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Abstract

An LRMTS(v) (respectively, LRDTS(v)) is a large set consisting of v—2
(respectively, 3(v — 2)) disjoint resolvable Mendelsohn (respectively, di-
rected) triple systems of order v. We have presented the tripling construc-
tions for LRMTSs (see Chang, Discr. Math., to appear) and LRDTSs (see
Zhou and Chang, Acta Mathematica Sinica, to appear), with a newly de-
fined structure TRIQ or DTRIQ being used. Lei (Discr. Math. 257
(2002), 63-81) introduced a concept called LR-design in order to obtain
the product construction for large sets of Kirkman triple systems (KTSs).
In this paper, we utilize both TRIQ (or DTRIQ) and LR~design to present
the product constructions for LRMTSs and LRDTSs, which generalize
the tripling constructions mentioned above. Applying the product con-
structions with the known LRMTSs, LRDTSs, TRIQs (or DTRIQs) and
LR~designs, we obtain the existence of an LRMTS(v) and an LRDT S(v)
forv=3"m(2- k' +1)(2- k5> +1)---(2-kf* +1) wheren > 1, t > 0,
n; > 1, k € {7,13} (1 =1,2,---,¢t) and m € {1, 4, 5, 7, 11, 13, 17,
23, 25, 35, 37, 41, 43, 47, 53, 55, 57, 61, 65, 67, 91, 123} U {(7* + 2)/3,
(13% 42)/3, (25% 4 2)/3, 2%+125/ +1: k>0 and j > 0}.

1 Introduction

Let X be a finite set. In what follows an ordered pair of X is always an ordered
pair (z,y) where @ # y € X. A cyclic triple on X is a set of three ordered pairs
(z,9), (y,2) and (z,2) of X, which is denoted by (z,y,z) (or (y,z,x), or {(z,z,y)).
A transitive triple on X is a set of three ordered pairs (z,y), (v, z) and (z, z) of X,
which is denoted by (z,y, z).
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An oriented triple system of order v is a pair (X, B) where X is a v-set and B is
a collection of cyclic or transitive triples on X, called blocks, such that every ordered
pair of X belongs to exactly one block of 5. In particular, if the triples in B are
all cyclic (respectively, transitive), then (X, B) is called a Mendelsohn (respectively,
directed) triple system and denoted by MTS(v) (respectively, DTS(v)).

An MTS(v) (or DTS(v)) (X, B) is called resolvable if its block set B can be
partitioned into subsets (called parallel classes), each containing every element of X
exactly once. A resolvable MTS(v) (respectively, DT'S(v)), denoted by RMTS(v)
(respectively, RDTS(v)), is easily seen to contain v — 1 parallel classes.

A large set of MTS(v) (respectively, DT S(v)), denoted by LMTS(v) (respec-
tively, LDT'S(v)), is a collection {(X, B;)}, where every (X, B;) is an MTS(v) (re-
spectively, DT'S(v)) and all B;’s form a partition of all cyclic (respectively, transitive)
triples on X. It is easy to see that an LMTS(v) consists of v — 2 disjoint MT'S(v)s
and an LDT S(v) consists of 3(v—2) disjoint DT'S(v)s. An LRMTS(v) (respectively,
LRDTS(v)) denotes an LMTS(v) (respectively, LDT'S(v)) in which each MTS(v)
(respectively, DT'S(v)) is resolvable.

We summarize the known existence results on LRMTSs and LRDTSs as follows.

Theorem 1.1 ([11, 4, 6, 1, 12]) There exist an LRMTS(v) and an LRDT S(v) for
v =169, 123, 141, 159, 7% +2, 13¥ +2, 25¥ +2, 3"m, where k > 0, n > 1, m € {1, 4,
5,7, 11, 13, 17, 25, 35, 37, 43, 55, 57, 61, 65, 67, 91, 123} U{22"*125¢ +1: 7 > 0,
s > 0}.

The orders 4 - 3" for n > 1 in Theorem 1.1 come from the tripling constructions
given in [1, 12] as follows.

Theorem 1.2 (Tripling Constructions, [1, 12]) If there exist both an LRMTS(v)
(respectively, LRDT S(v)) and a TRIQ(v) (respectively, DT RIQ(v)), then there ea-
ists an LRMTS(3v) (respectively, LRDT S (3v)).

In the following product constructions, we will also use the structures TRIQ and
DTRIQ. So, we recall their definitions and existence results.

A quasigroup of order v is a pair (X, o), where X is a v-set and o is a binary
operation on X such that equations a o x = b and y o a = b are uniquely solvable
for every pair of elements a,b in X. A quasigroup (X, o) is called idempotent if
the identity « o x = x holds for all z in X. An idempotent quasigroup of order v is
denoted by IQ(v). Furthermore, an idempotent quasigroup (X, o) is called resolvable
if all v(v — 1) pairs of distinct elements of X can be partitioned into subsets T},
1 <i < 3(v—1), such that every I'; = {(z,y,z 0y) : (z,y) € T;} (called parallel
class) is a partition of X. A resolvable idempotent quasigroup of order v is denoted
by RIQ(v).

An IQ(v) is called first-transitive, if there exists a group G of order v acting
transitively on X which forms an automorphism group of (X,0). A first-transitive
RIQ(v) is briefly denoted by TRIQ(v).
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Take any fixed ordered pair (4, j) (i # j). For an IQ (X, 0) and the given ordered
pair (4, ), define a set T* (i, j) of transitive triples of X x {i,} as follows: for each
ordered pair (z,y), * #y € X, let t(z,y,x oy) be the three transitive triples of
X x {i,j} defined by

iy, 20y) = {((2,1), (18), (203, 1)), ((2,1), (w09 9), (1, 1)), (20y, ), (2,3, (3,9))}.
(1.1)
Set
T™*(i,5) = U tlz,y,z0y). (1.2)
zAyeX
The IQ (X, o) is called second-transitive provided that TX (i, j) can be partitioned
into three sets T (i,7), T (4,4) and T5%(i, ) such that

(a) the three transitive triples in #(z,y,2 o y) belong to different T:X (4, §)s (k = 0,
1,2);

(b) if a # b € X, each of the ordered pairs ((a,i), (b, j)) and ((b,j),(a,7)) belongs
to exactly one transitive triple in each of T3 (4, 7), T (4,4) and T5 (i, j).

It is worth noting that we make a slight modification to the definition of second-
transitivity in [12] (where the values of i and j are restricted to {0,1,2}). It is
obvious that the two definitions are equivalent because the second-transitivity does
not depend on the choice of the ordered pair (3, j).

An IQ(v) (X, o) with both first- and second-transitivity is called doubly transitive.
A doubly transitive RIQ(v) is denoted by DTRIQ(v).

The existence of TRIQ(v) and DTRIQ(v) is known as follows.

Theorem 1.3 ([1, 12]) A TRIQ(v) exists if and only if v is a positive integer such
that 3lv andv #Z 2 (mod 4); A DTRIQ(v) exists if and only if v is a positive integer
such that 3|v and v # 2 (mod 4).

Another important concept is LR-design, which was introduced by Lei in [7].

Let X be av-set. An LR-design of order v (briefly LR(v)) is a collection {(X, A7) :
1<k <% j=0,1} of v — 1 KT'S(v)s with following properties:

(i) Let the resolution of A} be I, = {A}(h): 1< h < Y51}, There is an element
in each I', say, AJ(1), such that

U A1) = U 4i(1) = A
k=1 k=1

and (X, A) is a KT'S(v).

(ii) For any triple T = {z,y,2} C X, v # y # z # x, there exist k, j such that
T € Aj.

The known existence results on LR-design are as follows.
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Theorem 1.4 ([7]) There exists an LR(2-13"+ 1) forn > 0.
Theorem 1.5 ([3]) There exists an LR(2 - 7"+ 1) for n > 0.

In Section 2, we will present the product constructions for LRMTSs and LRDTSs.
In Section 3, we apply the constructions to update the existence results on LRMTSs
and LRDTSs.

2 Product constructions for LRMTSs and LRDTSs

In the following constructions, we need the concept of complete mapping in a finite
group.
A complete mapping of a group (G, -) is a bijection mapping « — 6(x) of G upon
G such that the mapping n(z) = x - 6(z) is again a bijection mapping of G upon G.
The following existence result has been stated in [1].

Lemma 2.1 ([1, Lemma 2.7]) If there exists an IQ(v) (X, o) with a sharply transi-
tive automorphism group G, then G has a complete mapping.

Remark 2.2 Suppose that X; is a u-set and (X1,0) is a TRIQ(u). By the definition
of TRIQ, we have:

(A) There is a sharply transitive automorphism group G = {o9,01,"*,0u-1} 0N
(X1,0). By Lemma 2.1, G has a complete mapping, say, ¢, and let o* =
[¢(0)]7t for o € G. Then by the definition of complete mapping, we have

{o(c*) 10 € G} =G. (2.3)

(B) All u(u — 1) pairs of distinct elements of X1 can be partitioned into subsets
S; (1 < < 3(u—1)), such that every T'; = {(z,y,x0y) : (z,y) € Si} is a
partition of X;.

If (Xi,0) is also second-transitive, i.e., (X1,0) is a DTRIQ(u), then another
property should hold:

(C) For any fived ordered pair (i, 7) (i # j), T*'(i,§) = Upsyex, t(@,y, xoy), where
t(z,y,voy) is defined in (1.1). By the property of second-transitivity, T (i, §)
can be partitioned into 3 sets Ty *(,5), Ti'(i,4) and T5*(i,5) satisfying:

(a) the three transitive triples in t(x,y,x oy) belong to different T} (i, j)s
(1=0,1,2);

nd (
belongs to exactly one transitive triple in each of Ty *(i,7), Ti' (i, ) and
T35 (i, 7).
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Furthermore, suppose that Xo is a v-set with a linear order “<” (i.e., for any
z#y, z,y € Xo, eitherx <y ory < z). And suppose that {(X2, A}) : 1 <k <
v, 5 =0,1} is an LR(v) satisfying condition (D):

(D) (i) Let the resolution of Al be Ty = {Al(h) :1 < h < =2}, There is an
element in each T, say, Aj(1), such that

U A4 = U 4@ =
k=1 k=1

and (X5, A) is a KTS(v).

(ii) For any triple T = {x,y,2} C Xy, © # y # 2 # x, there exist k, j such
that T € AJ,.

The symbols and properties in Remark 2.2 will be used in the proofs of both
Theorem 2.3 and Theorem 2.4. In addition, we stipulate some notations for the use
in the following proofs.

In (1.2), we give a symbol TX (i, ). For the comparing proofs of the following
theorems, we introduce an analogous symbol C*(7,7) in an IQ (X, o). For a fixed
ordered pair (4, ), define

U (1), (1), (@oy, i)}

rAyeX

Moreover, if 7 is a permutation of X, we denote by wCX(i,j) (resp., T} (i, j),
0 <1< 2) the set of the cyclic (resp., transitive) triples in C* (1, j) (resp., T} (i, ),
0 <1 < 2) by replacing each occurrence of (z,j) with (7(x),j) but keeping those
occurrences with the second component “2” unchanged, say,

WCX(Z,j) = Uz;éyeX{«'rvl)v (yvi)v (7T(.Z‘ ° y)v.]»}

Theorem 2.3 If there exist an LRMTS(u) and a TRIQ(u), and there exists an
LR(v), then there exists an LRMTS(uv).

Proof Suppose that (X, o) is the TRIQ( ) in Remark 2.2 with the properties (A)
and (B). Let {(X2,A4}) : 1 < k < %15 = 0,1} be the LR(v) satisfying condition
(D). Let {(X1,B;) : 1 <j<u- 2} be an LRMTS(u). We will construct an
LRMTS(uv) on the set Y = X; x X,. The construction proceeds in 3 steps.

Step 1: For any {a,b,c} C X, with a < b < ¢, for 0;,0; € G and x € X, define

B = {{(x,a), (0;(),b), (0107 (), )} },

abc U{uvw (w,v,u) : {uvw}Eijasz)}
z€X1

and
abc (a,b,¢)
— Pz .

0;€G
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Noting the formula (2.3), we have: (1) For m # n € {a,b,c}, =,y € Xy, each of
the ordered pairs ((z,m), (y,n)) and ((y,n), (x,m)) belongs to exactly one triple of
Al (2) AP and AP are disjoint for i # 4.

For each o' € X,, we have u — 2 disjoint RMTS(u)s (X; x {a'}, B](-a’)) for
J=12u-2 where B = {{(z,a), (4, ), (, ")) : (x,5,2) € B;}.

For a given j, 1 < j <u — 2, take {a,b,c} € Aand a < b < ¢, define

b, !
G=( U A"IHUU B
{a,b,c}€A a’'€Xa

Then it is not difficult to check that each (Y,C;) is an MTS(uv) for 1 < j <u — 2.

(Y,C;) is resolvable because C; is the union of the uv — 1 parallel classes in the
following 2 parts.

Part I: For given i and k, 0 < i <u-—1and 1 <k < %51, Uasbeteasn )Pi(f’b’c)
consists of 2 parallel classes. So this part gives u(v — 1) parallel classes.

Part IL: Uyex, B;-al) can be partitioned into u — 1 parallel classes because of the
resolvability of B;.

This step gives u — 2 disjoint RMTS(uv)s on Y.

(The remaining A" and A% ({a,b,c} € A, a < b < ¢) are saved for the
use in the following two steps.)
Step 2: (making use of the block set A"

For a given 0; € G, j =0, 1, ---, u — 1, define 3 permutations on X;, namely
a;-s)(s € Z3) as follows:

Oé_o) =0, ozg-l) _ UOU]U] -1 a§_2) _ (JOJ;)—l _ (ag_l)a;_o))fl_

For given k and j, 1 < k < *3' and 0 < j < u — 1, take {a,b,c} € A(1),
a < b < c. Define

C((J?’b’c) = (O)Cxl(a b) U a CXl(b c)u a C’Xl(c a),

and

D](S) _ [ U (Po(a ,b,¢) U Coa Jbye )] U [ U A;a,b,c)] )

{a,b,c}eAd(1) {a,b,c}e AINAY (1)

Then it can be checked that each (Y,D\}) is an RMTS(uv) for 1 < k < %5* and
0 < j<u-—1. Now we explain its parallel classes in 2 parts:
Part I: Ugep,c3ea01) P
By the property (B) in Remark 2.2, for a given 4, 1 <¢ < 3(u—1),I; = {(z,y,zo0
y): (z,y) € Si}isa partltlon of X;. Deﬁne 7(S;) = {( (z),m(y)) : (z,y) € S;} for
some 7 € G. Since a Ve G (seZy),al? =( 51) 50)) and AY(1) is a parallel class
of X,, we can conclude that

consists of two parallel classes.

(0) (1) ,(0)
U (@9C%(a,b) UalPc®(b,¢) Ua® 02" ¢, a))
{a.b,c}eAd(1)
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is a partition of Y, where C%(e, f) = Uz erf((z,€), (y,€), (x 0y, f))} for R € {S;,
a(5y), aMal?(5,)} and (e, f) € {(a,b), (b,¢), (¢,a)}. Note that

3(u—1)

3(u—1) © 3(u—1) )
U Coie,f)= U €% B e,f)= | €% (e, f).
=1 =1

It is easy to see that U{a,b,c}eAg(l)Cé;’b’c) can be partitioned into 3(u — 1) parallel
classes.

We have 3(u — 1) + 2 parallel classes in this part.

. . _ . ab,c

Part II: For given m and i, 2 <m < *Z and 0 < i <u—1, Utab.cread(m) Pj(i )
provides 2 parallel classes. So, we get u(v — 3) parallel classes in this part.

Obviously, D,(f;-) is the union of all the uv — 1 parallel classes in Part I and II.

By formula (2.3), we have {a{” : 0 < j <u—1} = G (s € Z3). With this fact, we
can check that these @ RMT S (uv)s are pairwise disjoint and they are obviously
disjoint with those obtained in Step 1.
Step 3. (making use of the block set Al bc))

For a given 0; € G, j =0, 1, ---, u — 1, define 3 permutations on X;, namely
BJ(-S)(S € Z3) as follows:

,3](0) — 0y 10]’ ,3](1) _ aj(au,la;)_l, B](‘Z) _ (Uj)_l _ (,3](1),3](0))_1.

For given k and j, 1 < k < *3' and 0 < j < u — 1, take {a,b,c} € A}(1),
a < b < c. Define

Cialicj) B(O)CXI(G c) Uﬂ CXl(c b) Uﬂ CXl(b a),

and
,D}(;;—l) _ [ U (P(a ,b,e) U C(a b, c)):| [ U A(.a,b,c)] )

u—1,j5 u—1,5 7
{a,b,c}eAL(1) {a,b,c}e AL\AL(1)

The similar arguments as in Step 2 give ) RMTS(uv)s (Y, D,(f; Nfor 1<k <
v=L and 0 < j < u—1. Furthermore, these RMTS(UU)S are disjoint and also disjoint
w1th those obtained in Steps 1 and 2.

We obtain a total of uv — 2 disjoint RMTS(uv)s, a large set. This completes the
proof. O

As we know, a large set of RDT'S(v) contains three times the number of “small”
sets that a large set of RMTS(v) does. We will see that the property of second-
transitivity is just what we need for the product construction for LRDTSs.

Theorem 2.4 If there exist an LRDTS(u) and a DTRIQ(u), and there exists an
LR(v), then there exists an LRDTS(uv).

Proof It is similar to the proof of Theorem 2.3. Suppose that (Xi,o) is the
DTRIQ(u) in Remark 2.2 with the properties (A), (B) and (C). Let {(X»,A%) :
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1 < %17 = 0,1} be the LR(v) satisfying condition (D). Let {(Xy,B;) : 1 <
J (u - 2)} be an LRDTS(u). We will construct an LRDTS(uv) on the set
Y = X1 x X,. The construction proceeds in 3 steps.

Step 1: For any {a,b,c} C X, with a < b < ¢, for 0;,0; € G and = € X, define

B = {{(x,a), (0;(),b), (0:0] (), €)}},

plabe) U {(w,v,w), (w,v,u) : {u,v,w}EBabc},

<k
<

0ij )T
reX
l(fjbc) = U {(u,w,v), (v,w,u) : {u,v,w} € Bwazbc)},
z€X1
PQ(fjbc) U {(w,u,v), (v,u,w) : {u,v,w} € Bz;lzbc 1,
zeX:

and

At = J P (0<1<2).

7, €G
Noting the formula (2.3), we have: (1) For m # n € {a,b,c}, z,y € Xi, each of
the ordered pairs ((z,m), (y,n)) and ((y,n), (x,m)) belongs to exactly one triple of
AlBP9) (2) A0 and AL are disjoint for (i,1) # (i, ).
For each o' € X, we have 3(u — 2) disjoint RDT'S(u)s (X; x {a'}, B;-al)) for
1< <3(u—2), where B§al) ={((z,d'),(y,d),(z,d")) : (x,y, 2) € Bj}.
For a given j, 1 < j <u — 2, take {a,b,c} € Aand a < b < ¢, define

Clj:( U A(abC) U Bs; 2+z

{a,bc}eA a'€X2

Then each (Y, C;) is an RDTS(uv) for 1 < j < w—2 and 0 <[ < 2. Furthermore,
the 3(u — 1) RDT'Ss in this step are disjoint.

(The remaining A{¢™® and Al(%b_? ({a,b,c} € A, a<b<e¢, 0<1<2)are saved
for the use in the following two steps.)
Step 2: (making use of the block set A" for {a,b,c} € Aand 0 <1< 2.)

For a given 0; € G, j =0, 1, ---, u — 1, define 3 permutations on X;, namely
a;-s)(s € Z3) as follows:

NC RPN 1

js QG —0'00']0'] ,

2 *\— 1) _(0)y—
ag- )1:(045- )ozg- )) L
For given k, jand [, 1 < k < &2 0 < j <u—1land 0 <[ < 2, take

3
{a,b,c} € A)(1), a < b < c. Define

it = o017 (a,0) U ST (b, ¢) U 0P 17 (e, ),

and

0 a,b,c ab,c ab,c
Dl(k])' = [ U (Pl( ‘U ClO] )] U [ U Al(j )]'
{a,b,c}eAd(1) {a.b,c}e AI\AY(1)
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Then each (Y, le]) isan RDTS(uwv) for 0<1<2,1<k<%tand0<j<u—1.
Furthermore, the 3“; 1) RDTS(uv)s in this step are pairwise dlsJomt and they are
also disjoint with those obtained in Step 1.
Step 3. (making use of the block set Al(i’lf? for {a,b,c} € Aand 0 <1< 2)

For a given 0; € G, j =0, 1, ---, u — 1, define 3 permutations on X;, namely
B](s)(s € Z3) as follows:

B = w0}, B = oi(oua0)) ™ B = (o) = (8787) "

For given k, jand [, 1 < k < ”;—l,Ogjgu—landOSlgltake
{a,b,c} € A;(1), a < b < c. Define

Clib i g B(O)TXI (a C) /B‘EI)EXI (C, b) U ﬁ](?)T'le (bv a‘)a

and
’Dl(}?j_l) _ [ U (P(a ,b,e) U Clabc ):| U [ U Al(;,b,c)] )

lLu—1,j u—1,j5
{a,b,c}eAL(1) {a,b,c}e AL\AL(1)

Then each (Y, Dlu 1)) isan RDTS(uv) for0<1<2,1<k<%tand0<j<u—1.
Furthermore, these RDT'S(uv)s are disjoint and also disjoint w1th those obtained in
Steps 1 and 2.

We obtain a total of 3(uv — 2) disjoint RDT S(uv)s, a large set.

The details of the proof are omitted. But we should point out one thing. When
considering the resolvability, there is no harm in disregarding the orientation of the
triples. So the proof of the resolvability is similar to that in Theorem 2.3. Especially
in Steps 2 and 3, if we disregard the orientation, T/X(4,7) is actually the same as
CX(i,7) for any i # j and 0 <1 < 2. O

Note: There is an LR(3) by Theorem 1.4. Take LR(3) in Theorem 2.3 and
Theorem 2.4, then we can obtain the tripling constructions in Theorem 1.2.

3 Updated results

By Theorem 1.3 and Theorem 2.3 (respectively, Theorem 2.4) we get the following
result.

Theorem 3.1 Let v be a positive integer such that v # 2 (mod 4). If there exist
both an LRMTS(v) (respectively, LRDTS(v)) and an LR(u), then there exists an
LRMTS(uv) (respectively, LRDT S(uv)).

Applying Theorem 3.1 recursively with the LRMTS(v)s and LRDTS(v)s from
Theorem 1.1 and the LR(u)s from Theorem 1.4 and Theorem 1.5, we obtain the
updated existence results on LRMTSs and LRDTSs.
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Theorem 3.2 There exist an LRMTS(v) and an LRDTS(v) for v =3"m(2-ki* +
1)(2-ky2+1)---(2-kf*+1) wheren >1,t >0, n; > 1, k; € {7, 13} (i =1,2,---,¢)
and m € {1, 4, 5, 7, 11, 13, 17, 23, 25, 35, 37, 41, 43, 47, 53, 55, 57, 61, 65, 67,
91, 123} U {(7% +2)/3, (13F +2)/3, (25% +2)/3, 221257 + 1: k > 0 and j > 0}.
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