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Abstract

In this paper, we give upper bounds on the upper signed domination
number of [I, k] graphs, which generalize some results obtained in other
papers. Further, good lower bounds are established for the minus k-

subdomination number 7;,'°" and signed k-subdomination number ;'

1. Introduction

For a graph G = (V,E) and M C V, we let dyy(v) = {u € M : wv € E(G)}. Let
[ < k be two positive integers. If I < d(v) < k for all v € V, then we call G an [l, k]
graph. If d(v) = k — 1 or k for all v € V, then we call G a nearly k-regular graph.
For A,BCV,and ANB =10, let e(A,B) = |{zy € E(G) : x € A,y € B}|.

For any real-valued function f:V — Rand S CV, let f(S) =3, ¢ f(u) and
flv] = f(N[v]), where N[v] is the closed neighborhood of v. The weight of f is defined
as f(V). A dominating function g : V' — R is a minimal dominating function if every
dominating function h satisfies g(v) < h(v) for every v € V. A signed dominating
function of G is a function g : V' — {—1, 1} such that for every v € V, f[v] > 1. The
upper signed domination number of G is I's(G) = max{f(V) : f is a minimal signed
dominating function on G}. Many results on signed domination in graphs have been
presented by various authors ([3],[5],[7-9])-

Let k be a positive integer such that 1 < k < |V|. A minus k-subdominating
function is a function f : V' — {—=1,0,1} such that the closed neighborhood sum
f(N[v]) > 1 for at least k vertices of G. The minus k-subdomination number, de-
noted by 7,.'", is equal to min{ f(V) : f is a minus k-subdominating function on G}.
A signed k-subdominating function is a function f : V' — {—1,1} such that the
closed neighborhood sum f(N[v]) > 1 for at least k vertices of G. The signed k-
subdomination number, denoted by %;11’ is equal to min{f(V) : f is a signed k-
subdominating function on G}. A majority dominating function is defined in [1]
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as a function f : V — {—1,1} such that f[v] > 1 for at least half the ver-
tices v € V. The majority domination number, denoted by Ymq;(G), is equal to
min{f(V) : f is a majority dominating function on G}. For other terminology we
follow [5].

Paper [1] deals exclusively with majority domination in graphs. Hattingh et al.
[4] provided the exact value of the minus k-subdomination number of cycles and a
lower bound of minus k-subdomination number of trees. Cockayne et al. [2] got the
exact value or lower bound of signed k-subdomination domination number of paths
and trees.

Theorem 1 [1] If n > 2 is an integer and 1 <k <n —1, then
_ n
NP, = (51 +k—n+1.
Theorem 2 [4] If n > 3 is an integer and 1 <k <n —1, then

—-101

() {[%—2)1 if k=n—1 and (k=0 or k= 1(mod 3)),
Vks n) =

QL%J —n  otherwise.
Theorem 3 [4] If T is a tree of order n > 2 and k 1is an integer such that

1<k<n-—1, then
yk’sml(T) >k—n+2.

Theorem 4 [2] Forn>2 and 1 <k <mn,

2k +4

o (Py) =2
Yo' (B) = 2|75

| —n.

Theorem 5 [2] If T is a tree of order n > 2 and k is an integer such that
1<k <n, then

_ 2k +4
’yksu(T) > 2|_ 3 J -n,

with equality for T = P,.

2. Upper bound on T,
Theorem 6 Let2<I!<k+1. If G isan[l,k+ 1] graph of order n, then

k* +5k —1+4 -y il

bk rira if k is even and 1 is even,

2 L

%n if k is even and l is odd,
r(q)<{ K ok

bk led if k is odd and 14

Rrdktir3” if k is odd and 1 is even,

K+ 4k —1+4

Mn if k is odd and I is odd.
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Proof Let g be a minimal signed dominating function of weight ¢(V(G)) =
I(G). Lete M ={z eV :g(x)=—-1},P={x eV :g(x)=1}. Forl <i<k+1,
denote H; = {v € V : d(v) = i} and |M N H;| = w;. Clearly, if v € P N H;, then
glv] =i+ 1 —2dy(v) and dy(v) < [§]. Let A;; = {v € PN H;:dy(v) =j} and
|4; ;| = a; ;. Obviously,

k+1 k+1 k+1 k+1 [i/2]
n=> |MNH]|+Y |[PNH|= ZuﬂrZZa” (1)
i=l i=l i=l j=0
And
k+1
e(M,P) <Y iu. (2)
i=l
Hence,
k+1 L3] k+1
PR BEDILE (3)
i=l j=1

On the other hand, since g is minimal, for every vertex v € Ufill Ao, there is a
vertex @ € N[v] with g[z] = 1 or 2. Since N(v) N M = 0, and g[v;] =i+ 1 — 25 for
every v; € A;;, we have

k+1 k+1 k+1

G(U Aiﬂo, U AM%J) > Z ;. 0- (4)
i=l =l =l

Every vertex v € A, i has at most [£] neighbors in (J;, Ml A;o. We deduce that

k+1 k+1 k+1

e(U Aios UAM%J) < Z[%-IalLéj (5)
i=l i=l i=l

Combining (1)—(5), we find that

k41 k41 k1 L3
n = Zul Zam—&—ZZa”
i=l j=1
k+1 E+1 . k+1 3]
< ZUH-Zf -|G’1LJ+ZZGZJ
=l j=1
k+1 k+1 L5]-1 k+1 .
= ZW*ZZ‘%J*Z[Pﬂ NETE (6)
=l j=1
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Case 1 k,l is even.

For I <i < k+1, it is easy to show that

Thus by (6), we have

n <

IN

IN

IA

which gives

and

< R

k41 k+1LJ 1 k41 .
Zui Z Z a”—f—ZL ja“ i |
i=l i=l j=1
k+1 k+1LJ 1 k41 .
> uit Z > Y%JFZL Jai 1))
i=l i=l j=1
k+1 j k+1 L3
ulJriZZ]a”
i=l j=1
k+1 PRas)
>t e Tl @)
l~c2+5l~c+l+4"+1
l ; iy
k+1 I

>
gubk2+5k+l+4n’

k+1
r,(Gg) = n—QZui
kK*+5k—1+4

< ————n
~ k24+5k+1+4

Case 2 k is even and [ is odd.

For I <i<k+1, it is easy to show that

Thus by (6), we have

n <

FRR L)

k+1 k: A k+1 Lz)-1 k+1 .
Z“t 122“2]*21 Jai 5
i=l j=1
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k+1 k+1 Lz)-1 k+1

k A :
Z“l D J“w*Z Flaitz)

<
i=l j=1
k+1 k+1 L4
= w3 ay
i=1 =l j=1
k+1 k+1
k+4
< Dwrii i (v ()
k2+5k+l+3’““
= TZ““

which gives
kt1

-1
>
thz—k2+5k+l+3”’

and
k+1
r{(Gg) = n—QZui
B2 +5k—1+5

= K isk+l+3"
Case 3 k is odd and l is even.

For I <i < k+1, it is easy to show that

+1s 22

Thus by (6), we have

k+1 k+1 L3]-1 k+1
n < ZU@-F— Z Z (lZJ+Z|_ J(lzL L]
=l j=1
k+1 k+1LJ 1 k41 .
< Yu+ ZZM#ZL Jai,4))
i=l i=l j=1
k+1 k+1\.J
= Zul‘f‘izz.]azg
i=l j=1
k+1 k+1
< Zul k+3zwl (by (3))
k2+4k+l+3"“
§ fz iy

i=l
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which gives
k+1 I

>,
Z“Z—k2+4k+z+3”’

i=l

and
k+1
Iy(G) = TL—QZW
k? + 4k —1+3

R dktl+3 "
Case 4 k is odd and 1 is odd.

For I <i <k+1, it is easy to show that

k+3, 1
1< 2
l+1< 21
Thus by (6), we have
k+1 k+1 L3]-1 k41 .
n< Zw—ZZGWZL Giy)
=l j=1
k41 k+3 k+1 L3]-1 k+1 .
< Dwt ZZ]%+ZL Jag )
i=l i=l j=1
k+1 k: 3k+1H
= Zul I IPILE
i=l j=1
k+1 k+1
k+
< Zuz Zwl by (3))
l~c2+4/~c+l+2"+1
< x vt )
.

i=l

which gives
k41

-1
Zul— Rrdktit2”

and
k+1
K2 +4k—1+4

Rtaktit+2"

This completes the proof of Theorem 1.
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Corollary 1 [7] If G is a nearly (k + 1)-regular graph of order n, then

k+2)? . .
kgjﬁk@ n if k is even,
I['y(G) < )
K2+43k+4 .
Yotshio if k is odd.

Corollary 2 If G is a graph with §(G) > 2, then

A243A—6 ; ; .
XAy I if § is even and A is odd,
213N .p . .
ATHIAOHL ) if 0 is odd and A is odd,
I.(G) < AT¥3AT+6-1
) I =T if § is even and A is even
A24+2A+5 s

A242A—6+1 . B P
AT if 0 is odd and A is even.

Corollary 3 [3] If G is a k-reqular graph, k > 1, of order n, then

r(Q) < Fan if k is even,
$(G) < (k+1)2 e
Pran " if k is odd.

3. Lower bounds on ;"' and !

Theorem 7 If G is a graph of order n and size €, then
(0—A—-1)n+ (A+2)k — 2
d+1 ’

Proof Let g be a minus k-subdominating function on G such that g(V) =
Y29(G) and

Y HG) >

— {veV|gw) =1},
= {veVgl)=-1},
= {veVgl)=0}.

O X v

Further, we let

P = {veP|gl]>1}

P, = {vePgl] <1}
M, = {ve Mgl] >1}
M, = {ve Mg <1}
Q1 = {veQlglv] =1}
Q2 = {veQlglv] <1}
Vi = PRUMUGQ,

Vo = PoUMUQ,.
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Let t(v) denote the number of vertices of weight 0 in N(v). And let p; = |P),
m; = |M;| and ¢; = |Q;| for i = 1,2. Put p = |P| and m = |M|. Then we have

duily) if vep,
dlv)—t(v) _ T

|N(’U) n ]\/[| S o )zt( - 1 if ve A417
AL e Q)

d(v) —t(v) otherwise.

Therefore, we have

d(v) —t(v d(v) —t(v dv) —t(v) —1
S A=) | o ) ) ) ) =tC)

> dv) <
veEM veP; ve M vEQ
+ ) (d(v) = t(v) + > (d(v) = t(v)) + Y (d(v) -
veEP vEM> vEQ2
o N OET t<>+52<d(> tv)) :
= 5 v) =5 v)+3 v v m = Sa
veV veV 11€V2
< IS - 1S e Z d(v _!
s 3 v 5 —m (]1
veV veV veVz
Noting that 3 i, t(v) = > ,cod(v) > dg and 3 ), d(v) > dm, we have
1 1 1
om < e—2dq+ §A(p2 +my + q2) —my — J0
= LS St 2 At ma+ ) + oo+
= €—m D) q 2f] D) P2 M2+ G2 2f]2 Mo
1 1 A+2
< 6—7”—55(1— §G+T(P2+m2+(h)- (7)

Since ¢ is a minus k-subdominating function, we have
p2tma+q@ <n-—k (8)
Combining (7) and (8) we have

2¢+ (A+2)(n — k)
d+1 '

2m+q <

Therefore

(6= A—Dn+ (A+2)k— 2

~101 —n—(9 >
Vs (G) =1 —(2m+q) > 51

: ~101
Then, since v,

Theorem 7, we have:

11

< 4. (G) for all graphs G, as an immediate corollary of
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Corollary 4 If G is a graph of order n and size €, then

d—A—-1)n+ (A+2)k—2¢
d+1 '

e =

In the special case when k > n/2, we have
Corollary 5 [6] If G is a graph of order n and size €, then

n(26 — A) — 4e

Ymaj(G) = 200+ 1)
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