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Abstract

R(n) denotes the minimum possible size of a completely separating sys-
tem C on an n-set. R(n,h,k) denotes the minimum possible size of a
completely separating system C on an n-set with h < |A| < k for each
A € C. In this paper a catalogue of non-isomorphic systems which achieve
R(n) for n < 10 is given. Values of R(n, h, k) are determined for n < 10
and for n > %

1 Introduction

This paper catalogues completely separating systems (CSSs) which achieve R(n) for
n < 10 and determines R(n, h, k) for n < 10 or n > % This also gives the minimum
and maximum volume of various classes of CSSs, something that has been found to
be important in related work by one of the authors (Roberts).

Throughout this paper h < k < n are positive integers and [n] = {1,2,...,n}.
A (n)Completely Separating System (or (n)CSS) C on [n] is a collection of
subsets of [n], called blocks, such that for each a,b € [n] there are blocks A,B € C
witha € A—Bandbe B—A. If h < |[A| < kfor all A € C then C is a (n, h, k)CSS,
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and if h = k then C is a (n, k)CSS. In this paper C will always denote a CSS. The
volume of C is V(C) =3, |A].

The integers R(n), R(n,h,k), R(n,k) are defined by:

R(n) = min{|C| : C is a (n)CSS}; R(n,h,k) = min{|C| : C is a (n,h, k)CSS}; and
R(n, k) = min{|C| : C is a (n,k)CSS}. An (n,h,k)CSS C for which |C| = R(n, h, k)
is a minimal (n, h, £)CSS. Similarly, an (n)CSS for which |C| = R(n) is a minimal
(n)CSS. Let m(C) = maxaec{|A|}. Clearly [ |C‘)] < m(C) < n if C is minimal and
n > 1.

Two CSSs are said to be isomorphic if one can be obtained from the other by
permuting 1,...,n. A p-element in a CSS is an element which occurs in exactly p
blocks of the CSS. The complementary CSS of an (n)CSS Cis ¢’ = {A C [n] :
A e C}.

CSSs were introduced by Dickson [2]. They were defined as an extension of a Sep-
arating System as defined by Renyi [7]. In this paper CSSs and all derivations are
treated directly from the combinatorial design perspective. It should be noted that
the same material could be presented in the language of hypergraphs as the dual of
a CSS is an antichain (see Cai [1]).

Spencer [9] showed that

Lemma 1.1.
R(n) = min{t Q;) > n}.

Explicit constructions of collections which achieve R(n) were not supplied by Spencer.
Cai [1] notes that for n > ’”2—2 and R = [22], it is easy to construct a simple graph
with n edges and R vertices with each vertex of degree £ or less. Labelling the edges
1,...,n and taking a block to be the set of edges incident with a vertex, one obtains
an (n,1,k)CSS. Cai also shows that for an (n, 1, k)CSS, the number of blocks is at
least [2%]. Hence

Theorem 1.1. R(n,1,k) = f%], Vn > % > 2.

2 Basic results

Lemma 2.1. For all positive n
(i) R(n,a,b) > R(n,h, k) whenever a > h and b < k.
(#1) For all h and k, R( ) < R(n,h,k) < R(n, k).
(12i) R(n) < R(n +1) < R(n) +

(tv) R(n,1,k) < R(n+1,1,k) S k) +
(v) If n > 3 then R(n+1,2,k) < R( 2 k) +
(vi) For h > 1, R(n,h,k) > [%].
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(vii) For k > 2 there is a minimal (n)CSS and a minimal (n,1,k)CSS, each con-
taining at most two singleton blocks.
(viii) R(n,h, k) = R(n,n — k,n — h).

Proof. (iii) & (iv) In each case the second inequality follows from the fact that the
addition of the block {n + 1} to a CSS on [n] yields a CSS on [n + 1].

(v) Let C be a (n,2, k)CSS which achieves R(n,2, k). Replace one occurrence of the
element 1 by the element n+ 1. Add the 2-block {1,n+ 1} to the collection to obtain
an (n+ 1,2, k)CSS.

(vi) Let C be an (n,h,k)CSS. As h > 1, V(C) > 2n. Since there are at most k
elements in each block in C, |C| > 2n/k.

(vid) If C is minimal and contains {a}, {b} and {c} then replace these three blocks
by the three 2-blocks {a, b}, {a,c} and {b,c}.

(viii) Complementary CSSs must both be minimal if one of them is minimal. a

Lemma 2.2. Let C be a minimal CSS on [n]. Assume R(m) = R(n), m <n. Then
n—m < |A| <m for each A € C.

Proof. Assume A € C, |A| > m. Then, as R(m) = R(n), any m elements of A cannot
be completely separated in the remaining blocks of C. Hence |A| < m. Applying this
to the complementary CSS C’ yields n —m < |A|. O

Theorem 2.1. Let C be a minimal (n)CSS, n > 5. Then C contains at most one
singleton block and 2n — 1 < V(C) < |C|n — 2n + 1. If there are no singleton blocks
then 2n < V(C) < |C|n — 2n.

Proof. Assume that C contains more than one singleton. By Lemma 2.1 we may
assume that C contains at most 2 singletons, so that C = {{1},{2}, A1, As,..., A}
The blocks A, As, ..., A; must completely separate at least 3 elements and have size
2 or more. Clearly [ > 2. Then {{1,2}, A; U {1}, A, U {2}, As,..., A} is an (n)CSS
with fewer blocks than C, contradicting the minimality of C.

The minimum possible volume of C is thus 2n — 1; 2n if there are no singleton blocks.
Consideration of complementary CSSs gives the remaining inequalities. |

3 R(n) for n <10

Hereafter the blocks in a CSS are shown as rows in an array. In some of these

representations extra spaces are left in some rows to help highlight some structures
of the CSS.

Theorem 3.1. (i) For eachn < 10, R(n) has the values as shown in the row labelled
R in the table below.

(i1) For each n < 10, the number of non-isomorphic CSSs which achieve R(n) is
shown wn the row labelled d in the table below.
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(t4i) The minimum and mazimum volumes of (n) CSS which achieve R(n) are shown
wn the rows labelled Min and Maz in the table below.

n. 123 4 5 6 7 8 9 10
R: 1 2 3 4 4 4 5 5 5 5
a1 12 6 1 1 18 7 2 2
Min: 1 2 3 4 10 12 13 16 18 20
Maz: 1 2 6 12 10 12 22 24 27 30

Proof. The values of R(n) for n < 10 are given by Lemma 1.1. All non-isomorphic
(n)CSSs for n < 10 are catalogued below. It should be noted that the cases n =
1,2,3,6, 10 follow directly from Sperner’s Theorem (see [3]).

The first block in each CSS can always be assumed to be 1,2,...,m(C). The re-
maining blocks must completely separate 1,2,...,m(C) as well as m(C) +1,...,n.
This reduces the problem to using CSSs for smaller n which are usually, but not
always, minimal. This yields a computationally feasible exhaustive construction of
all non-isomorphic minimal CSSs with the given parameters.

The cases when n < 3 are simple and can be checked by exhaustion.
n=1: n=2: n=3:
1 1 1 2
1 ) 2, 13
3 2 3
In the following cases C denotes a minimal (n)CSS and A a block of C.

n = 4: There are 3 possible values for m(C).

1. m(C) = 1. There is one CSS: 2. m(C) = 2. There are two CSSs:
1 1 2 1 2
2 1 3 1 3
3 2 37 2 4
4 4 3 4

3. m(C) = 3. It can be assumed that A = {1,2,3} € C. There are two ways of
completely separating 1, 2 and 3 using three blocks as shown in the case n = 3.

1 2 3 1 2 3 1 2 3
1 4 1 4 1 2 4
2 4 ’ 2 4 ’ 1 3 4
3 3 4 2 3 4

n=>5 and n=6: By Lemma 2.2, 1 < |4] < 4. In particular, m(C) < 4 and C
contains no singletons. As |C| =4, V(C) = 2n (Theorem 2.1) and so m(C) > [£] =
3. Hence for each of n =5 and n = 6 there is one CSS:

3
5

W N = =
T N
W N ==
T N
OOt W
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n = 7: Theorem 2.1 implies 13 < V(C) < 22, so m(C) > [£] = 3.

1. m(C)

3. The three possible CSSs are:

4

4. The nine possible CSSs are:

2. m(C)

2 3 4

1

1 2 3 4

2 3 4

1

2 3 4 1 2 3 4
5 6 7 1

1
1

5

I~ I~

[InjaNe)

N ™

I~ I~

[InjaNe)

I~ I~

[InjN=)

N ™

[InjaNe)

N ™

1 2 3 4

1
1
2

2 3 4

1
1
1

1 2 3 4
1 2 5 7
13 6 7,

2 3 4

1
1

2 5 7

5 6 7

36 7,

2 3 47

3

5. The four possible CSSs are:

3. m(C)

2 3 4 5
2 3 6 7

1
1

1 2 3 4 5 12 3 4 5

2 3 4 5

1

6. The two possible CSSs are:

4. m(C)

1 2 3 4 5 6

2 3 4 5 6

1

< 6.

<m(C)

<24and4<m

n = 8: The results of Section 2 imply that 16 < V(C) <

1. m(C)

4. The four possible CSSs are:

1 2 3 4
1 2 5 8
1 3 6 8
2 3 7 8

4 5 6 7

1 2 3 4
15 6 7

1 2 3 4

1

2 3 4
5 6 7
5
6

1
1

5

6
7

8

7

5. The two possible CSSs are:

2. m(C)

1 2 3 45

2 3 45

1
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3. m(C) = 6. The only possible CSS is

1 3 4 5 6
1 3 7 8
1 5 8
2 6
3 6

T = NN

7
7
8

n = 9: The results of Section 2 imply that 18 < V(C) < 27 and 4 < m(C) < 6.
1. m(C) = 4. The only possible CSS is

4
7
9

© 0 O W

1
1
2
3
4

-~ S Or Ot N

2. m(C) # 5 can be seen by assuming A = {1,2,3,4,5} € C, applying the unique
construction for completely separating 5 elements in 4 blocks and then trying to add
four more elements whilst maintaining complete separation.

3. m(C) = 6. There is just one CSS

1 2 3 4 5 6
1 23 789
1 45 7 8
2 4 6 79
3 5 6 8 9

n = 10: The results of Section 2 imply that 20 < V(C) < 30 and 4 < m(C) < 6.

1. m(C) = 4. There is only one way to completely separate the 6 elements not in
the first block, and then only one way to complete the design.

2 3 4
6 7
8 9
8 10
9 10

W N =
~ O Ot Ot

2. m(C) # 5 for similar reasons to the case n = 9 and m(C) = 5.

3. m(C) = 6. There is only one way to completely separate 6 elements, and only one
way of completely separating the remaining 3 elements to complete the design.

1 2 3 45 6

1 2 3 7 8 9
1 45 7 8 10
2 4 6 79 10
3 5 6 8 9 10

The bounds on the volume, Min and Max, shown in the table are now clear. Ol
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4 R(n,1,k) for n <10

Theorem 4.1. For n < 10, the values of R(n,1,k) are
k
2 38 4 5 6 7 8 9

NSRS CREN S NS IR SINURR S s
N UT R WN~
NSO W

NSO TR A
CU OV Oy Gy B A
S G G QA

S G v &y

S v >

5
5

~
b=
-
(=]
-
(=]

5

Proof. The cases in bold are given by Theorem 1.1 or because R(n,1,1) = n. In the
other cases the CSSs in the proof of Theorem 3.1 are (n,1,k)C'SSs. d

5 R(n,h,k) for h>2 and n < 10

The cases R(n, h, k) with h = k, that is the R(n, k) cases, are dealt with in [5], hence
are not included.

Theorem 5.1. The values of R(n,h, k) with2 <h <k <n <7 are

(i) R(4,2,3) = 4,

(i1) R(5,2,k) =4 for k < 4,
(i1i) R(5,3,4) =5,

(iv) R(6,h,k) =4 for h <3,
(v) R(6,4,5) =6,

(vi) R(7,h,k) =5 for h <4,
(vit) R(7,5,6) =17.

Proof. Parts (i), (i), (iv) and (vi) follow from Theorem 3.1. By Lemma 2.1 (viii),
R(5,3,4) = R(5,1,2), R(6,4,5) = R(6,1,2) and R(7,5,6) = R(7,1,2). The results
for parts (iii), (v) and (vii) now follow from Theorem 4.1. O

Theorem 5.2. The values of R(8,h,k) with2 < h <k < 8 are
(i) R(8,2,3) —6,

(ii) R(8,2,k) =5 for k > 4,

(i1i) R(8,3,k) =5 for all k,

(iv) R(8,4,k) =5 for all k,

(v) R(8,5,k) = 6 for all k,

(vi) R(8,6,7) = 8.

Proof. Parts (it), (i13) and (iv) follow from Theorem 3.1. Part (vi) follows from
Lemma 2.1 (viii) and Theorem 4.1. Theorem 3.1 does not give CSSs with the
parameters of (i) or (v) so in these cases R(8,h,k) > R(8) = 5.
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(), (v) To see that R(8,2,3) =6 and R(8,5,k) = 6 consider

1 2 3 1 2 3 4 5 6
1 4 5 1 2 3 4 5 7
2 6 7 1 2 3 6 8
3 6 8 1 4 5 7 8
4 7 2 46 7 8
5 8 3 5 6 7 8

Theorem 5.3. The values of R(9,h, k) with2 < h <k <9 are
i) R(9,2,3) = 6,

i) R(9 k) 5 for all k,
,k) =6 for all k
7,8) =

Proof. Parts (ii), (ii7), (v) and (vi) follow from Theorem 3.1. Part (viit) follows
from Lemma 2.1 (viii) and Theorem 4.1. Theorem 3.1 does not give CSSs with the
parameters of (i), (iv) or (vii), so in these cases R(9,h,k) > R(9) =5

(i), (iv) To see that R(9,2,3) = 6 and R(9,4,5) = 6 consider

1 2 3 1 2 3 4 5
1 45 1 2 3 6 7
2 6 7 1 4 5 6 8
3 6 8 2 479
4 79 3 5 8 9
5 8 9 6 7 8 9
(vii) It is shown in [6] that R(9,6) = 6, hence R(9,6,k) = 6. O

Theorem 5.4. The values of R(n,h,k) with 2 < h <k <n =10 are

(i) R(10,2,3) =T,

(#1) R(10,2,k) =5 for k >4,

(143) R(10,h,k) =5 for 3< h <6,
(v) R(10,7,8) =7,

(v) R(10,7,9) =7,

(vi) R(10,8,9) = 10.

Proof. (i) R(10,2,3) > 6 as a minimal (10,2, 3)CSS must have volume at least 20.
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To see that R(10,2,3) = 7 consider

3
5
7
8
9

© 00~ DN

—

0

(= L R

=
o

Parts (i7) and (4i¢) follow from Theorem 3.1. Part (iv) follows from (¢). Parts (v)
and (vi) follows from Theorem 4.1. O

2
6 R(n,h,k) for n>%

The following theorem is a part of Theorem 2 in [5]. Together with Theorem 1.1, it
is used to determine R(n, h, k) for sufficiently large n, as expressed in Theorem 6.2.

Theorem 6.1. If n > (*1') then R(n,k) = [2] for2 <k <n. Ifn= (") -1
then R(n k) = [B] +1 for 3 <k <n. If % <n < (") =1 then R(n,k) = [2]
for k> 5.

Theorem 6.2. Let 1 < h <k, k>2 andn > % Then

[221+1 ifh=Fkandn = (’”;1) —1.
[2] otherwise

R(n,h, k) = {

Proof. By Theorem 1.1, if h =1 then R(n,h, k) = [ZTW

Assume that h > 2. By Lemma 2.1 (i) and (vi), [2] < R(n, h, k) < R(n, k). Thus,

by Theorem 6.1, R(n, h, k) = [2] for n > (*+1), or for % <n< (" -1

For n = (*1') — 1, k > 3 begin with the construction of a minimal ((*}"),%)CSS C
as described in [5, p.135]: start with a (k 4 1) x k array of zeros. For each value of
m from 1 up to n in turn set ¢;; = m for the two ordered pairs (7,7) defined by
mingming{cg; : ¢;; = 0},
min;min;{c;; : ¢;j = 0}.
The rows of this array are the blocks of C. The removal of any one of the elements
provides a ((*1') — 1,h, k)CSS in [22] blocks for 1 < h < k.

This covers all the required cases. a

7 Final Comments

There are many open CSS problems. These problems may be of interest as finite
designs or in terms of asymptotic results. These include:
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1. What are the bounds on the volumes of minimal (n)CSSs and (n, h, k)CSSs for
each n and how are they achieved?

2. For each n, how many non-isomorphic minimal (n)CSSs (n > 10), and how many
(n, h, k)CSSs are there?

3. For a fixed number of blocks R, is the number of non-isomorphic minimal (n)CSSs
with R(n) = R monotonic in n?
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