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Abstract

We determine all periodic (and, therefore, all finite) semigroups G for
which there exists a non-empty subset S of G such that the Cayley graph
of G relative to S is an undirected Cayley graph.

Let G be a semigroup, and let S be a nonempty subset of G. The Cayley graph
Cay(G, S) of G relative to S is defined as the graph with vertex set G and edge
set E(S) consisting of those ordered pairs (x, y) such that sx = y for some s ∈ S.
Cayley graphs of groups are significant both in group theory and in constructions of
interesting graphs with nice properties. They have received serious attention in the
literature (see, in particular, [1], [2], [5]). The Cayley graph of a semigroup has been
introduced by Bohdan Zelinka [9].

In the investigation of the Cayley graphs of semigroups it is first of all interesting
to find the analogues of natural conditions which have been used in the group case.
For example, it is well known that the Cayley graph Cay(G, S) of a group G is
symmetric or undirected if and only if S = S−1. A graph D = (V, E) is said to be
undirected if and only if, for every (u, v) ∈ E, the edge (v, u) belongs to E, too. It is a
common practice even to include the condition S = S−1 in the definition of a Cayley
graph if the undirected case is being considered. In [8] the authors characterise
all vertex-transitive directed Cayley graphs produced by periodic semigroups. (A
semigroup G is periodic if, for each g ∈ G, there exist positive integers m, n such
that gm = gm+n.)

The aim of this paper is to determine all periodic (and, therefore, all finite)
semigroups G for which there exists a non-empty subset S of G such that Cay(G, S)
is an undirected Cayley graph (see Theorem 1). In order to investigate when there
is some kind of a substitute for the group-theoretic inversion map, it is convenient to
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think of every element s of S as ‘colour’ of all edges (g, sg). This is in fact a multi-
colouring of the graph, i.e., each edge may have several colours. We find conditions
necessary and sufficient for each edge of colour s always to have a reverse edge of a
fixed colour s′ depending only on s (see Theorem 2).

We use standard concepts and notation of semigroup theory following [3] and
[6]. If S ⊆ G, then the subsemigroup generated by S in G is denoted by 〈S〉.
A semigroup is said to be completely simple if it has no proper ideals and has an
idempotent minimal with respect to the natural partial order defined on the set of
all idempotents by e ≤ f ⇔ ef = fe = e.

Theorem 1 For a periodic semigroup G, the following conditions are equivalent:

(i) there exists a subset S of G such that the Cayley graph Cay(G, S) is undirected;

(ii) G has a completely simple subsemigroup C such that CG = G.

A right zero band is a semigroup satisfying the identity xy = y.

Theorem 2 Let G be a finite semigroup, and let S be a subset of G. Then the
following conditions are equivalent:

(i) there exists a one-to-one mapping s �→ s′ from S to S such that, for every edge
(g, sg) of the Cayley graph, there is a reversed edge (sg, s′sg);

(ii) SG = G, 〈S〉 is isomorphic to a direct product H ×R of a group H and a right
zero band R, and for each g ∈ H

|S ∩ ({g} × R)| = |S ∩ ({g−1} × R)|.

Suppose that H is a group, I and Λ are nonempty sets, and P = [pλi] is a
(Λ × I)-matrix with entries pλi ∈ H for all λ ∈ Λ, i ∈ I. The Rees matrix semigroup
M(H; I, Λ; P ) over H with sandwich-matrix P consists of all triples (h; i, λ), where
i ∈ I, λ ∈ Λ, and h ∈ H, with multiplication defined by the rule

(h1; i1, λ1)(h2; i2, λ2) = (h1pλ1i2h2; i1, λ2),

for all h1, h2 ∈ H, i1, i2 ∈ I, λ1, λ2 ∈ Λ. A semigroup is simple if it has no proper
ideals. All information on Rees matrix semigroups and completely simple semi-
groups required for the proofs is collected in the following Rees theorem (see [6],
Theorems 3.3.1, 3.2.3 and 3.2.11).

Theorem 3 (Rees Theorem) Every completely simple semigroup is isomorphic to
a Rees matrix semigroup M(H; I, Λ; P ) over a group H. Conversely, every semigroup
M(H; I, Λ; P ) is completely simple if and only if each row and column of P contains
at least one nonzero entry. All periodic simple semigroups are completely simple.
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Our proof of Theorem 1 uses the following more general technical lemma of
independent interest.

Lemma 4 Let G be a semigroup, and let S be a subset of G, which generates a
periodic subsemigroup 〈S〉. Then the following conditions are equivalent:

(i) the Cayley graph Cay(G, S) is undirected;

(ii) SG = G, the semigroup 〈S〉 = M(H; I, Λ; P ) is completely simple and, for each
(g; i, λ) ∈ S and every j ∈ I, there exists µ ∈ Λ such that (p−1

λj g−1p−1
µi ; j, µ) ∈ S.

Proof. (i)⇒(ii): Suppose that the Cayley graph Cay(G, S) is undirected. First,
we claim that the following auxiliary condition holds:

t ∈ Sst for all s ∈ S, t ∈ G. (1)

Indeed, take any elements s ∈ S, t ∈ G. By the definition of a Cayley graph (t, st) is
an edge of Cay(G, S). Since the graph is undirected, (st, t) is also an edge. Hence
there exists u ∈ S such that t = ust, and so t ∈ Sst, i.e., (1) holds. It immediately
follows from (1) that SG = G.

The Cayley graph Cay(〈S〉, S) is a subgraph of Cay(G, S) induced by the set
〈S〉 of vertices. Therefore Cay(〈S〉, S) is undirected, too.

Take any elements x, y in 〈S〉. There exist x1, . . . , xm, y1, . . . , yn ∈ S such that
x = x1x2 · · · xm and y = y1y2 . . . yn. Condition (1) shows that tixixi+1 = xi+1 for
some ti ∈ S, where i = 1, . . . , m − 1. Similarly, by (1) there exists tm ∈ S such that
tnxmy1 = y1. Hence

(tmtm−1 . . . t2t1)xy = tmx1y1 . . . yn

= y1 . . . yn = y,

and so y belongs to the ideal generated by x in 〈S〉. This means that 〈S〉 is simple.
It follows from Theorem 3 that 〈S〉 is completely simple, and so 〈S〉 = M(H; I, Λ; P )
is a Rees matrix semigroup over a group H.

Consider any s = (g; i, λ) ∈ S and j ∈ I. For any h ∈ H, put t = (h; j, λ).
Condition (1) shows that t = ust, for some u ∈ S, say u = (k; �, µ), where � ∈ I,
µ ∈ Λ. Hence we get

(h; j, λ) = (k; �, µ)(g; i, λ)(h; j, λ)

= (kpµigpλjh; �, λ).

Therefore � = j and h = kpµigpλjh; whence

k = p−1
λj g−1p−1

µi .
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Thus there exists µ (given by u) such that

u = (p−1
λj g−1p−1

µi ; j, µ) ∈ S.

This means that (ii) holds.

(ii)⇒(i): Suppose that condition (ii) holds. Consider any edge (w, xw) of the
Cayley graph Cay(G, S), where x ∈ S, w ∈ G. Since SG = G, there exist y ∈ S,
v ∈ G such that yv = w. Since 〈S〉 = M(H; I, Λ; P ) is a completely simple semi-
group, we get x = (g; i, λ) and y = (h; j, ξ), for some g, h ∈ H, i, j ∈ I, λ, ξ ∈ Λ. By
condition (ii), there exists µ ∈ Λ such that z = (p−1

λj g−1p−1
µi ; j, µ) ∈ S. Hence

z(xy) = (p−1
λj g−1p−1

µi ; j, µ)(g; i, λ)(h; j, ξ)

= (p−1
λj g−1p−1

µi pµigpλjh; j, ξ)

= (h; j, ξ) = y,

and so zxw = w. Therefore (xw, w) is also an edge of Cay(G, S). Thus Cay(G, S)
is undirected. �

Proof of Theorem 1. The implication (i)⇒(ii) follows from Lemma 4 immedi-
ately.

(ii)⇒(i): Suppose that C = M(H; I, Λ; P ) is a completely simple semigroup
over a group H, such that CG = G. Take any (g; i, λ) ∈ C and j ∈ I. Then
(p−1

λj g−1p−1
µi ; j, µ) ∈ C, for each µ ∈ Λ, and so condition (ii) of Lemma 4 is satisfied.

Thus Cay(G, C) is undirected. �

A band is a semigroup entirely consisting of idempotents. A band is called a semi-
lattice (left zero band, right zero band, rectangular band) if it satisfies the identity
xy = yx (respectively, xy = x, xy = y, xyx = x). Bands play important roles in sev-
eral structure theorems of semigroup theory providing decompositions of semigroups
into ‘simpler’ subsemigroups (see [3] and [6]). They have also found applications to
the investigation of ring constructions (see the survey [7]). Since every completely
simple subsemigroup of a band is a rectangular band, we get the following corollary,
which shows how our main technical lemma simplifies in this interesting special case.

Corollary 5 Let G be a band, and let S be a subset of G. Then the following
conditions are equivalent:

(i) the Cayley graph Cay(G, S) is undirected;

(ii) SG = G and 〈S〉 is a rectangular band.

Proof of Theorem 2. (i)⇒(ii): Suppose that there exists a one-to-one mapping
s �→ s′ from S to S such that, for every edge (x, sx) of the Cayley graph, (sx, s′sx)
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is the reversed edge (sx, x) of the graph. Then the Cayley graph is undirected,
and Lemma 4 shows that 〈S〉 = M(H; I, Λ; P ) is a completely simple semigroup
over a group H, and for each (g; i, λ) ∈ S, j ∈ I, there exists µ ∈ Λ such that
(p−1

λj g−1p−1
µi ; j, µ) ∈ S.

Take any element s ∈ S, say s = (h; i, λ), where h ∈ H, i ∈ I, λ ∈ Λ. There exist
h′ ∈ H, i′ ∈ I, λ′ ∈ Λ such that s′ = (h′; i′, λ′). Suppose that |I| > 1, and consider
two cases.

First, assume that i′ = i. Then we can choose j ∈ I \ {i}, pick some g ∈ H, and
put x = (g; j, λ). By (i), (sx, s′sx) = (sx, x), and so s′sx = x. Hence we get

(g; j, λ) = (h′; i′, λ′)(h; i, λ)(g; j, λ)

= (h′pλ′ihpλi′g; i′, λ),

and so j = i′, a contradiction.

Second, assume that i′ �= i. Then we pick some g ∈ H, and put x = (g; i, λ).
Condition (i) implies s′sx = x; and so

(g; i, λ) = (h′; i′, λ′)(h; i, λ)(g; i, λ)

= (h′pλ′ihpλi′g; i′, λ).

Therefore i = i′, and we get a contradiction again.

Thus both cases give us a contradiction, and therefore |I| = 1. We can introduce
a multiplication on the set Λ by putting λµ = µ for all λ, µ ∈ Λ, and obtain a
right zero band R. Then it is known in the literature and it is not difficult to verify
that the Rees matrix semigroup 〈S〉 = M(H; {i}, Λ; P ) is isomorphic to the direct
product H × R, where the isomorphism is given by

(g; i, λ) �→ (gp−1
λi , λ),

for all g ∈ H, λ ∈ Λ = R.

Take arbitrary elements s = (g, r) ∈ S ∩ (H × R) and x = (h, v) ∈ H × R. The
edge reversed to (x, sx) = ((h, v), (gh, v)) is ((gh, v), (h, v)). Since it also belongs to
the Cayley graph, there exists r ∈ R such that (g−1, r) ∈ S, because (g−1, r)(gh, v) =
(h, v). Since the correspondence s �→ s′ given in (i) is one-to-one, it follows that the
induced correspondence r �→ r is also a one-to-one mapping from the set {r ∈ R |
(g, r) ∈ S} to {r ∈ R | (g−1, r) ∈ S}. It follows that

|S ∩ ({g} × R)| = |S ∩ ({g−1} × R)|.

(ii)⇒(i): Suppose that SG = G, 〈S〉 is isomorphic to a direct product H × R of
a group H and a right zero band R, and for each g ∈ H

|S ∩ ({g} × R)| = |S ∩ ({g−1} × R)|.
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Hence there exists a one-to-one correspondence r �→ r from the set {r ∈ R | (g, r) ∈
S} to {r ∈ R | (g−1, r) ∈ S}. We define a mapping s �→ s′ from S to S by putting

(g, r)′ = (g−1, r),

for each s = (g, r) ∈ S. Consider any edge (x, sx) of the Cayley graph, where
x = (h, v) ∈ H × R and s = (g, r) ∈ S. We get

s′sx = (g−1, r)(g, r)(h, v)

= (g−1gh, v)

= (h, v) = x.

Hence the reversed edge (sx, x) coincides with (sx, s′sx). This means that condi-
tion (i) holds. �

The author is grateful to the referee for valuable comments which have helped to
improve the exposition substantially, and for the reference [9].
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