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Abstract

We present a new and elementary proof of some recent improvements
of the classical inclusion-exclusion bounds. The key idea is to use an
injective mapping, similar to the bijective mapping in Garsia and Milne’s
“bijective” proof of the classical inclusion-exclusion principle.

1 Introduction

Probabilists and statisticians frequently use the classical inclusion-exclusion trunca-
tion bounds to approximate the probability of a union of finitely many events. The
general result, first discovered by Ch. Jordan [8] and later by Bonferroni [1], states
that for any finite family of sets {4, },ev and any r € N,
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where P*(V) denotes the set of non-empty subsets of V, and where for any set A,
X(A) denotes the indicator function of A, that is, x(A)(w) = 1 if w € A, and
X(A)(w) =0if w ¢ A. These bounds are usually referred to as Bonferroni bounds or
inclusion-exclusion bounds. Note that there is no real restriction in using indicator
functions rather than measures, since both sides of the inequalities can be integrated
with respect to any finite measure p (e.g., a probability measure) on any o-field
containing the sets A,, v € V.
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In recent years, a lot of work has been done on improving these inclusion-exclusion
bounds. These improvements are usually of the form

X(Um) < > (=it (ﬂA) (r odd), (3)
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X(Ux%) > Z |I|1 (mA) (r even), (4)

mgr el
where 8 is a restricted set of non-empty subsets of V', and where (3) and (4) are at
least as sharp as their classical counterparts (1) and (2), see e.g., [2, 3, 6, 7, 9, 10, 11].
Usually, these improved inclusion-exclusion bounds require the collection of sets to
satisfy some structural restrictions. Examples of such well-structured collections of
sets arise in some problems of statistical inference [9, 10], reliability theory [2, 6, 7],
and chromatic graph theory [2].

2 Improved bounds via kernel operators
The results in this section require the concept of a kernel operator (cf. [4]).

Definition 2.1 Let V be a set. A kernel operator on V is a mapping k from the
power set of V' into itself such that for all subsets X and Y of V,

(i) k(X)C X (intensionality),
(i) X CY = k(X)Ck() (monotonicity),
(i) k(k(X)) =k(X) (idempotence).

A subset X of V' is called k-open if k(X) = X.

There is a well-known correspondence between kernel operators on V' and union-
closed subsets of the power set of V. Namely, if k is a kernel operator on V', then
the set of k-open subsets of V' is union-closed. On the other hand, if a set X of
non-empty subsets of V' is union-closed, then

=U{ixexixcny tcv)

defines a kernel operator on V' such that X is k-open if and only if X € X. Thus,
the following results may be formulated in terms of union-closed sets as in [3]. As
mentioned in [3], the following theorem subsumes several known results in the area
and has applications to chromatic graph theory and reliability theory. Note that
when k(I) = () for every subset I of V, the theorem agrees with the classical inclusion-
exclusion bounds (1) and (2).
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Theorem 2.2 [3] Let { A, }vev be a finite family of sets, and let k be a kernel operator
on'V' such that for any non-empty and k-open subset X of V,

N4 ¢ |JA.

zeX vgX

Then, for any r € N,
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The results in [3] immediately imply that the inclusion-exclusion bounds associ-
ated with &' are at least as sharp as those associated with k if both k& and &’ are as
required in Theorem 2.2 and k' < k, where < is defined by

K <k & k(I)CK()for any subset I of V (5)
or equivalently,

K <k :& all k-open subsets of V are k’-open. (6)

In particular, since the kernel operator I — @) on V is largest with respect to this par-
tial order, the improved bounds are at least as sharp as their classical counterparts.
The following theorem makes this precise for general k and k’.

Theorem 2.3 Let {A,}yev be a finite family of sets, and let k and k' be kernel
operators on V' such that k' < k with respect to (5) or (6) and such that for any
non-empty and k'-open subset X of V,

N4 ¢ |JA.

zeX vgX

Then, for any r € N,
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3 Proofs

In this section, we present new proofs for the results of the preceding section. In
contrast to the original proofs in [3], the proofs presented here are elementary and do
not require knowledge of abstract tube theory or combinatorial topology. The key
ingredient in these proofs is an injective mapping similar to the bijective mapping in
Garsia and Milne’s proof of the classical inclusion-exclusion principle [5, 12]. In the
literature (see e.g., [12]) Garsia and Milne’s proof is often referred to as a “bijective”
proof as the key idea in their proof rests upon bijective mapping. We adopt this
terminology and refer to our new proofs as “injective” proofs.

Proof of Theorem 2.2. 1t suffices to prove that

X (UA”) E (ﬂA) > E X (ﬂAZ> (r even), (7)
veV TER (V) iel rep*(v) iel
k(I)=0
m<r || <r
|I] even 1] odd
x(UAv> > (ﬂAZ) <) X(ﬂm) (rodd).  (8)
veV T€P (1) iel rep*(v) iel
k(I)=0
m<r [I]<r
|T] even |T] odd
For any w € J,¢y Ay and any r € N define

&r(w) = {IeP(V,) | k(
0, (w) = {I €P(V,)|k(

1
I

=0, || <r, || cvon},
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where V,, ;== {v € V|w € A,}. Obviously, (7) and (8) are equivalent to

&) > 0,(w)| forallwe | JA, (reven), (9)
veV

&) < |0,w)| forallwe | JA, (rodd). (10)
veV

To prove (9) and (10), fix w € (J,eyy Ay. The definition of V, and the requirements
of the theorem imply that V,, is not k-open. Thus, some v € V,, \ k(V,,) can be
chosen. It follows that for any subset I of V,, v ¢ k(I U {v}) since otherwise
v e k(IU{v}) Ck(V,U{v}) =k(V,), contradicting v ¢ k(V,,). Since v ¢ k(I U{v})
and k(I U {v}) C I'U{v} we obtain k(I U{v}) C I and hence, k(I U {v}) C k(I).
From the latter we conclude that for any subset I of V,, k(I) =0 = k(IU{v}) =
Hence, I — I A {v}, where A denotes symmetric difference, is an injective mapping
from O, (w) into &, (w) if r is even, and an injective mapping from €&, (w) into O,(w)
if risodd. O

Remark. Note that our proof of Theorem 2.2 is new even in the traditional case
where k(I) = ) for any subset I of V.
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We finally present our new proof of Theorem 2.3:

Proof of Theorem 2.3. It suffices to prove that

E ( |A>+ E <| Ai) > E X(l Al)+ E X(l Ai)7
IET*(V) el IeCP*(V) el IeP*(V) el IeP*(V) el
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if r is even, and
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if r is odd. Since k¥’ < k these inequalities are equivalent to

E X (mAZ> > E X (ﬂ/h) (r even), (11)
IeP* (V) iel IeP*(V) el
k(I)=0
k(D)0 k(1) 70
|1)1<r [T|<r
|I] even 1] odd
> X (ﬂAZ) < Y (ﬂAi) (r odd). (12)
rep*(v) iel rep*(v) iel
k(I)=0 k(I)=0
K/(1)#0 K/(1)#0
|T|<r [I|<r
|| éven |1] odd
For any w € UvEV A, and any r € N define
Erw) = {IeP (Vo) |k(I)=0,K(I)#0, [I| <r, |I| even},
0l(w) = {Ie?* |l<:l 0, #£0, I <, \I|odd},

where V,, ;== {v € V|w € A,}. Evidently, (11) and (12) are equivalent to

Ex(w)| > |05(w)| forallwe | JA, (reven), (13)
veV

E5(w)] < |0}(w)| forallwe | JA, (rodd). (14)
veV

Now, in order to establish (13) and (14), fix some w € (J,oy Ay and choose some
arbitrary v € V,, \ ¥'(V,,). Since k' < k it follows that v € V,, \ k(V,,). By similar
arguments as in the second proof of Theorem 2.2 it follows that for any subset [
of Vo, k(I) =0 = k(IU{v}) =0 as well as k(1) # 0 = K (I \ {v}) # 0. Therefore,
I+~ I A {v}, where A denotes symmetric difference, is an injective mapping from
0f(w) into &X(w) if r is even, and an injective mapping from € (w) into O (w) if r is
odd. Hence, the result. [
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