 + 2

√
12)k, k = 1, 2, · · · .

Theorem 15 Let a, b and c be positive integers, and ab be a perfect square. If
a > b, t = abc2 and m = (a − b)2c2, then K1,t • T (m, t) is an integral tree with
diameter 4.

Proof It is easy to check by Lemma 6.

The following result in [5] is a corollary of Theorem 15.

Corollary 8 Let a, b and c be positive integers. If a > b, t = a2b2c2 and m =
(a2 − b2)2c2, then K1,t • T (m, t) is an integral tree with diameter 4.

Finally, we point out that the second part of Problem 2 and Problem 3 remain
open. We conclude this paper by asking the following:

Problem 4 Are there any integral trees with diameters 7, 9 or 10?
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