AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 33 (2005), Pages 217-229

A computer study of some 1-error correcting
perfect binary codes

MARTIN HESSLER

Linkopings Universitet
Matematiska institutionen
581 83 Linkping
SWEDEN

Abstract

A general algorithm for classifying 1-error correcting perfect binary codes
of length n, rank n —log,(n+1) +1 and kernel of dimension n —log,(n +
1) — 2 is presented. The algorithm gives for n = 31 that the number of
equivalence classes is 197.

1 Introduction

A 1-error correcting perfect binary code of length n is a set of words C' C Z§ such
that for every z € ZJ we have a unique word ¢ € C such that d(c, z) < 1. The integer
d is the Hamming function, which is defined as the number of non-zero positions in
the word. The set ZJ is the direct product of n copies of the finite field with two
elements, i.e. Z8 = Zy X Zy X ... X Zy. Two perfect codes C and C' are equivalent
if there exists a permutation § on the coordinate set and a word ¢ € C’ such that
C = §(C" +). The restriction on ¢’ is not necessary and is only there to keep the
zero word in the code.

In this note we will consider 1-error correcting perfect binary codes of length n, rank
n —logy,(n + 1) + 1 and with a kernel of dimension n — log,(n + 1) — 2. For this
set of perfect codes we will present a general algorithm to classify the number of
equivalence classes for this set of codes. The classification will be done by using the
super dual [2]. The algorithm will first be defined and then refined in order for it to
run on a modern personal computer. The presentation is based on the case n = 31,
for which the number of equivalence classes have been calculated to 197.

The result in this note is one of the first enumerations of codes of length n = 31;
earlier works dealing with enumeration of l-error correcting perfect binary codes
are almost exclusively concerned with the codes of length n = 15. Some previous
results for l-error correcting perfect binary codes are by Hergert [3] who in 1985

218 MARTIN HESSLER

showed that there are 19 different codes of length 15 and rank 12. Later, in 2000,
Phelps [7] enumerated, by use of a computer, all codes of length n = 15 obtained by
the doubling construction due to Solov’eva [8] and Phelps [6]. Dejter and Delgado [1]
strengthened in 2002 the result by Hergert showing that there exist three codes with
kernel of dimension nine, three codes with kernel of dimension eight and 12 codes
with kernel of dimension seven for the perfect codes with length 15 and rank 12.
Further results are by Malyugin [5], who in 1999 listed many of the codes of length
15 and by Heden [2] who in 2003 showed that there is only one l-error correcting
perfect binary code of length n = 31, of rank 30 and with a kernel of dimension 23.

2 Preliminaries and notation

Perfect codes are denoted by C, which is the set of all words in the code. The kernel
of a perfect code is the set of periods of the code, ker(C) = {c|c+C = C}. The rank
is the dimension of the linear span < C' > of the words in the code C'. Throughout
this note we will denote the dimension of the kernel with k& and the rank of the code
with 7.

We can make a covering of the code with side classes of the kernel; this covering is
given by a choice of coset representatives ¢; & ker(C), i =1,2,...t, such that

C =ker(C)U(c; + ker(C))U...U (¢ + ker(C))

where t = 2nloga(ntl)=k _ 1

The product between two words z and s is defined as:
2e8= (21, s 2n) (S1,.. .y 8n) = 201 2 8 (mod 2).

The weight of a word is the Hamming distance from the zero word. In this paper we
will always assume that the zero word is in the code. By a perfect code we always
mean a l-error correcting perfect binary code.

3 Super dual

To any code C' we may define a super dual [2]. The super dual C* of C' is a linear
code defined from the rowspan of a matrix pair (G|H), C* =< (g;|h;) > where g;
and h; are the i:th row in the corresponding matrices, ¢ = 1,2,...,n — k. The
rows g; in the matrix GG are a base for the dual space of the kernel of the code C.
The matrix G is of size (n — k) x n with full rank. The matrix H will have size
(n — k) x (2nloe2(+)=F _ 1) and rank r — k. The position h,; in the matrix H is
hij = gi-cj for @ = 1,2,...,n — k, where the words c; are coset representatives,
j=1,2,..., 20 osa(ntl)=k _ 1

In [2] the following theorem was proved, with changed notation.

1-ERROR CORRECTING PERFECT BINARY CODES 219

Theorem 1 (Heden 2003) A linear code C* consisting of words (g|h), where the
words g have length n = 2™ — 1 and the words h have length k, is a super dual of a
perfect code C of length n if and only if the following three conditions are satisfied:

(i) for any word (glh) of C*, w(g) # (n+1)/2 = w(h)=(k+1)/2;
(ii) k =29 /(n +1) - 1;

(ii) there is a matriz (G|H) such that the rows of (G|H) generates C*, the k
columns of H are distinct and w(h) # (k+1)/2 for any row h of H.

We will only consider the case of length n = 31, rank » = 27 and a kernel of dimension
k = 24. With these parameters, G will be a 7 x 31 matrix and H a 7 X 3 matrix.
The explicit form of these matrices will be discussed in the next section.

4 Application

The goal in this section is to construct a method to enumerate some perfect codes.
This method should not only be correct but also be useful on a typical computer.
The first important step is to generalise the individual words to equivalence classes.
Note that Lemma 1, below, introduces much of the notation used in the following
subsection.

Lemma 1. Let A be a group of automorphisms of a linear subspace S of Z§. For any
pair of words (a,b), the partitioning of b:s into equivalence classes of cosets to S, for
those § which fizes the coset a + .S, will commute with the set of automorphisms A.

Proof. Let (a,b) be any pair of words, a,b € Z} such that a # b. Take any group
of automorphisms

A={0]6:5— 5}
Denote the subset which fixes the coset x + .S by
A, ={d|6:z+S—>zx+S5 ez} 6 A}
Define the family of sets A% = {d(z+S) |« € Z¥, 6§ € Q}, where Q denotes any set

of bijections.

With this notation, the lemma is equivalent to the following,

O(AL,) = ALY,
for any 6 € A. It follows from the fact that A is a set of automorphisms on the set
S, that it is enough to view a single element in the set AZ’AE. To finalise the proof of
the lemma, it is enough to show that every element §(y(b)) € A%, for any v € A,, is

220 MARTIN HESSLER

(b)
Ds(a)?
Take p1 = 6v6~* which belong to Ay, as

equal to an element u(§(b)) € A for some 11 € Ag(q), as ¢ is a bijective mapping.

p:dla+S)—d(a+S).

This concludes the proof.

In the following subsection we will present the general algorithm for classifying 1-
error correcting perfect binary codes of length n, rank n —log,(n+1) +1 and kernel
of dimension n — log,(n + 1) — 2. We will apply the algorithm to the special case
n = 31.

4.1 Perfect codes of length 31, rank 27 and kernel of dimension 24

Theorem 2. The number of equivalence classes of perfect codes of length 31, rank
27 and with a kernel of dimension 24 is 197.

The theorem is implicitly proved in the rest of the current subsection, which explicitly
proves the validity of the general algorithm used to perform the classification.

Proof. We first show, by using Theorem 1, that we without loss of generality can
choose to represent the super dual of any perfect code of length 31, rank 27 and with
a kernel of dimension 24 in the following way:

0000000000000001111111111111111 000
0000000111111110000000011111111 000
0001111000011110000111100001111 000

(G| H) = | 0110011001100110011001100110011 000 |,
1010101010101010101010101010101 100

F(dy) 010
F(dy) 001

where f is a function from Z5 to Z3; defined below. We will consider the possibilities
for the function f. Thereby, we must keep in mind which properties made it possible
to fix the matrix H and the first five rows in the matrix G. These properties are:
(a) the super dual is a linear code and (b) H is for this simple case a full rank
matrix. As any permutation of the coordinate set gives an equivalent code and
as, from criteria (i) of Theorem 1, any word in the linear span of the first five
rows of G must have weight 16, we can assume the first five rows of G to be as
above. By the same criteria we get that the same conclusions will hold for the linear
span of the rows number 1,2,3,4 and 6 as well as the rows number 1,2,3,4 and
7. This implies that they must differ from the fifth word by the addition of a word
(0,a1,a1,as,as,...,a15,a15) € Z31. Let d denote the fifth row of the matrix G. The
function f will consequently be defined by:

flar,az, ... a15) = (0,a1,01,a9,a2,...,a15,a15) + d.

1-ERROR CORRECTING PERFECT BINARY CODES 221

(A similar construction was used in [2] to prove that there are three equivalence
classes of the perfect codes of length 15, rank 12 and with a kernel of dimension 9.)

A simplex code S is a linear code of length n, for which all words have weight (n+1)/2
or 0. We will consider the simplex code defined from the row span of the following
matrix S:

= o O O
O = OO
== _-0 O
=== O
=

1
1
1
1

OO = O
= O = O
O = = O
OO O
= O O
O = O =
OO~ =
= O ==
O ===

We note that all matrices which give the same rowspan as S are equivalent to S and
that the simplex code S will contain all the symmetry properties of the five first rows
in the super dual of the original code except the permutations of the 01:s in the word
d. These additional permutations are of no importance for the classification of the
number of non-equivalent perfect codes, as such a permutation only changes the d
word and not the words dy, d2, as the definition of the function f includes the word d.
Hence the number of non-equivalent triplets 0 = f~(d) and dy, d» representing side
classes of the simplex code S of length 15 in Z1® will be the number of equivalence
classes of perfect codes. This is a consequence of the fact that the function f is
bijective for the set of odd row additions for the last three rows and that the even
additions do not give a super dual on the chosen form.

We will for clarity denote the triplets (0 + S,a + S,b + S) with (a,b). By con-
sidering row additions in the matrix pair (G|H) and addition in the corresponding
perfect code, we see that this gives the following equivalence relation for our triplets.
The set A is the group of automorphisms of S, the simplex code defined above. If
(a,b) ~ (d,e) then we know that (d,e) is equal to one of the following six triplets
for 6 € A, ((6(a),d(b)), (6(b),0(a)), (6(a),d(a+ b)), (6(a+ b),d(a)), (6(a+ b),d(d))
or (6(b),6(a +b)). Note that A ~ GL(Z,,4). This can be proved by considering
matrix multiplication from the left by the matrix representation of the general linear
group. The matrix multiplication will induce a permutation on the above matrix
representation of S.

In order to facilitate work for the reader, we will make a preliminary proof of the fact
that the equivalence classes of the perfect codes with a triplet representation with
the two elements in a set Z C Z}, can be ordered for any ordering of the set Z. This
is the first step when constructing the algorithm below.

Consider any ordering of the set Z and an equivalence class represented by a triplet
(2i,zj). We remind of the meaning of the triplet by using the notation from the proof
of Lemma 1. The triplet (z;, z;) represents two cosets to the simplex code; these two
are chosen from the three sets A%, A¥ and A%, The equivalence class is also
determined by the relation between these sets defined by the relation between the
two words z;, z;. Consider for example the relation between the support of these two
words, and hence also the weight of the word z; + z;, which will be constant under

any permutation of the coordinate set.

222 MARTIN HESSLER

Consider the three distinct possibilities, which can occur for the sets A%, AzAj and
Az+zj :
type 1: all the three sets are disjoint.

type 2: two of the sets are equal.
type 3: all the sets are equal.

We will now show how we can make an ordered choice from the set of non-equivalent
perfect codes. Define the least member function

Im(A) =min({i | z; € A}),

on any subset A of the ordered set Z. We note that, by following the ordering of Z
when choosing z; and z;, the following relation will always be fulfilled:

i =Im(A%) < Im(A7) < Im(AZT).

By Lemma 1, we can now fix z; and get two new distinct cases for the sets AZJ’Z' and

Zitz;,
AT

case a: they are disjoint
case b: they are equal.

Hence in total there are five possibilities 1a, 2a, 2b, 3a and 3b. For each of these five
cases, we can assign a number to the corresponding equivalence class by using the
induced ordering from the ordering of Z. This concludes the preliminary proof.

The following algorithm is essentially the ordering of the non-equivalent perfect
codes, refined to run on a normal computer.

The algorithm: We construct an algorithm which places every triplet (a,b) in a
set L which corresponds to a class of equivalent side classes. Hence L will be the
ordering of the equivalence classes in the preliminary proof. The algorithm will go
through every pair (a,b) ~ (b,a). We will prove that every triplet (a,b) placed in L
is non-equivalent to any other triplet in L and that every triplet non-equivalent to all
triplets contained in L is added. In the algorithm, assignment will be done to the left,
thus A = B will assign the value of B to A. The sets A, B will be used to store al-
ready considered and/or added triplets, A for the outer loop and B for the inner loop.

Sets of words A, B, L
Ordered Set Z35\ {0} = {20,21 ... 2n}
A, A;, S as in Lemma 1.

A=S
for; (i=0,1,...,N = 1)
while; (ZZ' S A)
=141
end while;

1-ERROR CORRECTING PERFECT BINARY CODES 223

B=S
fory (j=i+1,i+2,...,N)
while, (z; € B)
J=J+1
end while,
if (zjg{S+ztUAand z; +z; ¢ A)
L=LU{(z,2)}
B:BU{(Sk((S—FZj)U(S—FZi-i‘Zj))| 6k€Azi,k:0,1,...}

else
B:BU{Zj}U{Zi+Zj}
end if
end for,
A:AU{(S]C(S—FZZ) | op € A, kZO,].,}
end for;

We will now prove that any two perfect codes, enumerated by the above algorithm,
are non-equivalent. This will be done by induction.

The first triplet (z;, z;) is new and we also assure that S # S+z and S # S+z; and
S+ 2z # S+ zj. If we add the triplet (z;, z;), then it is a new equivalence class, if no
equivalent triplet (a,b) already exists in the non-empty L. The six possible cases of
equivalent triplets are as stated above. We will prove that no such equivalent triplet
(a,b) € L can exist. Two cases when adding a triplet to a non-empty L, either z; = a
or z; # a.

The case z; # a: In this case we have the following relation
AD {5A(S+a) | 0 €A,]m:(),].,}

We only add (z;, z;) if 2, 2,2 + 2z; € A, which is impossible if (a,b) ~ (z;,2;). To
prove this we consider the six possible equivalence relations. If (a,b) € L, then
the inclusion, as stated above, is valid. The while;-test insures from this inclusion
that z; 2 a, thus if the triplets are equivalent, then either z; ~ a + b or z; ~ b.
The while,-test insures that z; % a, thus we only have two possibilities left: either
(2i,27) = (b,a+b) or (2, zj) =~ (a+b,b). The whiley-test also insures that z;+2; € A,
but for the only remaining cases we see that z; + z; ~ a. Hence if we add (z;, z;) it
will not be equivalent to any equivalence class in L.

The case z; = a: If an equivalent triplet (a,b) =~ (2, z;) = (a, %;) exists in L, then
from Lemma 1 we know that either S+ b = §(S + z;) or S+ b = (S + a + z;),
d € A,. This is impossible if (a,b) € L as

BD{ék((S+b)U(S+a+b))| 6k€Aa,k:0,1,...}.

Hence the triplets cannot be equivalent as the while, insures that z; ¢ B.

We will now prove that the algorithm makes a complete ordering of all possible per-
fect codes.

224 MARTIN HESSLER

It is sufficient to show that any triplet (z;, z;), which is non-equivalent to all triplets
(a,b) in L, is added to L, as all triplets are considered by the algorithm. Observe
that A contains all words in the same orbit as all earlier z;. Thus if z;, € AX (defined
in Lemma 1) then k& > 4. By Lemma 1 we can find all equivalence classes by fixing
any member in the orbit of z;, thus for this algorithm, also the particular case for
z;. This explains why the completeness is not affected by the fact that all triplets
(a,b) € L will be such that a % z; or a = z;, as i is least member in it's equivalence
class and hence will give the maximal possible z;’s.

The while, will not affect the completeness of the algorithm as we in the fors-loop
have a constant ¢ and we only add equivalent words to B, under the restricted
permutation group A, , which is exactly the criteria induced by Lemma 1. The two
cases for the if-test will be as noted, thus if z; ~ z; then AZ N A = () and all the
cases (z;, z;) such that z; ~ z; will be added and hence insuring completeness for this
case. The only problem remaining is if z; € A but if this happens, then the least
member j* of the equivalence class to z; is such that j* = Im(AZ) < i = Im(AZ)
(Im defined in the preliminary proof) and hence the triplet (z;+, z;) has already been
added. This concludes the proof of the completeness of the algorithm.

References

[1] I.J. Dejter and A.A. Delgado, STS-Graphs of perfect codes mod kernel, sub-
mitted.

[2] O. Heden, Perfect codes from the dual point of view I, submitted to Discrete
Mathematics.

[3] F. Hergert, Algebraische methoden fiir nichtlineare codes, Thesis Darmstadt,
1985.

[4] M. Hessler, Perfect codes considered as isomorphic spaces, submitted to Discrete
Mathematics.

[5] S.A. Malyugin, On enumeration of perfect binary codes of length 15, Discrete
Analysis and Operation Research 1(6)2 (1999), 48-73.

[6] K. T. Phelps, A combinatorial construction of perfect codes, SIAM J. Alg. Disc.
Meth. 5 (1983), 398-403.

[7] K. T. Phelps, An enumeration of 1-perfect binary codes of length 15, Australas.
J. Combin. 21 (2000), 287-298.

[8] F. I.Solov’eva, On binary nongroup codes, Methody Diskr. Analiza 37 (1981),
65-76.

1-ERROR CORRECTING PERFECT BINARY CODES 225

A Appendix

The table below contains a triplet representation for all the equivalence classes of
perfect codes found in the computer search described above. These triplets can easily
be used to reconstruct the corresponding perfect codes using methods in [4].

The types are as defined above and the integer |Sym| is the cardinality of the set of
permutations § on the coordinate set, which fulfil that 6(.5) = S and that 6(d; +.5) =
d; + 5, §d; +S)=d;i+Sordd;+5)= di+d;j+5,4,5 € {1,2}, i # j. The linear
code S is the simplex code of length n = 15, see above. Note that |Sym| is not equal
to the cardinality of the symmetry group of the corresponding perfect code. Viewing
the table below we notice some peculiarities, for example, the code with the largest
symmetry group is of type 1. This is surprising as we would think that the codes
of type 3 and 2 would be better candidates for a big symmetry group, as we for
the codes of type 3 and 2 can get additional members in the symmetry group from
the orbits between the cosets to S. Also it is surprising to see the large difference
between the most restricting triplets with the elementary symmetry group to the
least restricting with 1344 permutations in their symmetry group. Note that the
types a and b are given by fixing the coset d1 + S.

Let us also give the final remark, that although the programming used to execute
the algorithm above has been tested extensively, a testing which has confirmed know
results, it is always possible when using computers that errors may occur.

dl d2 |Sym| | Type
100000000000000 | 010000000000000 | 192 2a
100000000000000 | 011000000000000 | 192 la
100000000000000 | 010100000000000 16 la
100000000000000 | 011100000000000 16 la
100000000000000 | 011110000000000 | 192 la
100000000000000 | 010101000000000 | 48 la
100000000000000 | 001101000000000 | 48 la
100000000000000 | 011101000000000 16 la
100000000000000 | 011111000000000 96 la
100000000000000 | 011111100000000 | 1344 la
100000000000000 | 010100010000000 6 la
100000000000000 | 011100010000000 8 la
100000000000000 | 010101010000000 6 la
100000000000000 | 010101011000000 48 la
100000000000000 | 001101011000000 48 la
110000000000000 | 101000000000000 | 576 3b
110000000000000 | 100100000000000 48 3b
110000000000000 | 001100000000000 | 16 2a
110000000000000 | 101100000000000 | 16 2b
110000000000000 | 000110000000000 | 16 2a
110000000000000 | 100110000000000 16 la

MARTIN HESSLER

110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
110000000000000
111000000000000
111000000000000
111000000000000
111000000000000
111000000000000

001110000000000
101110000000000
000011000000000
100011000000000
001011000000000
101011000000000
000111000000000
100111000000000
001111000000000
101111000000000
000111100000000
100111100000000
001111100000000
101111100000000
000100010000000
100100010000000
001100010000000
101100010000000
000110010000000
100110010000000
000011010000000
100011010000000
001011010000000
101011010000000
000111010000000
100111010000000
001111010000000
000010000100101
000101011000000
100101011000000
001101011000000
000000010011010
000100010001000
100100010001000
001100010001000
101100010001000
000010010001000
100010010001000
001010010001000
000000100100010
100110000000000
010110000000000
000111000000000
100111000000000
000111100000000

16

16

64

32

32

32

16

16

16

16
192
192
192
192

> = = 00 00 00 OO0 DN DN W= ¥~ =~ 00

2 v v v v vl v v
SO0 O NN NNDNNNDNDDNDO O OO

976

la
la
2a
2b
la
2b
la
2b
la
2b
la
2b
la
2b
2a
2b
la
2b
la
la
2b
2b
2b
2b
la
2b
la
2b
la
2b
la
2b
la
2b
la
2b
2b
la
2b
la
2a
la
la
la
la

111000000000000
111000000000000
111000000000000
111000000000000
111000000000000
111000000000000
111000000000000
111000000000000
111000000000000
111000000000000
111000000000000
111000000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000

100111100000000
100100010000000
000110010000000
010110010000000
000111010000000
100111010000000
000101011000000
110101011000000
000100010001000
100100010001000
000010010001000
100010010001000
101010000000000
011010000000000
101011000000000
101000100000000
001010100000000
101010100000000
011010100000000
001011100000000
101011100000000
101000010000000
111000010000000
001010010000000
101010010000000
011010010000000
001011010000000
101011010000000
100000110000000
001000110000000
101000110000000
111000110000000
001010110000000
000000000101010
011010110000000
001011110000000
000001000101010
010000011000000
001000011000000
011000011000000
111000011000000
000001011000000
100001011000000
010001011000000
001001011000000

192
4
4
4
12
4
16
48
72
12
12
36
32
8
16
8
32
16
8
48
16

[N}

RN OO0 R R NN FEFNNDNREFENDNDNDOS NN NN

1-ERROR CORRECTING PERFECT BINARY CODES

la
la
la
la
la
la
la
la
2a
la
la
la
2a
2a
la
2a
2a
la
la
la
la
2a
2a
2a
2a
la
la
la
2a
2a
la
la
la
2a
la
la
la
2a
2a
la
la
2a
la
la
la

227

MARTIN HESSLER

110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
110100000000000
111100000000000
111100000000000
111100000000000
111100000000000
111100000000000
111100000000000
111100000000000
111100000000000
111100000000000
111100000000000
111100000000000
111100000000000
111100000000000
111100000000000
111100000000000
111100000000000
111100000000000
111100000000000
111100000000000
111100000000000
111100000000000
111100000000000
111100000000000
111100000000000
111100000000000
111100000000000
111100000000000

000000100001100
100000100001100
100000001100000
110000001100000
101000001100000
111000001100000
000010001100000
100010001100000
010010001100000
001010001100000
101010001100000
011010001100000
100000011101000
001000011101000
100001100100100
001010001000010
010001000100100
100001000100100
110011000000000
101011000000000
100011100000000
110011100000000
111011100000000
110010010000000
011010010000000
100011010000000
001011010000000
101011010000000
001000000011001
000011110000000
100011110000000
000000100011001
110000011000000
011000011000000
100001011000000
010001011000000
110001011000000
001001011000000
101001011000000
110000010001000
100010010001000
010010010001000
011010010001000
110000001001000
011000001001000

DO 00 D A W DO O DD DD 00 RO W

W DN W
[N)

MO DRSO R AR RNDNONNNDNOIN RN RS

2a
la
2a
2a
la
la
2a
la
la
la
la
la
la
la
la
2a
2a
la
2a
3a
2a
2a
la
2a
2a
2a
3a
2a
2a
la
la
3a
2a
2a
2a
2a
la
la
2a
2a
la
2a
la
2a
la

111100000000000
111100000000000
111100000000000
111100000000000
111100000000000
(011110000000000
(011110000000000
(011110000000000
011110000000000
011110000000000
011110000000000
(011110000000000
(011110000000000
(011110000000000
011110000000000
111110000000000
111110000000000
111110000000000
111110000000000
111110000000000
111110000000000
111110000000000
111111000000000
111111000000000
111111000000000
111111000000000
111111100000000
111111100000000
110100010000000
110100010000000
110100010000000
110100010000000
110100010000000
110100010000000
110100010000000
110100010000000
110100010000000
110100010000000
111100010000000
110101011000000
110101011000000

100010001001000
010010001001000
110010001001000
011010001001000
111010001001000
101101000000000
111001100000000
110100010000000
111001010000000
110001110000000
010100011000000
110100011000000
110101011000000
001101011000000
101000010100000
110001010000000
011001010000000
010001110000000
010100011000000
010101011000000
001101011000000
100100010100000
101100010000000
101100110000000
010100011000000
101100011000000
110100010000000
110101011000000
110001001000000
101001001000000
111001001000000
011101001000000
011011001000000
101000101000000
011000101000000
011010101000000
100000110010000
101000101100000
010111001000000
100011010100000
011011010100000

© 00 NN

—_
[\

(=)
=~

720

[\] [\]
OOOOHBOOOOL\.'JI—\I\\.'JH;I\')%

120
360

1-ERROR CORRECTING PERFECT BINARY CODES

2a
3a
2a
la
2a
3b
2b
2b
2b
la
2b
2b
2b
2b
2a
la
la
2a
la
la
la
la
2b
2b
la
la
la
la
3b
3a
la
2b
2a
3b
2a
2b
3b
2b
2a
2b
3b

(Received 15 Jan 2004; revised 2 June 2004)

229

