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Abstract

Let F' = (Uy,U; W) be a forest with |U;| = |Us| = s, where s > 2, and
let G = (W1, Vs, E) be a bipartite graph with |Vi| = |V2| = n > 2k + s,
where k is a nonnegative integer. Suppose that the minimum degree of G
is at least k +s. We show that if n > 2k + s then G contains the disjoint
union of the forest F' and k disjoint cycles. Moreover, if n = 2k + s, then
G contains the disjoint union of the forest F', k — 1 disjoint cycles and a
path of order 4.

1 Introduction

A set of graphs is called disjoint if no two of them have any vertex in common.
Schuster [5] investigated the disjoint cycles and a forest in a graph. He proved the
following result:

Theorem A. ([5], Theorem) Let F be a forest on s edges without isolated ver-
tices and let G be a graph of order at least 3k + |V (F')| with minimum degree at least
2k + s, where k and s are nonnegative integers. Then G contains the disjoint union
of the forest F and k disjoint cycles.

In this paper, we consider a similar problem in bipartite graphs. About the max-
imum number of disjoint cycles in a bipartite graph, H. Wang proved the following
theorems:

Theorem B. ([7], Theorem 1) Let G = (V4,Va; E) be a bipartite graph with
[Vi| = |Va| =n > 2k, where k is a positive integer. Suppose that the minimum degree
of G is at least k + 1. Then G contains k disjoint cycles.

Theorem C. ([7], Theorem 2) Let G = (14, Va; E) be a bipartite graph with
[Vi| = |V2| = n = 2k, where k is a positive integer. Suppose that the minimum degree
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of G is at least k+ 1. Then G contains k — 1 disjoint 4-cycles and a path of order 4
such that the path is disjoint from all the k — 1 4-cycles.

This paper proves two theorems as follows:

Theorem 1. Let F' = (U, Us; W) be a forest with |Uy| = |Us| = s, where s > 2.
Let G = (V1, Vi, E) be a bipartite graph with |Vi| = |Vo| = n > 2k + s, where k is a
nonnegative integer. Suppose that the minimum degree of G is at least k + s. Then
G contains the disjoint union of the forest F' and k disjoint cycles.

Theorem 2. Let F' = (U, Us; W) be a forest with |Uy| = |Us| = s, where s > 2.
Let G = (V4,Va; E) be a bipartite graph with |Vi| = |Va| = n = 2k + s, where k is a
nonnegative integer. Suppose that the minimum degree of G is at least k+s. Then G
contains the disjoint union of the forest F', k—1 disjoint cycles and a path of order 4.

All graphs considered in this paper are finite simple graphs in standard termi-
nology and notation from [1] except as indicated. Let G = (V, E) be a graph. For
any u € V, if G’ is a subgraph of G, we define N(u, G') to be Ng(u) NV(G') and let
d(u,G") = |N(u,G")|. If d(u,G) = 0 or 1 we say that u is an isolated vertex or an
endvertex of G, respectively. The minimum degree of G is denoted by §(G). For a
subset U of V, G[U] is the subgraph of G induced by U. For two disjoint subgraphs
Gh1 and G; of G, E(G41,G3) is the set of all edges of G between Gy and Go. Let
e(G1,Ga) = |E(G1,Go)l, ie. e(G1,Ga) = Ypev(ay) d(w,Ga). A set of pairwise dis-
joint edges of G is called a matching in G. If M is a matching with the property that
every vertex of G is incident with an edge of M, then M is called a perfect matching
in G. The disjoint union of two graphs S and T is denoted by S U T. We use the
symbol OF to denote the disjoint union of k cycles; for k = 1 we simply write O
instead of (O!. An embedding of a graph H into a graph G is an injective mapping
o:V(H) — V(G) so that for every edge zy € E(G), the edge o(x)o(y) is contained
in F(G). We write H C G or G 2 H if there is an embedding of H into G. For an
embedding o of H into G and a subgraph M of H, let (M) denote the image of M
in G, i.e., o(M) is the subgraph of G with vertex set {o(z) : z € V(M)} and edge
set {o(z)o(y) : zy € E(M)}. We use (X,Y; E) to denote a bipartite graph with
(X,Y) as its bipartition and F as its edge set. The length of a cycle C' is denoted
by {(C), and a 4-cycle is a cycle of length 4. An acyclic graph is a graph without
cycles.

2 Lemmas

For all lemmas listed below, G = (V;, V,; E) is a given bipartite graph.

Lemma 2.1 ([7], Lemma 2.1) Let C be a cycle of G and = a vertex of G not on C.
Suppose d(x,C) > 2. Then either C' is a 4-cycle or C' + x contains a cycle C" such
that 1(C") < 1(C).
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Lemma 2.2 ([7], Lemma 2.2) Let C' be a 4-cycle of G. Let x € Vi and y € Vy be
two wvertices not on C. Suppose d(z,C) + d(y,C) > 3. Then there exists z € V(C)
such that either C' — z + x is a 4-cycle and yz € E, or C' — z +y is a 4-cycle and
rz € B.

Lemma 2.3 ([7], Lemma 2.3) Let T be a tree of order at least 2 with a bipartition
(X,Y) such that |Y] > |X|. Let p = |Y| —|X|. Then'Y contains at least p + 1
endvertices of T.

Lemma 2.4 ([7], Lemma 2.4) Let P = x120x3 and Q = y1y2y3 be two disjoint paths
of G with x1 € Vi and yy € Va. Let C be a 4-cycle of G such that C is disjoint
from both P and Q. Suppose d(x1,C) + d(x3,C) + d(y1,C) + d(y3,C) > 5. Then
GIV(C U P U Q)] contains a 4-cycle C' and a path P’ of order 6 such that P’ is
disjoint from C'.

Lemma 2.5 ([7], Lemma 2.5) Let C be a 4-cycle of G. Let uv and xy be two disjoint
edges of G such that they are disjoint from C. Suppose d(u,C) +d(v,C) 4+ d(z,C) +
d(y,C) > 5. Then G[V(C)U{u,v,z,y}] contains a 4-cycle C' and a path P’ of order
4 such that P’ is disjoint from C'.

Lemma 2.6 ([7], Lemma 2.6) Let C be a 4-cycle and P a path of order 4 in G such
that P is disjoint from C and Y-,y (py d(z,C) > 6. Then either G[V (CUP)]| contains
two disjoint quadrilaterals, or P has an endvertez, say z, such that d(z,C) = 0.

Lemma 2.7 ([7], Lemma 2.7) Let C be a 4-cycle and P a path of order s > 6 in
G such that C is disjoint from P. If Y ,cy(pyd(x,C) > s+ 1, then G[V(C U P)]
contains two disjoint cycles.

Lemma 2.8 ([7], Lemma 2.8) Let s and t be two integers such that t > s > 2 and
t > 3. Let Cy and Cy be two disjoint cycles of G with lengths 2s and 2t, respectively.
Suppose that 3 ,cy(c,) d(w,C1) > 2t + 1. Then G[V(Cy U Cy)] contains two disjoint
cycles C" and C" such that 1(C") + 1(C") < 2s + 2t.

Lemma 2.9 Let F' = (Uy,Uy; W) be a forest with |Uy| = |Us| = s, where s > 1. Let
G = (Vi,Va; E) be a bipartite graph with |Vi| = |Vo| = n > s and §(G) > s. Then
GDF.

Proof. Without loss of generality, assume F' is a tree. The lemma is trivial for
s = 1. By Lemma 2.3, each of U; and U, contains an endvertex of F', say x and v,
respectively. Let F' = F — {z,y}. By induction on s, there exists an embedding
o of IV in G. Suppose ziz,y1y € W with {z1,51} C V(F). Since §(G) > s,
N(o(z1),G—V(c(F")) # 0 and N(o(y1),G—V(a(F"))) # 0, and it follows G D F.

Lemma 2.10 Let F = (Uy,Us; W) be a forest in G with |Ur| = |Us| = s, where
s > 3. Let C = (A1, Ag; B) be a cycle in G with |A1] = |Ay] =t > 3, and C is
disjoint from F. Suppose e(C, F) > 2ts — 4, then G[V(CUF)] 2 C" U F, where C’
s a 4-cycle.
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Proof. Since e¢(C,F) > 2ts — 4, t > 3 and s > 3, there exist {z,y} C V(C)
with © # y and d(z, F) = d(y, F') = s. We may choose x and y such that z € A,
and y € As. Suppose this is not the case, say, for any z € Ay, d(z, F) < s — 1.
Let C = z129...29021 with 21 € A;. As e(C,F) > 2ts — 4, either d(z, F) = s or
d(zs,F) = s. If w € N(29,F) N N(z4, F), then G[V(CUF)] 2 C" U F, where C’
is the 4-cycle wzozzzqw and F C F — w + z; for some i € {1,5} with d(z;, F) = s.
So we may assume N(z9, F) N N(z4, F) = (. Therefore d(zo, F) + d(z4, F) < s.
Then e(C,F) < t(s— 1)+ s(t —1) = 2ts —t — s < 2ts — 4, a contradiction, hence
the claim is true. Then we see that for any ¢ € {1,...,t — 1} with 29,11 # =,
N (22, F) N N(22i42, F) = 0, and N (22, F) N N(z9, F) = 0 if x # 2, for otherwise
G[V(CUF)] 2 C'U F, where C" is a 4-cycle. When ¢ is even, it’s easy to deduce that
S d(ze, F) < s(t/2) and Y d(z9i1, F) < s(t/2). So 2ts —4 < e(C,F) < ts,
implying st < 4, a contradiction. Similarly, when ¢ is odd, we obtain e(C, F) <
2((t —1)s/2+ s) < 2ts — 4, a contradiction.

Lemma 2.11 Let F' = (Uy,Uy; W) be a forest in G = (Vi, Vo; E) with |Uy| = |Us| =
s, where s > 3. Let uv and xy be two disjoint edges of G such that they are disjoint
from F. Suppose d(u, F)+d(v, F') +d(z, F)+d(y, F) > 4s —3 and G[V(F)] = K.
Then GV (F) U {u,v,z,y}] 2 F U P, where P is a path of order 4.

Proof. As Y,crd(t,F) > 4s — 3 where T = {u,v,x,y}, either N(u, F) N
N(z,F) # 0 or N(v, F) N N(y,F) # 0. Say the former holds, and let w €
N(u, F) N N(z, F). For the same reason, either d(v,F) > 0 or d(y,F) > 0. Say
d(y, F') > 0. Clearly, G[V(F)] — w + y contains F since G|V (F)] = K;,. As vuwz
is a path of GG, the lemma follows.

Lemma 2.12 Let F' = (Uy,Uy; W) be a forest in G with |Uy| = |Us| = s, where
s > 3. Let P = x1x9...x9; be a path in G, where t > 3. Suppose P is disjoint from
F, GIV(F)] = Kss and e(P,F) > 2t(s — 1) + 1. Then GIV(FUP))] 2 FUQ.

Proof. Without loss of generality, suppose U; C V. Suppose that there exists
v € Up such that v € N(z;, F) N N(z442, F) for some ¢ € {1,...,2t — 2}. Then
VT Tiy1Ti42v 1S a 4-cycle in G. If d(z;, F) > 1 for some z; € V(P)N Vi — {zi1},
then G[V(F) — {v}] + =; contains F' and so the lemma holds. So we may assume
d(z;,F) = 0 for all z; € V(P)NV; — {x;y1}. It follows that 2t(s — 1) + 1 <
e(P,F) < ts+ s, which implies (¢t — 1)(s — 2) — 1 < 0, a contradiction. So we may
assume N (z;, F) N N (219, F) = 0 and therefore d(z;, F) + d(xi42, F) < s for all
ie{l,.,2t —2}. If t is odd, then 2t(s — 1) + 1 < e(P, F) < s(t — 1) + 2s, implying
(t—1)(s—2)—1<0, a contradiction. If t is even, Then 2t(s —1)+1 < e(P, F) < ts,
which implies ¢(s — 2) + 1 < 0, a contradiction again.

Lemma 2.13 Let P = xyx9x3 and QQ = yi1yoyz be two disjoint paths of G with
x1 € Vi and y1 € Va. Let F' = (Uy,Us; W) be a forest in G with |Uy| = |Us| = s,
where s > 3. suppose F is disjoint from both P and Q, and d(z1, F) + d(z3, F') +
d(ys, F)+d(ys, F) > 4s—2. Then GIV(FUPUQ)] 2 F U C, where C is a 4-cycle.
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Proof. First we claim that N (a1, F') N N(xs, F') # 0 and N(y1, F) N N(ys, F) #
(). Suppose not, without loss of generality, say N(z1, F) N N(z3,F) = 0, then
d(zy, F)+d(zs, F) < s. It follows that 2s > d(y1, F) +d(y3, F) > 4s—2—s = 3s—2,
implying s < 2, a contradiction. Clearly there exists one of {z1,z3,y1,y3}, say z1,
such that d(z1, F) = s. Let u € N(y1, F)NN(ys, F). Then we see that F—u+xz; 2 F
and uQu is a 4-cycle disjoint from F' — u + z1, where u € N(y1, F') N N(ys, F).

3 Proofs of the Theorems

To prove the theorems, we introduce the following terminology: For a graph H
and a path P = zy2s...7, of H, we define o(P, H) = max{d(xq, H),d(x_1, H)} if
t>2and o(P,H)=d(x1,H) if t = 1.

Let G and F be given as stated in the two theorems. We may assume that F' is
connected. If s = 2, F is a path of order 4. Since |Vi| = |Va| =n > 2k+2 =2(k+1)
and §(G) > k+2 > k+1, we see that if s = 2 then G D F U OF by Theorem B and
Theorem C. Therefore we suppose s > 3 and need to show the following;:

GDOFUFifn>2k+sand
G2 QOF'UFUPIifn=2k+s, where P is a path of order 4. (1)
We use induction on k to prove (1). If k=0, (1) follows from Lemma 2.9. Since
n>2k+s=2k—-1)4(s+2) and 6(G) > k+s= (k—1)+ (s+ 1), by induction
onk, GO OF'UFUK,. Let Cp,C,,...,Cy_1 be k — 1 disjoint cycles of G. Let o

be an embedding of F in G — V(U] C;). We choose Ci, Cy, ..., Cj,_; and o(F) such
that

Zf:_lll(C’i) is minimum. (2)
Subject to (2), we choose Cy, Cy, ..., Cy_1 and o(F) such that
e(Glo(F)])  is maximum. (3)

Let D =G~V (U] ) — V(o(F)). Subject to (2) and (3), we choose Cy, Cs, ...,
Cy—1 and o(F') such that

the length of a longest path in D is maximal. (4)

Let P = x129...z) be a fixed longest path of D. Without loss of generality, assume
x1 € V4. Subject to (2), (3) and (4), we choose C1,Cy, ..., Ci_1 and ¢(F) such that

o(P,D)  is minimum. (5)

Let Dy = D — V(P). Subject to (2) to (5), we choose C1,Cy, ...,Cy_; and o(F)
such that

the length of a longest path in Dy is maximal. (6)
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Let Q = y1y2...y4 be a fixed longest path of Dy. Without loss of generality, assume
y1 € V1 if g is even. Subject to (2) to (6), we finally choose Cy, Cy, ..., Cr—1 and o(F)
such that

if ¢ is odd, then o(Q, Do) is minimum; (7)

if ¢ is even, then d(ya, Do) is minimum. (8)

Clearly, p > ¢. Let H = U] C; and |V(D)| = 2d. We will prove a number of
claims. First, we claim

d>2. 9)

Proof of (9). Suppose d < 1. Without loss of generality, assume that [(C}) <
[(Cy) < ... <U(Cyq) and {(Cy—y) = 2t. Then ¢ > 3, for otherwise n = 2(k — 1) +
s+ 1 < 2k +s. By Lemma 2.8 and (2), e(Cy_1,C;) < 2t for alli € {1,...,k — 2}.
By Lemma 2.1 and (2), d(z, Cx—1) <1 for all z € V(D). Therefore e(Cy_1,0(F)) >
2t(k +s) — 2t(k — 2) — 4t — 2 = 2ts — 2. Then G[V(Cr_1 Uo(F))] 2 C" U F by
Lemma 2.10, where C” is a 4-cycle, contradicting (2).

We claim
p >3 and if |[V(Dg)| > 4 then ¢ > 3. (10)

Proof of (10). First we show p > 3. To the contrary, suppose p < 2. If p < 2,
then for any z € V(D) N Vi and y € V(D) N Vy, d(z, D) = d(y, D) = 0. It follows
that d(z, H) + d(y, H) > 2(k + s) — 2s = 2k. Then there exists a C; in H such
that d(z,C;) + d(y,C;) > 3. By Lemma 2.1 and (2), C; is a 4-cycle. By Lemma
2.2, GIV(C;) U {z,y}] D C! U Ky, where C} is a 4-cycle. This is a contradiction to
p<2. Sop=2. Let P=mzze. We may choose C1,Cy, ...,Cr_1 and o(F) such that
Dg O K3 while (2), (3) and (4) are maintained. If this is not the case, then by (4),
d(z,D) = 0 for all z € Dy. For any z € V(Do) NVy and y € V(D) N Vs, if there
exists a cycle, say C, such that d(z, Cy)+d(y, Cy) > 3, then by Lemma 2.1 and (2),
C} must be a 4-cycle. By Lemma 2.2, G[V(Cy) U{z,y}] contains a 4-cycle C' and an
edge ¢’ disjoint from C’. So we may assume d(z, C;) +d(y,C;) <2 for all C; € H. It
follows that d(z,0(F)) +d(y,o(F)) > 2(k+s) — 2(k — 1) = 2s + 2, a contradiction.
Hence Dy 2O K,. This argument allows us to choose C1,Cy, ..., Cy_1 and o(F) such
that D has a perfect matching. Let wv € E(Dy) and R = {1, 22, u,v}. If there
exists a cycle C; in H such that Y-, cpd(z, C;) > 5, then by Lemma 2.5, G[V (C;) UR]
contains the disjoint union of a 4-cycle and a path of order 4, contradicting p = 2.
S0 Y perd(z,C;) < 4 for all C; € H. Therefore Y cpd(z,0(F)) > 4(k + s) — 4(k —
1) —4 = 4s, ie. d(z,0(F)) = sforalxz € R. Clearly G[V(o(F))UR] 2 F UC,
where C' is a 4-cycle, implying (1). Hence p > 3.

Suppose ¢ < 2 when |V (Dg)] > 4. By a similar argument, we may choose
C1,Cs, ..., Cx_1, 0(F) and P such that Dy D 2K5. Let ujv; and ugvy be two indepen-
dent edges in Dy, and T' = {uy, v1, u2, v2}. Since D is acyclic, > erd(z, D) < 6. By
Lemmas 2.1 and 2.5, Y ,cr d(z,C;) <4 for all C; € H. So Y perd(z,o(F)) > 4(k +
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s)—4(k—1)—6 = 45— 2. Clearly there exists z € T' such that d(z,o(F)) = s. Then
G[V(o(F))] = K, follows from (3). By Lemma 2.11, G[V(¢(F)) UT] 2 F U Q',
where )’ is a path of order 4 while (2), (3), (4), (5) are maintained, contradicting
g < 2. Hence (10) holds.

The argument in the above paragraph shows that if |V (Dg)| > 2, then ¢ > 2. We
claim

o(P,D) =2, 0(Q, Do) <2if ¢ is odd and d(ys, Dy) < 2 if ¢ is even. (11)

Proof of (11). First we suppose that o(Q, Dy) > 3 if ¢ is odd and d(y2, Do) > 3
if ¢ is even. In the former case, we may assume d(ys, Do) > 3 and ¢ > 3. Let
{a,b} = {1,2} such that y; € V,. Let u be an endvertex of Dy such that uy, € F
and u € {y1,y,}. Clearly, either d(u,P) = 0 or d(y;,P) = 0 as D is acyclic.
Without loss of generality, assume that d(u, P) = 0. Let (A, B) be the bipartition of
Do —V(Q)U {u} with A CV, and B C V}. Clearly |B| > |A|, so Dy — V(Q) U {u}
has a component T such that|V(T) N B| > |[V(T) N A|. As there is at most one edge
between @ and 7' and by Lemma 2.3, we can choose a vertex v € V(T') N B such
that d(v, Dy) < 1. We deduce that d(u, D) + d(v, D) < 3 as D is acyclic.

If there exists C; in H such that d(u, C;) 4+ d(v,C;) > 3, then by Lemma 2.1 and
(2), C; must be a 4-cycle. By Lemma 2.2, G[V(C;) U {u,v}] 2 C" U ¢, where C" is
a 4-cycle and €’ is an edge, and exactly one of v and v is an endvertex of €. Let
D'=G—(V(Uju C;) UV(C)) = V(o(F)) and Dy = D' — V(P). By (4), P is still
a longest path of D'. So neither of the two endvertices of ¢’ is adjacent to x5 or
xp—1 and therefore o(P, D) < o(P, D). Subsequently, @ is still a longest path of
Dj by (6). So neither of the two endvertices of ¢’ is adjacent to ys or y,—1. Thus
uw e V(C"), d(ys, D) = d(y2, Do) — 1 and d(yg—1, Dpy) < d(y4—1, Do). Repeating this
argument for y,_; if ¢ is odd and d(y,—1, Dj) > 3, we obtain a contradiction with (7)
or (8) while (2) to (6) are maintained.

So we may assume d(u,C;) + d(v,C;) < 2forall C; € H. It follows that
d(u,a(F)) 4+ d(v,0(F)) > 2(k +s) —2(k — 1) =3 = 25 — 1. By (3), it is casy
to see that G[V (o(F))] = K. If d(v,0(F)) = s, then d(u,o(F)) > s — 1. Clearly
GV (e(F)UDy)] 2 K s U@, where Q' is a path with [(Q') > I(Q) without violating
(2) to (5). Therefore d(u,o(F)) =s and d(v,0(F)) =s—1. Let F' =o(F)—w+u
and D)) = Dy — u + w, where w € N(v,0(F)). Then d(ys, D) = d(y2, Do) — 1 and
d(Yys-1, D§) < d(yg—1, Dp). If ¢ is even, we obtain a contradiction to (8) while (2) to
(6) are maintained. If ¢ is odd, we can obtain a contradiction to (7) by applying the
same argument to y,_;. A similar but simpler argument shows that o(P, D) = 2 as
we have no concerns for the priorities (6) to (8). So (11) holds.

We claim
p>2d—1 (12)

Proof of (12). Suppose p < 2d — 2. We distinguish two cases: p is even or odd.
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Case 1. p is even.

By (10), p > 4. Let R = {x1,xp,y1,¥2}. By (11), d(y1, Do) +d(y2, Do) < 3. Since
e(P,Q) <1 and d(zy, D) + d(zp, D) =2, Y ,crd(z, D) <6.

If there exists C; in H such that Y ,crd(z,C;) > 5, then by Lemma 2.1 and
(2), C; must be a 4-cycle. Let C; = ujuquzuguy. Without loss of generality, assume
{u1, 1,31} € V1. Clearly, either d(z1, C;) +d(y2, C;) > 3 or d(z,, C;) +d(y1, C;) > 3.
Without loss of generality, say the former holds. By Lemma 2.2, G[V (C;) U {x1,y2}]
contains a 4-cycle C' and an edge ¢’ disjoint from C” such that exactly one of zy
and yo is an endvertex of ¢’. By (4), x; is not an endvertex of ¢’. So d(z1,C;) = 2
and d(y2,C;) = 1. As d(y1,C;) + d(zp, C;) > 2, we have either d(y;,C;) > 0 or
N(z,, C;))NN(y2, C;) # 0. In either case, it is easy to see that G[V (C;UP)U{y1, y2}] 2
C" U P', where C" is a 4-cycle and P’ is a path of order p + 2, contradicting (4).

So we may assume >, pd(z, C;) < 4 for all C; € H. It follows that

> d(x,0(F)) > 4(k+s) —4(k —1) — 6 = 4s — 2.

TER
Clearly there exists z € R such that d(z,0(F)) = s, so G[V(0(F))] = K;s by (3). we
have either d(z1,0(F)) + d(y2, 0(F)) > 2s — 1 or d(z, 0 (F)) + d(y1,0(F)) > 25 — 1.
Without loss of generality, say the former holds. If d(y2, o(F)) = s, then we readily
see that G[V (o(F)UP)U{y, y2}] contains K, ; and a path of order p+1 which is dis-
joint from K, contradicting (4). So d(ys,0(F)) = s — 1 and d(aq,0(F)) = s. And
moreover, N (yz, 0(F))NN(x,,0(F)) = 0, for otherwise G[V (¢(F)UD)] 2 K, U P,
where P’ is a path of order p + 2, contradicting (4). Therefore d(y2,o(F)) +
d(z,,0(F)) < s. It follows that 2s > d(y1,0(F)) +d(z1,0(F)) > 4s—2—s5 =35 —2,
implying s < 2, a contradiction.

Case 2. pis odd.

Notice that |V(Dy)| is odd. We claim that if ¢ = 3, then we may choose Q
such that y; € V5. Suppose that this is not true, i.e. y; € Vi. Let (A4, B) be the
bipartition of Dy — V(Q) such that A CV; and B C V. Then |B| = |A|+2. As D
is acyclic and by Lemma 2.3, we can choose a vertex yo € B such that d(yo, Do) < 1.
Clearly, d(yo, P) < 1 and d(yi, P) + d(y3, P) < 1. We may assume d(y;, P) = 0. So
d(yo, D) + d(y1, D) < 3.

If there exists a C; in H such that d(yo, C;) + d(y1, C;) > 3, then by Lemma 2.1,
(2) and Lemma 2.2, C; must be a 4-cycle, and moreover, G[V (C;)U{yo, y1}] contains
a 4-cycle ¢ and an edge €' disjoint from C’ such that exactly one of yy and y; is
an endvertex of ¢/. Replacing C; with C' and by (4), we see that neither of the two
endvertices of €' is adjacent to a vertex in {xy, z2, zp_1, z,}. Therefore (2) to (5) are
maintained. By (6), y; is not an endvertex of /. So € = yozo for some z, € V(C;).
Let H = (H-V(C;))uC’, D' =D —y; + 29 and D, = D' — V(P). Then Dy does
not contain a path of order 3 with its two endvertices in V5. It follows from (11) that
d(y2, Dy) = 1. Furthermore, .. d(z, Dj) < 5, where S = {y2, 93, Yo, 20} As D’ is
acyclic, >, cqd(z, D) < 7. We distinguish two subcases:

Subcase 1.1. There exists a cycle C” in H' such that °,.gd(z,C") > 5.
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By Lemma 2.1 and (2), C” must be a 4-cycle. By Lemma 2.5, G[V(C") U 5]
contains a 4-cycle C" and a path @' of order 4 such that @’ is disjoint from C”’. By
(4), no vertex of Q' is adjacent to a vertex in {zy,x2, 2, 1,x,}. Thus we obtain a
contradiction to (6) while (2) to (5) are maintained.

Subcase 1.2. 3,cgd(z,C";) < 4 for all C! € H'.

Clearly >°,cqd(z,0(F)) > 4(k+s) —7—4(k — 1) = 4s — 3. Then there exists
z € S such that d(z,0(F)) = s. It follows from (3) that G[V(c(F))] = Kss. By
Lemma 2.11, G[V(o(F) U Q) U {yo,20}] 2 F U @', where Q' is a path of order 4,
contradicting ¢ = 3.

So we may assume d(yo, C;) + d(y1, C;) < 2 for all C; € H. Consequently
d(yo,o(F)) +d(y1,0(F)) >2(k+s)—2(k—1)—3=2s— 1.

If d(yo,o(F)) = s, it’s easy to see that G[V(o(F)) U {y1,v2,Ys,y0}] contains F
and a disjoint path of order 4, contradicting ¢ = 3. So d(yo,0(F)) = s — 1 and
d(y1,0(F)) = s. Let yozo € E for some zy € V(o(F)). By (6), yoz0 € E. Let o/ (F) =
o(F)—zo+y1, Dy = Dy—y1+20 and D' = DyUP. Then d(ys, Dfy) = 1, and moreover,
d(z0, Dy') < 1 for otherwise we have a path of order 3 with both endvertices in V5.
Let T = {y2,93,%0,20}. Then Y .crd(z,D) < 7 as > ,crd(z, P) < 2. Therefore
Yoerd(z,0'(F)) > 4(k+s) —4(k — 1) — 7 = 4s — 3. Again G[V(o/(F))] = K,y
follows from (3). By Lemma 2.11, G[V (¢/(F))UT] 2 F U @', where Q' is a path of
order 4, contradicting ¢ = 3.

Now y; € V, for ¢ = 3, so we can choose three distinct vertices zi, 22, 23 from
Dy with z; € Vi and {29, 23} C V5 such that {z1,22} = {v1,92}, and if ¢ > 3 then
23 € {Yg-1,Yqt- If ¢ = 2, then |V(Dy)| = 3 by (10) and therefore z3 is an isolated
vertex of Dy. Let T' = {1, xp_1, 2y, 21, 22, 23}. As D is acyclic and d(zs, P) < 1, we
deduce from (11) that > ,cp d(u, D) < 10.

If there exists a C; in H such that Y, cr d(u, C;) > 7, then by Lemma 2.1 and (2),
C; must be a 4-cycle. Let C; = v1vavgvavy with v € V4. If d(29, C;) = 2 or d(z3, C;) =
2, it is easy to see, by observing two situations that either d(zy, C;) + d(z,, C;) > 1
or d(z1,C;) +d(x,, C;) = 0, that G[V(C;UP)U{z1, 22, 23}] contains a 4-cycle C" and
a path P’ disjoint from C’ but longer than P, contradicting (4). Hence d(zs,C;) <1
and d(z3,C;) < 1. We distinguish two subcases. Note that 2125 € E.

Subcase 2.1. ¢ > 3.

We first suppose that d(z1,C;) > 1 and d(zs, C;) = 1. Without loss of generality,
say {v122,v221} C E. Then C" = vyve21 2901 s a 4-cycle, and e({z1, zp_1, 2, }, {vs, v4})
0 By (4). As Y ,erd(u,C;) > 7, we deduce that d(u,C;) = 1 for all u € T — {z}
and d(z1,C;) = 2. Then z129v1v421 and vy Py are two disjoint cycles in G[V(C; U
P)U{z, 22}]. So either d(zl7 C;) = 0 or d(z2,C;) = 0. Suppose the former holds. We
have d(z1, C;) + d(xp-1, C;) + d(xp, C;) > 5 and therefore N(x1, C;) N N(xp, C;) # 0.
For vy € N(z1,C;) N N(zp, C;), clearly G[V(C; U Q)] — vy is disjoint from vePu,
and therefore is acyclic. So d(zq,C;) + d(z3,C;) < 1. Consequently, d(z1,C;) =
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d(zy-1,C;) = d(z,,C;) = 2 and d(z;,C;) = 1 for some j € {2,3}. Without loss of
generality, say z;u; € E. Then the 4-cycle x,_12,v4v3%p_1 is disjoint from the path
2V V2% Ta...Lp—o Which is longer than P, contradicting (4). Therefore d(z1,C;) > 0
and d(z9,C;) = 0.

If d(z3, C;) = 0, then there exists v’ € {@1, 2,1, xp, 21} such that d(u, C;) = 2 for
allu € {z1,xp_1,2p, 21 }—{'} and d(v/, C;) > 1. This implies that {v;z1, v;x1,v;x,} C
E for some {i,j} = {2,4} and x,_1v;, € E for some h € {1,3}. Then the 4-cycle
Tp_1TpVUpTp—1 is disjoint from the path zoz,v;2129...2p—o which is longer than P,
contradicting (4). Therefore d(z3,C;) = 1. Say {vizs,v22:} C E. Then G[V(Q) U
{v1, v2}] contains a cycle and therefore G[V (P) U {vs, v4}] is acyclic. Hence

6({1317 Tp—1, xp}? {U37 U4}) S L

This implies that d(z1, C;) + d(zp—1, Ci) + d(z,, C;) = 4 as d(z1, C;) + d(zs,C;) < 3.
Thus d(z1,C;) = 2 and z,_1v1 € E. Then the 4-cycle zyvov3v42; is disjoint from the
path z12,...2,_1v1 23 which is longer than P, contradicting (4) again.

Subcase 2.2. ¢ = 2. Notice that d(z3, D) < 1.

First suppose that there exists C; in H such that d(z,, C;)+d(z3, C;) > 3, then by
Lemma 2.1, Lemma 2.2, (2) and (3) as before, we see that C; is a 4-cycle, d(z,, C;) = 2
and d(zs,C;) = 1. Let Ly = C; — z4 + x, where z4 € V(C;) such that z3z4 € E.
Let Hy = (H - V(C;))ULy and D; = G — V(H,) — V(o(F)). As D, is acyclic,

4 d(z;, D) < 7. If there exists a cycle C' in H; such that Y% d(z;,C") > 5,
then by Lemma 2.1 and (2), C' must be a 4-cycle. By Lemma 2.5, G[V(C") U
{z1,22,23,24}] 2 C" U Q', where C" is a 4-cycle and Q' is a path of order 4. If

t . d(z,Cl) < 4forall C! € Hy, then Y0, d(z,0(F)) > 4(k +5) — 7 — 4(k —
1) = 45 — 3. Again G[V(0(F))] = K, by (3). It follows from Lemma 2.11 that
GV (o(F)) U {21, 22,23, 24}] 2 F U Q', where Q' is a path of order 4. So in both
cases we obtain a path @' of order 4. Without loss of generality, say the former
case holds. As p is odd and by (4), p > 5. Let Hy = (H; — V(C"))UC”, Dy =
G —-V(Hy) —V(o(F)), PP=P —x, and Q' = ujugusus with vy € V5. Then D, is
acyclic and e(P', Q') < 1.

When p > 7, if there exists a cycle C" in Hy such that Y27 d(z;, C") > p,
then by Lemma 2.1 and (2), C" must be a 4-cycle. It follows from Lemma 2.7
that G[V(C"” U P)] 2 O?, implying (1). So we may assume 3.7~} d(z;, Ci") <
p— 1 for all C¥ € H,. Therefore Y27 d(z;,0(F)) > (p—1)(k+5) —2(p —2) — 1 —
(p—1)(k—1)=(s—1)(p—1)+ 1. By Lemma 2.12, G[V(¢(F)UP)] 2 F U O,
which implies (1).

When p = 5, we have e({z1,z3}, {us,us}) = 0. Let W = {21, 23, ug, us}. Then
> wew d(w, Dg) = 6 as Dy is acyclic. If there exists a cycle L' in Hy such that
> wew d(w, L') > 5, then by Lemma 2.1 and (2), L' must be a 4-cycle. By Lemma
24, GIV(L') U {1, x2, x5, ug, ug, ua}] 2 L" U P”, where L” is a 4-cycle and P” is
a path of order 6, contradicting p = 5. So X ,ew d(w, L;) < 4forall L; € Hs.
Therefore Y ,ew d(w, o0 (F)) > 4(k+s) —6—4(k—1) = 4s — 2. Evidently (1) follows
from Lemma 2.13.
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So we can assume d(z,, C;) + d(z3,C;) < 2 for all C; € H, then d(z,,o(F)) +
d(z3,0(F)) > 2(k+s)—2—2(k—1) = 2s. Clearly G[V(¢(F)UP)] 2 F U P', where
P’ is a path of order p + 1, a contradiction to (4). This proves the subcase 2.2.

Now we may assume that > ,cr d(u, C;) <6 for all C; € H. Then

> d(u,0(F)) > 6(k+s) — 10 — 6(k — 1) = 65 — 4.

ueT

Again G[V(o(F))] = K, by (3). We claim that there exists © € {z,z,}, say z1,
such that d(z1,0(F)) > 1. Suppose that this is not the case, then d(zq,0(F)) =
d(z,,0(F)) = 0. It follows that 4s > d(zp—1,0(F)) + d(z1,0(F)) + d(z2,0(F)) +
d(z3,0(F)) > 6s — 4, implying s < 2, a contradiction. Similarly there exists
z € {23, 23} say zp such that d(z2,0(F)) > 1. Let {uzy,v2} C E, where {u,v} C
V(o(F)). Then o(F) —u+ 2z 2 F and P+ u is a path disjoint from F', a contradic-
tion to (4). So (12) holds.

We are now in the position to complete the proofs. By (9) and (12),p > 2d—1 >
3. As D is acyclic, e(P, D) < 2(p — 1) + 1. We distinguish two cases:

Case 1. There exists a C; in H such that e(P,C;) > p+ 1.

By Lemma 2.1 and (2), C; must be a 4-cycle. If p > 6, then by Lemma 2.7,
GV (C;uU P)] 2 O3, implying (1). So assume p < 5 and therefore d = 2 or d = 3.

If d = 2, we will prove Theorem 2. First we prove p = 4. If p # 4, then by (10),
p = 3. Without loss of generality, assume {z1, 23} C V1. Let xop € D—V(P). Clearly
d(zo, D)+d(z3, D) = 1. If there exists a cycle C; in H such that d(x3, C;)+d(zo, C;) >
3, then by Lemma 2.1 and (2), C; must be a 4-cycle and G[V(C;) U{xo, x3}] contains
a 4-cycle C' and an edge €’ disjoint from C’; and moreover, we must have ¢’ = xyz for
some z € V(C;), for otherwise G[V (C;UD)] 2 C; U L, where C! is a 4-cycle and L is
a path of order 4, a contradiction. Let D' = D —xz3+z and H' = (H - V(C;)) U .
If there exists a cycle, say C] in H' such that e(D’,C]) > 5, then by Lemma 2.5,
G[V(C; U D")] contains a 4-cycle and a disjoint path of order 4, contradicting p = 3.
So we may assume e(D’,C]) < 4 forall C{ € H'. It follows that e(D',o(F)) >
4(k + s) — 4(k — 1) — 4 = 4s, which implies G[V (o(F) U D')] 2 F U M, where M
is a path of order 4, a contradiction. Thus d(z3, C;) + d(zo,C;) < 2 for all C; € H,
implying d(z3,0(F))+d(zo,0(F)) > 2(k+s)—1—2(k—1) = 2s+1, a contradiction
again. Hence p = 4.

Now we prove n = 2k+s. Suppose [(Cy) < I(Cy) < ... <(Ck_1) = 2t. It’s enough
to show ¢ = 2. If ¢ > 3, then by Lemma 2.8 and (2), e(Cy_1,C;) < 2t for all ¢ €
{1,...;k — 2}, and moreover, e(Cy_1,P) < 4 by Lemma 2.1 and (2). Therefore
e(Cr-1,0(F)) > 2t(k+s)—2t(k—2) — 4t —4 = 2¢ts — 4. By Lemma 2.10, G[V (Cy_1 U
a(F))] 2 C' U F, where C' is a 4-cycle, contradicting ¢ > 3. Hence Theorem 2 holds.

If d = 3, then p = 5. Let 2y € V(D) — V(P). If d(xy,C;) + d(z0,C;) <
2 for all C; € H, then d(x1,0(F))+d(z0,0(F)) > 2(k+s)—2(k—1)—2 = 2s. Clearly
G[V(e(F)UD)] D F U L, where L is a path of order 6, a contradiction to (4). So
we may assume that there exists C; € H, say C; such that d(xy1, Cy) + d(z0,C1) > 3.
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As before, by Lemma2.1, Lemma 2.2, (2) and (3), we see that C; is a 4-cycle,
d(zq1,C1) =2 and d(zp,Cy) = 1. Let H; = H — V(C4) and z € V(C1) be such that
2120 € E. Consider {5, 20}

If there exists C; € Hy, say Co such that d(zs, Co) + d(29, C2) > 3. Then C is a
4-cycle, d(xs,Cs) = 2 and d(zg, Cy) = 1. Let 29 € V(Cy) be such that zpz2 € E. Let
H = (H-V(ChUCy))U(C1—z1421)U(Ca—20+a5), D' = G-V (H') -V (c(F)) and
U = {xq, 4,21, 22}. Clearly H' consists of k — 1 disjoint cycles satisfying (2). Then
d(u,D") =1 for all u € U, for otherwise D’ contains a path of order 6, contradicting
(4). If there exists C' € H' such that Y ,cy d(u,C") > 5, then by Lemma 2.1 and
(2), C" is a 4-cycle. By Lemma 2.4, G[V(C'U D’)] 2 C" U P’, where C" is a 4-cycle
and P’ is a path of order 6, a contradiction. So we may assume 3,y d(u, C}) <
4 for all C! € H'. Therefore Y,y d(u,o(F)) > 4(k+s) —4(k—1) —4 = 4s. It
follows that G[V (¢(F)U D’')] 2 F U C"”, where C" is a 4-cycle, implying (1).

So we may suppose that d(zs, C;) + d(z, C;) < 2 for all C; € H;. It follows that
d(zs,0(F))+d(z0,0(F)) > 2(k+s)—2(k—2)—5=2s—1. If d(z9,0(F)) = s, clearly
G[V(e(F)U D)] 2 F U L, where L is a path of order 6, contradicting p = 5. So we
may assume d(z,0(F)) =s—1 and d(z5,0(F)) = s. Let w € N(29,0(F)) and W =
{Tq, T4, 21, w}. It’s easy to see that G[V (C1UDUG(F))] 2 Cy' U D' U F, where C] is
a 4-cycle and D' = G[{xs, 3, x4, 21, 20, w}]. If e d(u, 0(F)) = 4s, then evidently
GV(e(F)UD")] 2 F U(Q, implying (1). So we may assume e(W, o (F)) < 4s — 1.
Furthermore, we have e(W,D’) = 4, thus e(W,H') > 4(k+s) —4 — (4s — 1) =
4(k — 1) + 1, where H' = H; U C{. This implies that there exists a cycle C" in H'
such that e(W,C") > 5. Again by Lemma 2.1 and (2), C’ is a 4-cycle. By Lemma
2.4, G[V(C'UD')] D FU P, where P is a path of order 6, a contradiction.

Case 2. e(P,C;) <pforall C; € H.

We have e(P,o(F)) > plk+s) —plk—1)— 2(p—-1)+1) = p(s—1)+ L
If pis even, let p = 2t. If ¢t = 2 then d = 2. So assume t > 3. It follows
from Lemma 2.12 that G[V(P Uo(F))] 2 F U Q, implying (1). If p is odd, let
p=2t+1 1Ift =2then p =5 Soassumet > 3. If d(z;,0(F)) < s—1
or d(zp,o(F)) < s—1, then let P = P — 2y or P — xz,. We have e(P',o(F)) >
(2t4+1)(s—1)+1—(s—1) = 2¢(s—1)+1. By Lemma 2.12, G[V(P'Uc(F))] 2 F U O.
So d(z1,0(F)) =d(zp,0(F)) =s. Let T = {xq; : i =1,..., (p — 1)/2}. If there exists
{z,y} C T such that N(z,0(F)) N N(y,o(F)) # 0, then clearly G[V (P Uoc(F))] 2
F U Q. Therefore Y crd(z,o(F)) < s. Let U = {wg11 : i =1,...,(p — 3)/2}.
We have e(U,o(F)) = 0, for otherwise G[V (P U o (F))] 2 F U (. It follows that
3s>e(Po(F)) > (2t+1)(s— 1)+ 1, implying (s — 1)(t — 1) < 1, a contradiction.
This completes the proofs of the theorems.
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