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Abstract

In this paper, we give upper bounds on the upper signed domination
number of [l, k] graphs, which generalize some results obtained in other
papers. Further, good lower bounds are established for the minus k-
subdomination number γ−101

ks and signed k-subdomination number γ−11
ks .

1. Introduction
For a graph G = (V, E) and M ⊂ V , we let dM(v) = {u ∈ M : uv ∈ E(G)}. Let

l ≤ k be two positive integers. If l ≤ d(v) ≤ k for all v ∈ V , then we call G an [l, k]
graph. If d(v) = k − 1 or k for all v ∈ V , then we call G a nearly k-regular graph.
For A, B ⊂ V , and A ∩ B = ∅, let e(A, B) = |{xy ∈ E(G) : x ∈ A, y ∈ B}|.

For any real-valued function f : V → R and S ⊆ V , let f(S) =
∑

u∈S f(u) and
f [v] = f(N [v]), where N [v] is the closed neighborhood of v. The weight of f is defined
as f(V ). A dominating function g : V → R is a minimal dominating function if every
dominating function h satisfies g(v) ≤ h(v) for every v ∈ V . A signed dominating
function of G is a function g : V → {−1, 1} such that for every v ∈ V , f [v] ≥ 1. The
upper signed domination number of G is Γs(G) = max{f(V ) : f is a minimal signed
dominating function on G}. Many results on signed domination in graphs have been
presented by various authors ([3],[5],[7–9]).

Let k be a positive integer such that 1 ≤ k ≤ |V |. A minus k-subdominating
function is a function f : V → {−1, 0, 1} such that the closed neighborhood sum
f(N [v]) ≥ 1 for at least k vertices of G. The minus k-subdomination number, de-
noted by γ−101

ks , is equal to min{f(V ) : f is a minus k-subdominating function on G}.
A signed k-subdominating function is a function f : V → {−1, 1} such that the
closed neighborhood sum f(N [v]) ≥ 1 for at least k vertices of G. The signed k-
subdomination number, denoted by γ−11

ks , is equal to min{f(V ) : f is a signed k-
subdominating function on G}. A majority dominating function is defined in [1]
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as a function f : V → {−1, 1} such that f [v] ≥ 1 for at least half the ver-
tices v ∈ V . The majority domination number, denoted by γmaj(G), is equal to
min{f(V ) : f is a majority dominating function on G}. For other terminology we
follow [5].

Paper [1] deals exclusively with majority domination in graphs. Hattingh et al.
[4] provided the exact value of the minus k-subdomination number of cycles and a
lower bound of minus k-subdomination number of trees. Cockayne et al. [2] got the
exact value or lower bound of signed k-subdomination domination number of paths
and trees.

Theorem 1 [1] If n ≥ 2 is an integer and 1 ≤ k ≤ n − 1, then

γ−101
ks (Pn) = 
n

3
� + k − n + 1.

Theorem 2 [4] If n ≥ 3 is an integer and 1 ≤ k ≤ n − 1, then

γ−101
ks (Cn) =

{

 (n−2)

3
� if k = n − 1 and (k = 0 or k = 1(mod 3)),

2�2k+4
3


 − n otherwise.

Theorem 3 [4] If T is a tree of order n ≥ 2 and k is an integer such that
1 ≤ k ≤ n − 1, then

γ−101
ks (T ) ≥ k − n + 2.

Theorem 4 [2] For n ≥ 2 and 1 ≤ k ≤ n,

γ−11
ks (Pn) = 2�2k + 4

3

 − n.

Theorem 5 [2] If T is a tree of order n ≥ 2 and k is an integer such that
1 ≤ k ≤ n, then

γ−11
ks (T ) ≥ 2�2k + 4

3

 − n,

with equality for T = Pn.

2. Upper bound on Γs

Theorem 6 Let 2 ≤ l ≤ k + 1. If G is an [l, k + 1] graph of order n, then

Γs(G) ≤




k2 + 5k − l + 4

k2 + 5k + l + 4
n if k is even and l is even,

k2 + 5k − l + 5

k2 + 5k + l + 3
n if k is even and l is odd,

k2 + 4k − l + 3

k2 + 4k + l + 3
n if k is odd and l is even,

k2 + 4k − l + 4

k2 + 4k + l + 2
n if k is odd and l is odd.
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Proof Let g be a minimal signed dominating function of weight g(V (G)) =
Γs(G). Let M = {x ∈ V : g(x) = −1}, P = {x ∈ V : g(x) = 1}. For l ≤ i ≤ k + 1,
denote Hi = {v ∈ V : d(v) = i} and |M ∩ Hi| = ui. Clearly, if v ∈ P ∩ Hi, then
g[v] = i + 1 − 2dM(v) and dM (v) ≤ � i

2

. Let Ai,j = {v ∈ P ∩ Hi : dM (v) = j} and

|Ai,j | = ai,j . Obviously,

n =
k+1∑
i=l

|M ∩ Hi| +
k+1∑
i=l

|P ∩ Hi| =
k+1∑
i=l

ui +
k+1∑
i=l

�i/2�∑
j=0

ai,j . (1)

And

e(M, P ) ≤
k+1∑
i=l

iui. (2)

Hence,

k+1∑
i=l

� i
2
�∑

j=1

jai,j ≤
k+1∑
i=l

iui. (3)

On the other hand, since g is minimal, for every vertex v ∈ ⋃k+1
i=l Ai,0, there is a

vertex x ∈ N [v] with g[x] = 1 or 2. Since N(v) ∩ M = ∅, and g[vj ] = i + 1 − 2j for
every vj ∈ Ai,j , we have

e(
k+1⋃
i=l

Ai,0,
k+1⋃
i=l

Ai,� i
2
�) ≥

k+1∑
i=l

ai,0. (4)

Every vertex v ∈ Ai,� i
2
� has at most 
 i

2
� neighbors in

⋃k+1
i=l Ai,0. We deduce that

e(
k+1⋃
i=l

Ai,0,
k+1⋃
i=l

Ai,� i
2
�) ≤

k+1∑
i=l


 i

2
�ai,� i

2
�. (5)

Combining (1)–(5), we find that

n =
k+1∑
i=l

ui +
k+1∑
i=l

ai,0 +
k+1∑
i=l

� i
2
�∑

j=1

ai,j

≤
k+1∑
i=l

ui +
k+1∑
i=l


 i

2
�ai,� i

2
� +

k+1∑
i=l

� i
2
�∑

j=1

ai,j

=
k+1∑
i=l

ui +
k+1∑
i=l

� i
2
�−1∑

j=1

ai,j +
k+1∑
i=l

(
 i

2
� + 1)ai,� i

2
�. (6)
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Case 1 k, l is even.

For l ≤ i ≤ k + 1, it is easy to show that


 i

2
� + 1 ≤ k + 4

l
� i

2

.

Thus by (6), we have

n ≤
k+1∑
i=l

ui +
k + 4

l
(

k+1∑
i=l

� i
2
�−1∑

j=1

ai,j +

k+1∑
i=l

� i

2

ai,� i

2
�)

≤
k+1∑
i=l

ui +
k + 4

l
(

k+1∑
i=l

� i
2
�−1∑

j=1

jai,j +
k+1∑
i=l

� i

2

ai,� i

2
�)

=
k+1∑
i=1

ui +
k + 4

l

k+1∑
i=l

� i
2
�∑

j=1

jai,j

≤
k+1∑
i=l

ui +
k + 4

l

k+1∑
i=l

iui (by (3))

≤ k2 + 5k + l + 4

l

k+1∑
i=l

ui,

which gives
k+1∑
i=l

ui ≥ l

k2 + 5k + l + 4
n,

and

Γs(G) = n − 2
k+1∑
i=l

ui

≤ k2 + 5k − l + 4

k2 + 5k + l + 4
n.

Case 2 k is even and l is odd.

For l ≤ i ≤ k + 1, it is easy to show that


 i

2
� + 1 ≤ k + 4

l − 1
� i

2

.

Thus by (6), we have

n ≤
k+1∑
i=l

ui +
k + 4

l − 1
(

k+1∑
i=l

� i
2
�−1∑

j=1

ai,j +
k+1∑
i=l

� i

2

ai,� i

2
�)
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≤
k+1∑
i=l

ui +
k + 4

l − 1
(

k+1∑
i=l

� i
2
�−1∑

j=1

jai,j +

k+1∑
i=l

� i

2

ai,� i

2
�)

=

k+1∑
i=1

ui +
k + 4

l − 1

k+1∑
i=l

� i
2
�∑

j=1

jai,j

≤
k+1∑
i=l

ui +
k + 4

l − 1

k+1∑
i=l

iui (by (3))

≤ k2 + 5k + l + 3

l − 1

k+1∑
i=l

ui,

which gives
k+1∑
i=l

ui ≥ l − 1

k2 + 5k + l + 3
n,

and

Γs(G) = n − 2
k+1∑
i=l

ui

≤ k2 + 5k − l + 5

k2 + 5k + l + 3
n.

Case 3 k is odd and l is even.

For l ≤ i ≤ k + 1, it is easy to show that


 i

2
� + 1 ≤ k + 3

l
� i

2

.

Thus by (6), we have

n ≤
k+1∑
i=l

ui +
k + 3

l
(

k+1∑
i=l

� i
2
�−1∑

j=1

ai,j +

k+1∑
i=l

� i

2

ai,� i

2
�)

≤
k+1∑
i=l

ui +
k + 3

l
(

k+1∑
i=l

� i
2
�−1∑

j=1

jai,j +
k+1∑
i=l

� i

2

ai,� i

2
�)

=
k+1∑
i=1

ui +
k + 3

l

k+1∑
i=l

� i
2
�∑

j=1

jai,j

≤
k+1∑
i=l

ui +
k + 3

l

k+1∑
i=l

iui (by (3))

≤ k2 + 4k + l + 3

l

k+1∑
i=l

ui,
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which gives
k+1∑
i=l

ui ≥ l

k2 + 4k + l + 3
n,

and

Γs(G) = n − 2
k+1∑
i=l

ui

≤ k2 + 4k − l + 3

k2 + 4k + l + 3
n.

Case 4 k is odd and l is odd.

For l ≤ i ≤ k + 1, it is easy to show that


 i

2
� + 1 ≤ k + 3

l − 1
� i

2

.

Thus by (6), we have

n ≤
k+1∑
i=l

ui +
k + 3

l − 1
(

k+1∑
i=l

� i
2
�−1∑

j=1

ai,j +
k+1∑
i=l

� i

2

ai,� i

2
�)

≤
k+1∑
i=l

ui +
k + 3

l − 1
(

k+1∑
i=l

� i
2
�−1∑

j=1

jai,j +

k+1∑
i=l

� i

2

ai,� i

2
�)

=

k+1∑
i=1

ui +
k + 3

l − 1

k+1∑
i=l

� i
2
�∑

j=1

jai,j

≤
k+1∑
i=l

ui +
k + 3

l − 1

k+1∑
i=l

iui (by (3))

≤ k2 + 4k + l + 2

l − 1

k+1∑
i=l

ui,

which gives
k+1∑
i=l

ui ≥ l − 1

k2 + 4k + l + 2
n,

and

Γs(G) = n − 2
k+1∑
i=l

ui

≤ k2 + 4k − l + 4

k2 + 4k + l + 2
n.

This completes the proof of Theorem 1.
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Corollary 1 [7] If G is a nearly (k + 1)-regular graph of order n, then

Γs(G) ≤



(k+2)2

k2+6k+4
n if k is even,

k2+3k+4
k2+5k+2

if k is odd.

Corollary 2 If G is a graph with δ(G) ≥ 2, then

Γs(G) ≤




∆2+3∆−δ
∆2+3∆+δ

n if δ is even and ∆ is odd,

∆2+3∆−δ+1
∆2+3∆+δ−1

n if δ is odd and ∆ is odd,

∆2+2∆−δ
∆2+2∆+δ

n if δ is even and ∆ is even,

∆2+2∆−δ+1
∆2+2∆+δ−1

n if δ is odd and ∆ is even.

Corollary 3 [3] If G is a k-regular graph, k ≥ 1, of order n, then

Γs(G) ≤
{

k+1
k+3

n if k is even,

(k+1)2

k2+4k−1
n if k is odd.

3. Lower bounds on γ−101
ks and γ−11

ks

Theorem 7 If G is a graph of order n and size ε, then

γ−101
ks (G) ≥ (δ − ∆ − 1)n + (∆ + 2)k − 2ε

δ + 1
.

Proof Let g be a minus k-subdominating function on G such that g(V ) =
γ−101

ks (G) and

P = {v ∈ V | g(v) = 1},
M = {v ∈ V | g(v) = −1},
Q = {v ∈ V | g(v) = 0}.

Further, we let

P1 = {v ∈ P |g[v] ≥ 1}
P2 = {v ∈ P |g[v] < 1}
M1 = {v ∈ M |g[v] ≥ 1}
M2 = {v ∈ M |g[v] < 1}
Q1 = {v ∈ Q|g[v] ≥ 1}
Q2 = {v ∈ Q|g[v] < 1}
V1 = P1 ∪ M1 ∪ Q1

V2 = P2 ∪ M2 ∪ Q2.
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Let t(v) denote the number of vertices of weight 0 in N(v). And let pi = |Pi|,
mi = |Mi| and qi = |Qi| for i = 1, 2. Put p = |P | and m = |M |. Then we have

|N(v) ∩ M | ≤




d(v)−t(v)
2

if v ∈ P1,
d(v)−t(v)

2
− 1 if v ∈ M1,

d(v)−t(v)−1
2

if v ∈ Q1,

d(v) − t(v) otherwise.

Therefore, we have

∑
v∈M

d(v) ≤
∑
v∈P1

d(v) − t(v)

2
+

∑
v∈M1

(
d(v) − t(v)

2
− 1) +

∑
v∈Q1

d(v) − t(v) − 1

2

+
∑
v∈P2

(d(v) − t(v)) +
∑
v∈M2

(d(v) − t(v)) +
∑
v∈Q2

(d(v) − t(v))

=
1

2

∑
v∈V

d(v) − 1

2

∑
v∈V

t(v) +
1

2

∑
v∈V2

(d(v) − t(v)) − m1 − 1

2
q1

≤ 1

2

∑
v∈V

d(v) − 1

2

∑
v∈V

t(v) +
1

2

∑
v∈V2

d(v) − m1 − 1

2
q1.

Noting that
∑

v∈V t(v) =
∑

v∈Q d(v) ≥ δq and
∑

v∈M d(v) ≥ δm, we have

δm ≤ ε − 1

2
δq +

1

2
∆(p2 + m2 + q2) − m1 − 1

2
q1

= ε − m − 1

2
δq − 1

2
q +

1

2
∆(p2 + m2 + q2) +

1

2
q2 + m2

≤ ε − m − 1

2
δq − 1

2
q +

∆ + 2

2
(p2 + m2 + q2). (7)

Since g is a minus k-subdominating function, we have

p2 + m2 + q2 ≤ n − k. (8)

Combining (7) and (8) we have

2m + q ≤ 2ε + (∆ + 2)(n − k)

δ + 1
.

Therefore

γ−101
ks (G) = n − (2m + q) ≥ (δ − ∆ − 1)n + (∆ + 2)k − 2ε

δ + 1
.

Then, since γ−101
ks ≤ γ−11

ks (G) for all graphs G, as an immediate corollary of
Theorem 7, we have:
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Corollary 4 If G is a graph of order n and size ε, then

γ−11
ks (G) ≥ (δ − ∆ − 1)n + (∆ + 2)k − 2ε

δ + 1
.

In the special case when k ≥ n/2, we have

Corollary 5 [6] If G is a graph of order n and size ε, then

γmaj(G) ≥ n(2δ − ∆) − 4ε

2(δ + 1)
.
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