A minimum degree result for disjoint cycles and forests in bipartite graphs

Danhong Zhang Hong Wang

Department of Mathematics
The University of Idaho
Moscow
Idaho 83844
USA

Abstract

Let $F=(U_1,U_2;W)$ be a forest with $|U_1|=|U_2|=s$, where $s\geq 2$, and let $G=(V_1,V_2,E)$ be a bipartite graph with $|V_1|=|V_2|=n\geq 2k+s$, where k is a nonnegative integer. Suppose that the minimum degree of G is at least k+s. We show that if n>2k+s then G contains the disjoint union of the forest F and k disjoint cycles. Moreover, if n=2k+s, then G contains the disjoint union of the forest F, k-1 disjoint cycles and a path of order 4.

1 Introduction

A set of graphs is called disjoint if no two of them have any vertex in common. Schuster [5] investigated the disjoint cycles and a forest in a graph. He proved the following result:

Theorem A. ([5], Theorem) Let F be a forest on s edges without isolated vertices and let G be a graph of order at least 3k + |V(F)| with minimum degree at least 2k + s, where k and s are nonnegative integers. Then G contains the disjoint union of the forest F and k disjoint cycles.

In this paper, we consider a similar problem in bipartite graphs. About the maximum number of disjoint cycles in a bipartite graph, H. Wang proved the following theorems:

Theorem B. ([7], Theorem 1) Let $G = (V_1, V_2; E)$ be a bipartite graph with $|V_1| = |V_2| = n > 2k$, where k is a positive integer. Suppose that the minimum degree of G is at least k + 1. Then G contains k disjoint cycles.

Theorem C. ([7], Theorem 2) Let $G = (V_1, V_2; E)$ be a bipartite graph with $|V_1| = |V_2| = n = 2k$, where k is a positive integer. Suppose that the minimum degree

of G is at least k+1. Then G contains k-1 disjoint 4-cycles and a path of order 4 such that the path is disjoint from all the k-1 4-cycles.

This paper proves two theorems as follows:

Theorem 1. Let $F = (U_1, U_2; W)$ be a forest with $|U_1| = |U_2| = s$, where $s \ge 2$. Let $G = (V_1, V_2, E)$ be a bipartite graph with $|V_1| = |V_2| = n > 2k + s$, where k is a nonnegative integer. Suppose that the minimum degree of G is at least k + s. Then G contains the disjoint union of the forest F and k disjoint cycles.

Theorem 2. Let $F = (U_1, U_2; W)$ be a forest with $|U_1| = |U_2| = s$, where $s \ge 2$. Let $G = (V_1, V_2; E)$ be a bipartite graph with $|V_1| = |V_2| = n = 2k + s$, where k is a nonnegative integer. Suppose that the minimum degree of G is at least k + s. Then G contains the disjoint union of the forest F, k-1 disjoint cycles and a path of order 4.

All graphs considered in this paper are finite simple graphs in standard terminology and notation from [1] except as indicated. Let G = (V, E) be a graph. For any $u \in V$, if G' is a subgraph of G, we define N(u, G') to be $N_G(u) \cap V(G')$ and let d(u,G')=|N(u,G')|. If d(u,G)=0 or 1 we say that u is an isolated vertex or an endvertex of G, respectively. The minimum degree of G is denoted by $\delta(G)$. For a subset U of V, G[U] is the subgraph of G induced by U. For two disjoint subgraphs G_1 and G_2 of G, $E(G_1, G_2)$ is the set of all edges of G between G_1 and G_2 . Let $e(G_1, G_2) = |E(G_1, G_2)|$, i.e. $e(G_1, G_2) = \sum_{x \in V(G_1)} d(x, G_2)$. A set of pairwise disjoint edges of G is called a matching in G. If M is a matching with the property that every vertex of G is incident with an edge of M, then M is called a perfect matching in G. The disjoint union of two graphs S and T is denoted by $S \cup T$. We use the symbol \bigcap^k to denote the disjoint union of k cycles; for k=1 we simply write \bigcap instead of \bigcirc^1 . An embedding of a graph H into a graph G is an injective mapping $\sigma: V(H) \to V(G)$ so that for every edge $xy \in E(G)$, the edge $\sigma(x)\sigma(y)$ is contained in E(G). We write $H \subseteq G$ or $G \supseteq H$ if there is an embedding of H into G. For an embedding σ of H into G and a subgraph M of H, let $\sigma(M)$ denote the image of M in G, i.e., $\sigma(M)$ is the subgraph of G with vertex set $\{\sigma(x):x\in V(M)\}$ and edge set $\{\sigma(x)\sigma(y): xy\in E(M)\}$. We use (X,Y;E) to denote a bipartite graph with (X,Y) as its bipartition and E as its edge set. The length of a cycle C is denoted by l(C), and a 4-cycle is a cycle of length 4. An acyclic graph is a graph without cycles.

2 Lemmas

For all lemmas listed below, $G = (V_1, V_2; E)$ is a given bipartite graph.

Lemma 2.1 ([7], Lemma 2.1) Let C be a cycle of G and x a vertex of G not on C. Suppose $d(x,C) \geq 2$. Then either C is a 4-cycle or C+x contains a cycle C' such that l(C') < l(C).

- **Lemma 2.2** ([7], Lemma 2.2) Let C be a 4-cycle of G. Let $x \in V_1$ and $y \in V_2$ be two vertices not on C. Suppose $d(x,C)+d(y,C) \geq 3$. Then there exists $z \in V(C)$ such that either C-z+x is a 4-cycle and $yz \in E$, or C-z+y is a 4-cycle and $xz \in E$.
- **Lemma 2.3** ([7], Lemma 2.3) Let T be a tree of order at least 2 with a bipartition (X,Y) such that $|Y| \ge |X|$. Let p = |Y| |X|. Then Y contains at least p+1 endvertices of T.
- **Lemma 2.4** ([7], Lemma 2.4) Let $P = x_1x_2x_3$ and $Q = y_1y_2y_3$ be two disjoint paths of G with $x_1 \in V_1$ and $y_1 \in V_2$. Let C be a 4-cycle of G such that C is disjoint from both P and Q. Suppose $d(x_1, C) + d(x_3, C) + d(y_1, C) + d(y_3, C) \geq 5$. Then $G[V(C \cup P \cup Q)]$ contains a 4-cycle C' and a path P' of order 6 such that P' is disjoint from C'.
- **Lemma 2.5** ([7], Lemma 2.5) Let C be a 4-cycle of G. Let uv and xy be two disjoint edges of G such that they are disjoint from C. Suppose $d(u,C)+d(v,C)+d(x,C)+d(y,C) \geq 5$. Then $G[V(C) \cup \{u,v,x,y\}]$ contains a 4-cycle C' and a path P' of order 4 such that P' is disjoint from C'.
- **Lemma 2.6** ([7], Lemma 2.6) Let C be a 4-cycle and P a path of order 4 in G such that P is disjoint from C and $\sum_{x \in V(P)} d(x, C) \geq 6$. Then either $G[V(C \cup P)]$ contains two disjoint quadrilaterals, or P has an endvertex, say z, such that d(z, C) = 0.
- **Lemma 2.7** ([7], Lemma 2.7) Let C be a 4-cycle and P a path of order $s \ge 6$ in G such that C is disjoint from P. If $\sum_{x \in V(P)} d(x, C) \ge s + 1$, then $G[V(C \cup P)]$ contains two disjoint cycles.
- **Lemma 2.8** ([7], Lemma 2.8) Let s and t be two integers such that $t \geq s \geq 2$ and $t \geq 3$. Let C_1 and C_2 be two disjoint cycles of G with lengths 2s and 2t, respectively. Suppose that $\sum_{x \in V(C_2)} d(x, C_1) \geq 2t + 1$. Then $G[V(C_1 \cup C_2)]$ contains two disjoint cycles C' and C'' such that l(C') + l(C'') < 2s + 2t.
- **Lemma 2.9** Let $F = (U_1, U_2; W)$ be a forest with $|U_1| = |U_2| = s$, where $s \ge 1$. Let $G = (V_1, V_2; E)$ be a bipartite graph with $|V_1| = |V_2| = n \ge s$ and $\delta(G) \ge s$. Then $G \supseteq F$.
- **Proof.** Without loss of generality, assume F is a tree. The lemma is trivial for s=1. By Lemma 2.3, each of U_1 and U_2 contains an endvertex of F, say x and y, respectively. Let $F'=F-\{x,y\}$. By induction on s, there exists an embedding σ of F' in G. Suppose $x_1x,y_1y\in W$ with $\{x_1,y_1\}\subseteq V(F')$. Since $\delta(G)\geq s$, $N(\sigma(x_1),G-V(\sigma(F')))\neq\emptyset$ and $N(\sigma(y_1),G-V(\sigma(F')))\neq\emptyset$, and it follows $G\supseteq F$.
- **Lemma 2.10** Let $F = (U_1, U_2; W)$ be a forest in G with $|U_1| = |U_2| = s$, where $s \ge 3$. Let $C = (A_1, A_2; B)$ be a cycle in G with $|A_1| = |A_2| = t \ge 3$, and C is disjoint from F. Suppose $e(C, F) \ge 2ts 4$, then $G[V(C \cup F)] \supseteq C' \cup F$, where C' is a 4-cycle.

Proof. Since $e(C,F) \geq 2ts-4$, $t \geq 3$ and $s \geq 3$, there exist $\{x,y\} \subseteq V(C)$ with $x \neq y$ and d(x,F) = d(y,F) = s. We may choose x and y such that $x \in A_1$ and $y \in A_2$. Suppose this is not the case, say, for any $z \in A_2$, $d(z,F) \leq s-1$. Let $C = z_1z_2...z_2tz_1$ with $z_1 \in A_1$. As $e(C,F) \geq 2ts-4$, either $d(z_1,F) = s$ or $d(z_5,F) = s$. If $w \in N(z_2,F) \cap N(z_4,F)$, then $G[V(C \cup F)] \supseteq C' \cup F$, where C' is the 4-cycle $wz_2z_3z_4w$ and $F \subseteq F - w + z_i$ for some $i \in \{1,5\}$ with $d(z_i,F) = s$. So we may assume $N(z_2,F) \cap N(z_4,F) = \emptyset$. Therefore $d(z_2,F) + d(z_4,F) \leq s$. Then $e(C,F) \leq t(s-1) + s(t-1) = 2ts-t-s < 2ts-4$, a contradiction, hence the claim is true. Then we see that for any $i \in \{1,...,t-1\}$ with $z_{2i+1} \neq x$, $N(z_{2i},F) \cap N(z_{2i+2},F) = \emptyset$, and $N(z_2,F) \cap N(z_{2i},F) = \emptyset$ if $x \neq z_1$, for otherwise $G[V(C \cup F)] \supseteq C' \cup F$, where C' is a 4-cycle. When t is even, it's easy to deduce that $\sum_{i=1}^t d(z_{2i},F) \leq s(t/2)$ and $\sum_{i=1}^t d(z_{2i-1},F) \leq s(t/2)$. So $2ts-4 \leq e(C,F) \leq ts$, implying $st \leq 4$, a contradiction. Similarly, when t is odd, we obtain $e(C,F) \leq 2((t-1)s/2+s) < 2ts-4$, a contradiction.

Lemma 2.11 Let $F = (U_1, U_2; W)$ be a forest in $G = (V_1, V_2; E)$ with $|U_1| = |U_2| = s$, where $s \ge 3$. Let uv and xy be two disjoint edges of G such that they are disjoint from F. Suppose $d(u, F) + d(v, F) + d(x, F) + d(y, F) \ge 4s - 3$ and $G[V(F)] = K_{s,s}$. Then $G[V(F) \cup \{u, v, x, y\}] \supseteq F \cup P$, where P is a path of order 4.

Proof. As $\sum_{t \in T} d(t, F) \geq 4s - 3$ where $T = \{u, v, x, y\}$, either $N(u, F) \cap N(x, F) \neq \emptyset$ or $N(v, F) \cap N(y, F) \neq \emptyset$. Say the former holds, and let $w \in N(u, F) \cap N(x, F)$. For the same reason, either d(v, F) > 0 or d(y, F) > 0. Say d(y, F) > 0. Clearly, G[V(F)] - w + y contains F since $G[V(F)] = K_{s,s}$. As vuwx is a path of G, the lemma follows.

Lemma 2.12 Let $F = (U_1, U_2; W)$ be a forest in G with $|U_1| = |U_2| = s$, where $s \ge 3$. Let $P = x_1x_2...x_{2t}$ be a path in G, where $t \ge 3$. Suppose P is disjoint from F, $G[V(F)] = K_{s,s}$ and $e(P, F) \ge 2t(s-1) + 1$. Then $G[V(F \cup P))] \supseteq F \cup \bigcirc$.

Proof. Without loss of generality, suppose $U_1 \subseteq V_1$. Suppose that there exists $v \in U_1$ such that $v \in N(x_i, F) \cap N(x_{i+2}, F)$ for some $i \in \{1, ..., 2t-2\}$. Then $vx_ix_{i+1}x_{i+2}v$ is a 4-cycle in G. If $d(x_j, F) \ge 1$ for some $x_j \in V(P) \cap V_1 - \{x_{i+1}\}$, then $G[V(F) - \{v\}] + x_j$ contains F and so the lemma holds. So we may assume $d(x_j, F) = 0$ for all $x_j \in V(P) \cap V_1 - \{x_{i+1}\}$. It follows that $2t(s-1) + 1 \le e(P, F) \le ts + s$, which implies $(t-1)(s-2) - 1 \le 0$, a contradiction. So we may assume $N(x_i, F) \cap N(x_{i+2}, F) = \emptyset$ and therefore $d(x_i, F) + d(x_{i+2}, F) \le s$ for all $i \in \{1, ..., 2t-2\}$. If t is odd, then $2t(s-1) + 1 \le e(P, F) \le s(t-1) + 2s$, implying $(t-1)(s-2) - 1 \le 0$, a contradiction. If t is even, Then $2t(s-1) + 1 \le e(P, F) \le ts$, which implies $t(s-2) + 1 \le 0$, a contradiction again.

Lemma 2.13 Let $P = x_1x_2x_3$ and $Q = y_1y_2y_3$ be two disjoint paths of G with $x_1 \in V_1$ and $y_1 \in V_2$. Let $F = (U_1, U_2; W)$ be a forest in G with $|U_1| = |U_2| = s$, where $s \ge 3$. suppose F is disjoint from both P and Q, and $d(x_1, F) + d(x_3, F) + d(y_1, F) + d(y_3, F) \ge 4s - 2$. Then $G[V(F \cup P \cup Q)] \supseteq F \cup C$, where C is a 4-cycle.

Proof. First we claim that $N(x_1,F)\cap N(x_3,F)\neq\emptyset$ and $N(y_1,F)\cap N(y_3,F)\neq\emptyset$. Suppose not, without loss of generality, say $N(x_1,F)\cap N(x_3,F)=\emptyset$, then $d(x_1,F)+d(x_3,F)\leq s$. It follows that $2s\geq d(y_1,F)+d(y_3,F)\geq 4s-2-s=3s-2$, implying $s\leq 2$, a contradiction. Clearly there exists one of $\{x_1,x_3,y_1,y_3\}$, say x_1 , such that $d(x_1,F)=s$. Let $u\in N(y_1,F)\cap N(y_3,F)$. Then we see that $F-u+x_1\supseteq F$ and uQu is a 4-cycle disjoint from $F-u+x_1$, where $u\in N(y_1,F)\cap N(y_3,F)$.

3 Proofs of the Theorems

To prove the theorems, we introduce the following terminology: For a graph H and a path $P = x_1x_2...x_t$ of H, we define $\sigma(P, H) = \max\{d(x_2, H), d(x_{t-1}, H)\}$ if $t \ge 2$ and $\sigma(P, H) = d(x_1, H)$ if t = 1.

Let G and F be given as stated in the two theorems. We may assume that F is connected. If s=2, F is a path of order 4. Since $|V_1|=|V_2|=n\geq 2k+2=2(k+1)$ and $\delta(G)\geq k+2>k+1$, we see that if s=2 then $G\supseteq F\cup \bigcirc^k$ by Theorem B and Theorem C. Therefore we suppose $s\geq 3$ and need to show the following:

$$G \supseteq \bigcirc^k \dot{\cup} F$$
 if $n > 2k + s$ and $G \supseteq \bigcirc^{k-1} \dot{\cup} F \dot{\cup} P$ if $n = 2k + s$, where P is a path of order 4. (1)

We use induction on k to prove (1). If k=0, (1) follows from Lemma 2.9. Since $n \geq 2k+s=2(k-1)+(s+2)$ and $\delta(G) \geq k+s=(k-1)+(s+1)$, by induction on $k, G \supseteq \bigcirc^{k-1} \dot{\cup} F \dot{\cup} K_2$. Let $C_1, C_2, ..., C_{k-1}$ be k-1 disjoint cycles of G. Let σ be an embedding of F in $G-V(\bigcup_{i=1}^{k-1} C_i)$. We choose $C_1, C_2, ..., C_{k-1}$ and $\sigma(F)$ such that

$$\sum_{i=1}^{k-1} l(C_i) \quad \text{is minimum.} \tag{2}$$

Subject to (2), we choose $C_1, C_2, ..., C_{k-1}$ and $\sigma(F)$ such that

$$e(G[\sigma(F)])$$
 is maximum. (3)

Let $D = G - V(\bigcup_{i=1}^{k-1} C_i) - V(\sigma(F))$. Subject to (2) and (3), we choose $C_1, C_2, ..., C_{k-1}$ and $\sigma(F)$ such that

the length of a longest path in
$$D$$
 is maximal. (4)

Let $P = x_1x_2...x_p$ be a fixed longest path of D. Without loss of generality, assume $x_1 \in V_1$. Subject to (2), (3) and (4), we choose $C_1, C_2, ..., C_{k-1}$ and $\sigma(F)$ such that

$$\sigma(P,D)$$
 is minimum. (5)

Let $D_0 = D - V(P)$. Subject to (2) to (5), we choose $C_1, C_2, ..., C_{k-1}$ and $\sigma(F)$ such that

the length of a longest path in
$$D_0$$
 is maximal. (6)

Let $Q = y_1 y_2 ... y_q$ be a fixed longest path of D_0 . Without loss of generality, assume $y_1 \in V_1$ if q is even. Subject to (2) to (6), we finally choose $C_1, C_2, ..., C_{k-1}$ and $\sigma(F)$ such that

if q is odd, then
$$\sigma(Q, D_0)$$
 is minimum; (7)

if q is even, then
$$d(y_2, D_0)$$
 is minimum. (8)

Clearly, $p \ge q$. Let $H = \bigcup_{i=1}^{k-1} C_i$ and |V(D)| = 2d. We will prove a number of claims. First, we claim

$$d \ge 2. \tag{9}$$

Proof of (9). Suppose d

≤ 1. Without loss of generality, assume that $l(C_1) ≤ l(C_2) ≤ ... ≤ l(C_{k-1})$ and $l(C_{k-1}) = 2t$. Then t ≥ 3, for otherwise n = 2(k-1) + s + 1 < 2k + s. By Lemma 2.8 and (2), $e(C_{k-1}, C_i) ≤ 2t$ for all $i ∈ \{1, ..., k - 2\}$. By Lemma 2.1 and (2), $d(x, C_{k-1}) ≤ 1$ for all x ∈ V(D). Therefore $e(C_{k-1}, σ(F)) ≥ 2t(k + s) - 2t(k - 2) - 4t - 2 = 2ts - 2$. Then $G[V(C_{k-1} ∪ σ(F))] ⊇ C' ∪ F$ by Lemma 2.10, where C' is a 4-cycle, contradicting (2).

We claim

$$p \ge 3$$
 and if $|V(D_0)| \ge 4$ then $q \ge 3$. (10)

Proof of (10). First we show $p \geq 3$. To the contrary, suppose $p \leq 2$. If p < 2, then for any $x \in V(D) \cap V_1$ and $y \in V(D) \cap V_2$, d(x,D) = d(y,D) = 0. It follows that $d(x,H) + d(y,H) \ge 2(k+s) - 2s = 2k$. Then there exists a C_i in H such that $d(x, C_i) + d(y, C_i) \geq 3$. By Lemma 2.1 and (2), C_i is a 4-cycle. By Lemma 2.2, $G[V(C_i) \cup \{x,y\}] \supseteq C'_i \stackrel{.}{\cup} K_2$, where C'_i is a 4-cycle. This is a contradiction to p < 2. So p = 2. Let $P = x_1x_2$. We may choose $C_1, C_2, ..., C_{k-1}$ and $\sigma(F)$ such that $D_0 \supseteq K_2$ while (2), (3) and (4) are maintained. If this is not the case, then by (4), d(x,D)=0 for all $x\in D_0$. For any $x\in V(D_0)\cap V_1$ and $y\in V(D_0)\cap V_2$, if there exists a cycle, say C_1 , such that $d(x, C_1) + d(y, C_1) \ge 3$, then by Lemma 2.1 and (2), C_1 must be a 4-cycle. By Lemma 2.2, $G[V(C_1) \cup \{x,y\}]$ contains a 4-cycle C' and an edge e' disjoint from C'. So we may assume $d(x,C_i)+d(y,C_i)\leq 2$ for all $C_i\in H$. It follows that $d(x, \sigma(F)) + d(y, \sigma(F)) \ge 2(k+s) - 2(k-1) = 2s + 2$, a contradiction. Hence $D_0 \supseteq K_2$. This argument allows us to choose $C_1, C_2, ..., C_{k-1}$ and $\sigma(F)$ such that D has a perfect matching. Let $uv \in E(D_0)$ and $R = \{x_1, x_2, u, v\}$. If there exists a cycle C_i in H such that $\sum_{x \in R} d(x, C_i) \geq 5$, then by Lemma 2.5, $G[V(C_i) \cup R]$ contains the disjoint union of a 4-cycle and a path of order 4, contradicting p=2. So $\sum_{x \in R} d(x, C_i) \leq 4$ for all $C_i \in H$. Therefore $\sum_{x \in R} d(x, \sigma(F)) \geq 4(k+s) - 4(k-s)$ 1) -4 = 4s, i.e. $d(x, \sigma(F)) = s$ for all $x \in R$. Clearly $G[V(\sigma(F)) \cup R] \supseteq F \cup C$, where C is a 4-cycle, implying (1). Hence $p \geq 3$.

Suppose $q \leq 2$ when $|V(D_0)| \geq 4$. By a similar argument, we may choose $C_1, C_2, ..., C_{k-1}, \sigma(F)$ and P such that $D_0 \supseteq 2K_2$. Let u_1v_1 and u_2v_2 be two independent edges in D_0 , and $T = \{u_1, v_1, u_2, v_2\}$. Since D is acyclic, $\sum_{x \in T} d(x, D) \leq 6$. By Lemmas 2.1 and 2.5, $\sum_{x \in T} d(x, C_i) \leq 4$ for all $C_i \in H$. So $\sum_{x \in T} d(x, \sigma(F)) \geq 4(k + 1)$

s)-4(k-1)-6=4s-2. Clearly there exists $x \in T$ such that $d(x,\sigma(F))=s$. Then $G[V(\sigma(F))]=K_{s,s}$ follows from (3). By Lemma 2.11, $G[V(\sigma(F)) \cup T] \supseteq F \cup Q'$, where Q' is a path of order 4 while (2), (3), (4), (5) are maintained, contradicting $q \leq 2$. Hence (10) holds.

The argument in the above paragraph shows that if $|V(D_0)| \geq 2$, then $q \geq 2$. We claim

$$\sigma(P,D) = 2$$
, $\sigma(Q,D_0) \le 2$ if q is odd and $d(y_2,D_0) \le 2$ if q is even. (11)

Proof of (11). First we suppose that $\sigma(Q,D_0)\geq 3$ if q is odd and $d(y_2,D_0)\geq 3$ if q is even. In the former case, we may assume $d(y_2,D_0)\geq 3$ and $q\geq 3$. Let $\{a,b\}=\{1,2\}$ such that $y_1\in V_a$. Let u be an endvertex of D_0 such that $uy_2\in E$ and $u\not\in\{y_1,y_q\}$. Clearly, either d(u,P)=0 or $d(y_1,P)=0$ as D is acyclic. Without loss of generality, assume that d(u,P)=0. Let (A,B) be the bipartition of $D_0-V(Q)\cup\{u\}$ with $A\subseteq V_a$ and $B\subseteq V_b$. Clearly |B|>|A|, so $D_0-V(Q)\cup\{u\}$ has a component T such that $|V(T)\cap B|>|V(T)\cap A|$. As there is at most one edge between Q and T and by Lemma 2.3, we can choose a vertex $v\in V(T)\cap B$ such that $d(v,D_0)\leq 1$. We deduce that $d(u,D)+d(v,D)\leq 3$ as D is acyclic.

If there exists C_i in H such that $d(u,C_i)+d(v,C_i)\geq 3$, then by Lemma 2.1 and (2), C_i must be a 4-cycle. By Lemma 2.2, $G[V(C_i)\cup\{u,v\}]\supseteq C'\dot{\cup}e'$, where C' is a 4-cycle and e' is an edge, and exactly one of u and v is an endvertex of e'. Let $D'=G-(V(\bigcup_{j\neq i}C_j)\cup V(C'))-V(\sigma(F))$ and $D'_0=D'-V(P)$. By (4), P is still a longest path of D'. So neither of the two endvertices of e' is adjacent to x_2 or x_{p-1} and therefore $\sigma(P,D')\leq\sigma(P,D)$. Subsequently, Q is still a longest path of D'_0 by (6). So neither of the two endvertices of e' is adjacent to y_2 or y_{q-1} . Thus $u\in V(C')$, $d(y_2,D'_0)=d(y_2,D_0)-1$ and $d(y_{q-1},D'_0)\leq d(y_{q-1},D_0)$. Repeating this argument for y_{q-1} if q is odd and $d(y_{q-1},D'_0)\geq 3$, we obtain a contradiction with (7) or (8) while (2) to (6) are maintained.

So we may assume $d(u,C_i)+d(v,C_i)\leq 2$ for all $C_i\in H$. It follows that $d(u,\sigma(F))+d(v,\sigma(F))\geq 2(k+s)-2(k-1)-3=2s-1$. By (3), it is easy to see that $G[V(\sigma(F))]=K_{s,s}$. If $d(v,\sigma(F))=s$, then $d(u,\sigma(F))\geq s-1$. Clearly $G[V(\sigma(F)\cup D_0)]\supseteq K_{s,s}\cup Q'$, where Q' is a path with l(Q')>l(Q) without violating (2) to (5). Therefore $d(u,\sigma(F))=s$ and $d(v,\sigma(F))=s-1$. Let $F'=\sigma(F)-w+u$ and $D'_0=D_0-u+w$, where $w\in N(v,\sigma(F))$. Then $d(y_2,D'_0)=d(y_2,D_0)-1$ and $d(y_{q-1},D'_0)\leq d(y_{q-1},D_0)$. If q is even, we obtain a contradiction to (8) while (2) to (6) are maintained. If q is odd, we can obtain a contradiction to (7) by applying the same argument to y_{q-1} . A similar but simpler argument shows that $\sigma(P,D)=2$ as we have no concerns for the priorities (6) to (8). So (11) holds.

We claim

$$p \ge 2d - 1 \tag{12}$$

Proof of (12). Suppose $p \leq 2d-2$. We distinguish two cases: p is even or odd.

Case 1. p is even.

By (10), $p \ge 4$. Let $R = \{x_1, x_p, y_1, y_2\}$. By (11), $d(y_1, D_0) + d(y_2, D_0) \le 3$. Since $e(P, Q) \le 1$ and $d(x_1, D) + d(x_p, D) = 2$, $\sum_{x \in R} d(x, D) \le 6$.

If there exists C_i in H such that $\sum_{x \in R} d(x, C_i) \geq 5$, then by Lemma 2.1 and (2), C_i must be a 4-cycle. Let $C_i = u_1 u_2 u_3 u_4 u_1$. Without loss of generality, assume $\{u_1, x_1, y_1\} \subseteq V_1$. Clearly, either $d(x_1, C_i) + d(y_2, C_i) \geq 3$ or $d(x_p, C_i) + d(y_1, C_i) \geq 3$. Without loss of generality, say the former holds. By Lemma 2.2, $G[V(C_i) \cup \{x_1, y_2\}]$ contains a 4-cycle C' and an edge e' disjoint from C' such that exactly one of x_1 and y_2 is an endvertex of e'. By (4), x_1 is not an endvertex of e'. So $d(x_1, C_i) = 2$ and $d(y_2, C_i) = 1$. As $d(y_1, C_i) + d(x_p, C_i) \geq 2$, we have either $d(y_1, C_i) > 0$ or $N(x_p, C_i) \cap N(y_2, C_i) \neq \emptyset$. In either case, it is easy to see that $G[V(C_i \cup P) \cup \{y_1, y_2\}] \supseteq C'' \cup P'$, where C'' is a 4-cycle and P' is a path of order p + 2, contradicting (4).

So we may assume $\sum_{x \in B} d(x, C_i) \leq 4$ for all $C_i \in H$. It follows that

$$\sum_{x \in R} d(x, \sigma(F)) \ge 4(k+s) - 4(k-1) - 6 = 4s - 2.$$

Clearly there exists $z \in R$ such that $d(z, \sigma(F)) = s$, so $G[V(\sigma(F))] = K_{s,s}$ by (3). we have either $d(x_1, \sigma(F)) + d(y_2, \sigma(F)) \ge 2s - 1$ or $d(x_p, \sigma(F)) + d(y_1, \sigma(F)) \ge 2s - 1$. Without loss of generality, say the former holds. If $d(y_2, \sigma(F)) = s$, then we readily see that $G[V(\sigma(F) \cup P) \cup \{y_1, y_2\}]$ contains $K_{s,s}$ and a path of order p+1 which is disjoint from $K_{s,s}$, contradicting (4). So $d(y_2, \sigma(F)) = s - 1$ and $d(x_1, \sigma(F)) = s$. And moreover, $N(y_2, \sigma(F)) \cap N(x_p, \sigma(F)) = \emptyset$, for otherwise $G[V(\sigma(F) \cup D)] \supseteq K_{s,s} \cup P'$, where P' is a path of order p+2, contradicting (4). Therefore $d(y_2, \sigma(F)) + d(x_p, \sigma(F)) \le s$. It follows that $2s \ge d(y_1, \sigma(F)) + d(x_1, \sigma(F)) \ge 4s - 2 - s = 3s - 2$, implying $s \le 2$, a contradiction.

Case 2. p is odd.

Notice that $|V(D_0)|$ is odd. We claim that if q=3, then we may choose Q such that $y_1 \in V_2$. Suppose that this is not true, i.e. $y_1 \in V_1$. Let (A, B) be the bipartition of $D_0 - V(Q)$ such that $A \subseteq V_1$ and $B \subseteq V_2$. Then |B| = |A| + 2. As D is acyclic and by Lemma 2.3, we can choose a vertex $y_0 \in B$ such that $d(y_0, D_0) \le 1$. Clearly, $d(y_0, P) \le 1$ and $d(y_1, P) + d(y_3, P) \le 1$. We may assume $d(y_1, P) = 0$. So $d(y_0, D) + d(y_1, D) \le 3$.

If there exists a C_i in H such that $d(y_0,C_i)+d(y_1,C_i)\geq 3$, then by Lemma 2.1, (2) and Lemma 2.2, C_i must be a 4-cycle, and moreover, $G[V(C_i)\cup\{y_0,y_1\}]$ contains a 4-cycle C' and an edge e' disjoint from C' such that exactly one of y_0 and y_1 is an endvertex of e'. Replacing C_i with C' and by (4), we see that neither of the two endvertices of e' is adjacent to a vertex in $\{x_1,x_2,x_{p-1},x_p\}$. Therefore (2) to (5) are maintained. By (6), y_1 is not an endvertex of e'. So $e'=y_0z_0$ for some $z_0\in V(C_i)$. Let $H'=(H-V(C_i))\cup C'$, $D'=D-y_1+z_0$ and $D'_0=D'-V(P)$. Then D'_0 does not contain a path of order 3 with its two endvertices in V_2 . It follows from (11) that $d(y_2,D'_0)=1$. Furthermore, $\sum_{z\in S}d(z,D'_0)\leq 5$, where $S=\{y_2,y_3,y_0,z_0\}$. As D' is acyclic, $\sum_{z\in S}d(z,D')\leq 7$. We distinguish two subcases:

Subcase 1.1. There exists a cycle C'' in H' such that $\sum_{z \in S} d(z, C'') \geq 5$.

By Lemma 2.1 and (2), C''' must be a 4-cycle. By Lemma 2.5, $G[V(C'') \cup S]$ contains a 4-cycle C'''' and a path Q' of order 4 such that Q' is disjoint from C'''. By (4), no vertex of Q' is adjacent to a vertex in $\{x_1, x_2, x_{p-1}, x_p\}$. Thus we obtain a contradiction to (6) while (2) to (5) are maintained.

Subcase 1.2. $\sum_{z \in S} d(z, C'_i) \leq 4$ for all $C'_i \in H'$.

Clearly $\sum_{z\in S} d(z,\sigma(F)) \geq 4(k+s) - 7 - 4(k-1) = 4s - 3$. Then there exists $z\in S$ such that $d(z,\sigma(F)) = s$. It follows from (3) that $G[V(\sigma(F))] = K_{s,s}$. By Lemma 2.11, $G[V(\sigma(F)\cup Q)\cup \{y_0,z_0\}]\supseteq F\cup Q'$, where Q' is a path of order 4, contradicting q=3.

So we may assume $d(y_0, C_i) + d(y_1, C_i) \leq 2$ for all $C_i \in H$. Consequently

$$d(y_0, \sigma(F)) + d(y_1, \sigma(F)) \ge 2(k+s) - 2(k-1) - 3 = 2s - 1.$$

If $d(y_0, \sigma(F)) = s$, it's easy to see that $G[V(\sigma(F)) \cup \{y_1, y_2, y_3, y_0\}]$ contains F and a disjoint path of order 4, contradicting q = 3. So $d(y_0, \sigma(F)) = s - 1$ and $d(y_1, \sigma(F)) = s$. Let $y_0z_0 \in E$ for some $z_0 \in V(\sigma(F))$. By $(6), y_2z_0 \notin E$. Let $\sigma'(F) = \sigma(F) - z_0 + y_1$, $D'_0 = D_0 - y_1 + z_0$ and $D' = D'_0 \cup P$. Then $d(y_2, D'_0) = 1$, and moreover, $d(z_0, D_0') \leq 1$ for otherwise we have a path of order 3 with both endvertices in V_2 . Let $T = \{y_2, y_3, y_0, z_0\}$. Then $\sum_{z \in T} d(z, D) \leq 7$ as $\sum_{z \in T} d(z, P) \leq 2$. Therefore $\sum_{z \in T} d(z, \sigma'(F)) \geq 4(k + s) - 4(k - 1) - 7 = 4s - 3$. Again $G[V(\sigma'(F))] = K_{s,s}$ follows from (3). By Lemma 2.11, $G[V(\sigma'(F)) \cup T] \supseteq F \cup Q'$, where Q' is a path of order 4, contradicting q = 3.

Now $y_1 \in V_2$ for q=3, so we can choose three distinct vertices z_1, z_2, z_3 from D_0 with $z_1 \in V_1$ and $\{z_2, z_3\} \subseteq V_2$ such that $\{z_1, z_2\} = \{y_1, y_2\}$, and if $q \geq 3$ then $z_3 \in \{y_{q-1}, y_q\}$. If q=2, then $|V(D_0)|=3$ by (10) and therefore z_3 is an isolated vertex of D_0 . Let $T=\{x_1, x_{p-1}, x_p, z_1, z_2, z_3\}$. As D is acyclic and $d(z_3, P) \leq 1$, we deduce from (11) that $\sum_{u \in T} d(u, D) \leq 10$.

If there exists a C_i in H such that $\sum_{u \in T} d(u, C_i) \geq 7$, then by Lemma 2.1 and (2), C_i must be a 4-cycle. Let $C_i = v_1 v_2 v_3 v_4 v_1$ with $v_1 \in V_1$. If $d(z_2, C_i) = 2$ or $d(z_3, C_i) = 2$, it is easy to see, by observing two situations that either $d(x_1, C_i) + d(x_p, C_i) \geq 1$ or $d(x_1, C_i) + d(x_p, C_i) = 0$, that $G[V(C_i \cup P) \cup \{z_1, z_2, z_3\}]$ contains a 4-cycle C' and a path P' disjoint from C' but longer than P, contradicting (4). Hence $d(z_2, C_i) \leq 1$ and $d(z_3, C_i) \leq 1$. We distinguish two subcases. Note that $z_1 z_2 \in E$.

Subcase 2.1. $q \geq 3$.

We first suppose that $d(z_1,C_i) \geq 1$ and $d(z_2,C_i) = 1$. Without loss of generality, say $\{v_1z_2,v_2z_1\} \subseteq E$. Then $C' = v_1v_2z_1z_2v_1$ is a 4-cycle, and $e(\{x_1,x_{p-1},x_p\},\{v_3,v_4\}) = 0$ By (4). As $\sum_{u \in T} d(u,C_i) \geq 7$, we deduce that $d(u,C_i) = 1$ for all $u \in T - \{z_1\}$ and $d(z_1,C_i) = 2$. Then $z_1z_2v_1v_4z_1$ and v_2Pv_2 are two disjoint cycles in $G[V(C_i \cup P) \cup \{z_1,z_2\}]$. So either $d(z_1,C_i) = 0$ or $d(z_2,C_i) = 0$. Suppose the former holds. We have $d(x_1,C_i) + d(x_{p-1},C_i) + d(x_p,C_i) \geq 5$ and therefore $N(x_1,C_i) \cap N(x_p,C_i) \neq \emptyset$. For $v_2 \in N(x_1,C_i) \cap N(x_p,C_i)$, clearly $G[V(C_i \cup Q)] - v_2$ is disjoint from v_2Pv_2 and therefore is acyclic. So $d(z_2,C_i) + d(z_3,C_i) \leq 1$. Consequently, $d(x_1,C_i) = 0$

 $d(x_{p-1},C_i)=d(x_p,C_i)=2$ and $d(z_j,C_i)=1$ for some $j\in\{2,3\}$. Without loss of generality, say $z_jv_1\in E$. Then the 4-cycle $x_{p-1}x_pv_4v_3x_{p-1}$ is disjoint from the path $z_jv_1v_2x_1x_2...x_{p-2}$ which is longer than P, contradicting (4). Therefore $d(z_1,C_i)>0$ and $d(z_2,C_i)=0$.

If $d(z_3, C_i) = 0$, then there exists $u' \in \{x_1, x_{p-1}, x_p, z_1\}$ such that $d(u, C_i) = 2$ for all $u \in \{x_1, x_{p-1}, x_p, z_1\} - \{u'\}$ and $d(u', C_i) \ge 1$. This implies that $\{v_i z_1, v_i x_1, v_j x_p\} \subseteq E$ for some $\{i, j\} = \{2, 4\}$ and $x_{p-1}v_h \in E$ for some $h \in \{1, 3\}$. Then the 4-cycle $x_{p-1}x_pv_jv_hx_{p-1}$ is disjoint from the path $z_2z_1v_ix_1x_2...x_{p-2}$ which is longer than P, contradicting (4). Therefore $d(z_3, C_i) = 1$. Say $\{v_1z_3, v_2z_1\} \subseteq E$. Then $G[V(Q) \cup \{v_1, v_2\}]$ contains a cycle and therefore $G[V(P) \cup \{v_3, v_4\}]$ is acyclic. Hence

$$e({x_1, x_{p-1}, x_p}, {v_3, v_4}) \le 1.$$

This implies that $d(x_1, C_i) + d(x_{p-1}, C_i) + d(x_p, C_i) = 4$ as $d(z_1, C_i) + d(z_3, C_i) \le 3$. Thus $d(z_1, C_i) = 2$ and $x_{p-1}v_1 \in E$. Then the 4-cycle $z_1v_2v_3v_4z_1$ is disjoint from the path $x_1x_2...x_{p-1}v_1z_3$ which is longer than P, contradicting (4) again.

Subcase 2.2. q = 2. Notice that $d(z_3, D) \leq 1$.

First suppose that there exists C_i in H such that $d(x_p,C_i)+d(z_3,C_i)\geq 3$, then by Lemma 2.1, Lemma 2.2, (2) and (3) as before, we see that C_i is a 4-cycle, $d(x_p,C_i)=2$ and $d(z_3,C_i)=1$. Let $L_1=C_i-z_4+x_p$ where $z_4\in V(C_i)$ such that $z_3z_4\in E$. Let $H_1=(H-V(C_i))\cup L_1$ and $D_1=G-V(H_1)-V(\sigma(F))$. As D_1 is acyclic, $\sum_{i=1}^4 d(z_i,D_1)\leq 7$. If there exists a cycle C' in H_1 such that $\sum_{i=1}^4 d(z_i,C')\geq 5$, then by Lemma 2.1 and (2), C' must be a 4-cycle. By Lemma 2.5, $G[V(C')\cup \{z_1,z_2,z_3,z_4\}]\supseteq C''\cup Q'$, where C'' is a 4-cycle and Q' is a path of order 4. If $\sum_{i=1}^4 d(z_i,C_i')\leq 4$ for all $C_i'\in H_1$, then $\sum_{i=1}^4 d(z_i,\sigma(F))\geq 4(k+s)-7-4(k-1)=4s-3$. Again $G[V(\sigma(F))]=K_{s,s}$ by (3). It follows from Lemma 2.11 that $G[V(\sigma(F))\cup \{z_1,z_2,z_3,z_4\}]\supseteq F\cup Q'$, where Q' is a path of order 4. So in both cases we obtain a path Q' of order 4. Without loss of generality, say the former case holds. As p is odd and by (4), $p\geq 5$. Let $H_2=(H_1-V(C'))\cup C''$, $D_2=G-V(H_2)-V(\sigma(F))$, $P'=P-x_p$ and $Q'=u_1u_2u_3u_4$ with $u_1\in V_1$. Then D_2 is acyclic and $e(P',Q')\leq 1$.

When $p \geq 7$, if there exists a cycle C''' in H_2 such that $\sum_{i=1}^{p-1} d(x_i, C''') \geq p$, then by Lemma 2.1 and (2), C''' must be a 4-cycle. It follows from Lemma 2.7 that $G[V(C''' \cup P')] \supseteq \bigcirc^2$, implying (1). So we may assume $\sum_{i=1}^{p-1} d(x_i, C_i'') \leq p-1$ for all $C_i'' \in H_2$. Therefore $\sum_{i=1}^{p-1} d(x_i, \sigma(F)) \geq (p-1)(k+s) - 2(p-2) - 1 - (p-1)(k-1) = (s-1)(p-1) + 1$. By Lemma 2.12, $G[V(\sigma(F) \cup P)] \supseteq F \cup \bigcirc$, which implies (1).

When p=5, we have $e(\{x_1,x_3\},\{u_2,u_4\})=0$. Let $W=\{x_1,x_3,u_2,u_4\}$. Then $\sum_{w\in W}d(w,D_2)=6$ as D_2 is acyclic. If there exists a cycle L' in H_2 such that $\sum_{w\in W}d(w,L')\geq 5$, then by Lemma 2.1 and (2), L' must be a 4-cycle. By Lemma 2.4, $G[V(L')\cup\{x_1,x_2,x_3,u_2,u_3,u_4\}]\supseteq L''\ \dot\cup\ P''$, where L'' is a 4-cycle and P'' is a path of order 6, contradicting p=5. So $\sum_{w\in W}d(w,L_i)\leq 4$ for all $L_i\in H_2$. Therefore $\sum_{w\in W}d(w,\sigma(F))\geq 4(k+s)-6-4(k-1)=4s-2$. Evidently (1) follows from Lemma 2.13.

So we can assume $d(x_p, C_i) + d(z_3, C_i) \leq 2$ for all $C_i \in H$, then $d(x_p, \sigma(F)) + d(z_3, \sigma(F)) \geq 2(k+s) - 2 - 2(k-1) = 2s$. Clearly $G[V(\sigma(F) \cup P)] \supseteq F \cup P'$, where P' is a path of order p+1, a contradiction to (4). This proves the subcase 2.2.

Now we may assume that $\sum_{u \in T} d(u, C_i) \leq 6$ for all $C_i \in H$. Then

$$\sum_{u \in T} d(u, \sigma(F)) \ge 6(k+s) - 10 - 6(k-1) = 6s - 4.$$

Again $G[V(\sigma(F))] = K_{s,s}$ by (3). We claim that there exists $x \in \{x_1, x_p\}$, say x_1 , such that $d(x_1, \sigma(F)) \ge 1$. Suppose that this is not the case, then $d(x_1, \sigma(F)) = d(x_p, \sigma(F)) = 0$. It follows that $4s \ge d(x_{p-1}, \sigma(F)) + d(z_1, \sigma(F)) + d(z_2, \sigma(F)) + d(z_3, \sigma(F)) \ge 6s - 4$, implying $s \le 2$, a contradiction. Similarly there exists $z \in \{z_2, z_3\}$ say z_2 such that $d(z_2, \sigma(F)) \ge 1$. Let $\{ux_1, vz_2\} \subseteq E$, where $\{u, v\} \subseteq V(\sigma(F))$. Then $\sigma(F) - u + z_2 \supseteq F$ and P + u is a path disjoint from F, a contradiction to (4). So (12) holds.

We are now in the position to complete the proofs. By (9) and (12), $p \ge 2d - 1 \ge$ 3. As D is acyclic, $e(P, D) \le 2(p - 1) + 1$. We distinguish two cases:

Case 1. There exists a C_i in H such that $e(P, C_i) \ge p + 1$.

By Lemma 2.1 and (2), C_i must be a 4-cycle. If $p \ge 6$, then by Lemma 2.7, $G[V(C_i \cup P)] \supseteq \bigcirc^2$, implying (1). So assume $p \le 5$ and therefore d = 2 or d = 3.

If d=2, we will prove Theorem 2. First we prove p=4. If $p\neq 4$, then by (10), p=3. Without loss of generality, assume $\{x_1,x_3\}\subseteq V_1$. Let $x_0\in D-V(P)$. Clearly $d(x_0,D)+d(x_3,D)=1$. If there exists a cycle C_i in H such that $d(x_3,C_i)+d(x_0,C_i)\geq 3$, then by Lemma 2.1 and (2), C_i must be a 4-cycle and $G[V(C_i)\cup\{x_0,x_3\}]$ contains a 4-cycle C' and an edge e' disjoint from C', and moreover, we must have $e'=x_0z$ for some $z\in V(C_i)$, for otherwise $G[V(C_i\cup D)]\supseteq C'_i\cup L$, where C'_i is a 4-cycle and L is a path of order 4, a contradiction. Let $D'=D-x_3+z$ and $H'=(H-V(C_i))\cup C'$. If there exists a cycle, say C'_1 in H' such that $e(D',C'_1)\geq 5$, then by Lemma 2.5, $G[V(C'_1\cup D')]$ contains a 4-cycle and a disjoint path of order 4, contradicting p=3. So we may assume $e(D',C'_i)\leq 4$ for all $C'_i\in H'$. It follows that $e(D',\sigma(F))\geq 4(k+s)-4(k-1)-4=4s$, which implies $G[V(\sigma(F)\cup D')]\supseteq F\cup M$, where M is a path of order 4, a contradiction. Thus $d(x_3,C_i)+d(x_0,C_i)\leq 2$ for all $C_i\in H$, implying $d(x_3,\sigma(F))+d(x_0,\sigma(F))\geq 2(k+s)-1-2(k-1)=2s+1$, a contradiction again. Hence p=4.

Now we prove n = 2k + s. Suppose $l(C_1) \le l(C_2) \le ... \le l(C_{k-1}) = 2t$. It's enough to show t = 2. If $t \ge 3$, then by Lemma 2.8 and (2), $e(C_{k-1}, C_i) \le 2t$ for all $i \in \{1, ..., k-2\}$, and moreover, $e(C_{k-1}, P) \le 4$ by Lemma 2.1 and (2). Therefore $e(C_{k-1}, \sigma(F)) \ge 2t(k+s) - 2t(k-2) - 4t - 4 = 2ts - 4$. By Lemma 2.10, $G[V(C_{k-1} \cup \sigma(F))] \supseteq C' \cup F$, where C' is a 4-cycle, contradicting $t \ge 3$. Hence Theorem 2 holds.

If d=3, then p=5. Let $z_0 \in V(D)-V(P)$. If $d(x_1,C_i)+d(z_0,C_i) \leq 2$ for all $C_i \in H$, then $d(x_1,\sigma(F))+d(z_0,\sigma(F)) \geq 2(k+s)-2(k-1)-2=2s$. Clearly $G[V(\sigma(F) \cup D)] \supseteq F \cup L$, where L is a path of order 6, a contradiction to (4). So we may assume that there exists $C_i \in H$, say C_1 such that $d(x_1,C_1)+d(z_0,C_1) \geq 3$.

As before, by Lemma 2.1, Lemma 2.2, (2) and (3), we see that C_1 is a 4-cycle, $d(x_1, C_1) = 2$ and $d(z_0, C_1) = 1$. Let $H_1 = H - V(C_1)$ and $z_1 \in V(C_1)$ be such that $z_1 z_0 \in E$. Consider $\{x_5, z_0\}$.

If there exists $C_j \in H_1$, say C_2 such that $d(x_5, C_2) + d(z_0, C_2) \geq 3$. Then C_2 is a 4-cycle, $d(x_5, C_2) = 2$ and $d(z_0, C_2) = 1$. Let $z_2 \in V(C_2)$ be such that $z_0 z_2 \in E$. Let $H' = (H - V(C_1 \cup C_2)) \cup (C_1 - z_1 + x_1) \cup (C_2 - z_2 + x_5)$, $D' = G - V(H') - V(\sigma(F))$ and $U = \{x_2, x_4, z_1, z_2\}$. Clearly H' consists of k - 1 disjoint cycles satisfying (2). Then d(u, D') = 1 for all $u \in U$, for otherwise D' contains a path of order 6, contradicting (4). If there exists $C' \in H'$ such that $\sum_{u \in U} d(u, C') \geq 5$, then by Lemma 2.1 and (2), C' is a 4-cycle. By Lemma 2.4, $G[V(C' \cup D')] \supseteq C'' \cup P'$, where C'' is a 4-cycle and P' is a path of order 6, a contradiction. So we may assume $\sum_{u \in U} d(u, C'_i) \leq 4$ for all $C'_i \in H'$. Therefore $\sum_{u \in U} d(u, \sigma(F)) \geq 4(k + s) - 4(k - 1) - 4 = 4s$. It follows that $G[V(\sigma(F) \cup D')] \supseteq F \cup C'''$, where C''' is a 4-cycle, implying (1).

So we may suppose that $d(x_5,C_i)+d(z_0,C_i)\leq 2$ for all $C_i\in H_1$. It follows that $d(x_5,\sigma(F))+d(z_0,\sigma(F))\geq 2(k+s)-2(k-2)-5=2s-1$. If $d(z_0,\sigma(F))=s$, clearly $G[V(\sigma(F)\cup D)]\supseteq F\cup L$, where L is a path of order 6, contradicting p=5. So we may assume $d(z_0,\sigma(F))=s-1$ and $d(x_5,\sigma(F))=s$. Let $w\in N(z_0,\sigma(F))$ and $W=\{x_2,x_4,z_1,w\}$. It's easy to see that $G[V(C_1\cup D\cup \sigma(F))]\supseteq C_1'\cup D'\cup F$, where C_1' is a 4-cycle and $D'=G[\{x_2,x_3,x_4,z_1,z_0,w\}]$. If $\sum_{u\in W}d(u,\sigma(F))=4s$, then evidently $G[V(\sigma(F)\cup D')]\supseteq F\cup O$, implying (1). So we may assume $e(W,\sigma(F))\leq 4s-1$. Furthermore, we have e(W,D')=4, thus $e(W,H')\geq 4(k+s)-4-(4s-1)=4(k-1)+1$, where $H'=H_1\cup C_1'$. This implies that there exists a cycle C' in H' such that $e(W,C')\geq 5$. Again by Lemma 2.1 and (2), C' is a 4-cycle. By Lemma 2.4, $G[V(C'\cup D')]\supseteq F\cup P'$, where P' is a path of order 6, a contradiction.

Case 2. $e(P, C_i) \leq p$ for all $C_i \in H$.

We have $e(P, \sigma(F)) \geq p(k+s) - p(k-1) - (2(p-1)+1) = p(s-1)+1$. If p is even, let p=2t. If t=2 then d=2. So assume $t\geq 3$. It follows from Lemma 2.12 that $G[V(P\cup\sigma(F))]\supseteq F\cup\bigcirc$, implying (1). If p is odd, let p=2t+1. If t=2 then p=5. So assume $t\geq 3$. If $d(x_1,\sigma(F))\leq s-1$ or $d(x_p,\sigma(F))\leq s-1$, then let $P'=P-x_1$ or $P-x_p$. We have $e(P',\sigma(F))\geq (2t+1)(s-1)+1-(s-1)=2t(s-1)+1$. By Lemma 2.12, $G[V(P'\cup\sigma(F))]\supseteq F\cup\bigcirc$. So $d(x_1,\sigma(F))=d(x_p,\sigma(F))=s$. Let $T=\{x_{2i}:i=1,...,(p-1)/2\}$. If there exists $\{x,y\}\subseteq T$ such that $N(x,\sigma(F))\cap N(y,\sigma(F))\neq\emptyset$, then clearly $G[V(P\cup\sigma(F))]\supseteq F\cup\bigcirc$. We have $e(U,\sigma(F))=0$, for otherwise $G[V(P\cup\sigma(F))]\supseteq F\cup\bigcirc$. It follows that $3s\geq e(P,\sigma(F))\geq (2t+1)(s-1)+1$, implying $(s-1)(t-1)\leq 1$, a contradiction. This completes the proofs of the theorems.

4 References

- [1] B. Bollobás, Extremal Graph Theory, Academic Press, London (1978).
- [2] S. Brandt, Subtrees and subforests of graphs, J. Combin. Theory, Ser. B 61 (1994), 63–70.

- [3] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, *Acta Math. Acad. Sci. Hunger.* **14** (1963), 423–439.
- [4] L. Lesniak, Independent cycles in graphs, JCMCC 17 (1995), 55–63.
- [5] G. W. Schuster, A minimum degree result for disjoint cycles and forests in graphs. *Combinatorica* **18**(3)(1998) 425–436.
- [6] H. Wang, Independent cycles with limited size in a graph. *Graphs and Combinatorics* **10** (1994), 271–281.
- [7] H. Wang, On the maximum number of independent cycles in a bipartite graph. J. Combin. Theory, Ser. B 67 (1996), 152–164.
- [8] H. Wang, On the maximum number of independent cycles in a graph. *Discrete Mathematics* **205** (1999), 183–190.

(Received 30 Jan 2002)