Characterization of induced matching extendable graphs with 2n vertices and 3n-1 edges *

Ju Zhou Jinjiang Yuan

Department of Mathematics
Zhengzhou University
Zhengzhou 450052
People's Republic of China
zhouzhoujuju@yahoo.com.cn

Abstract

We say that a graph G is induced matching extendable, shortly IM-extendable, if every induced matching of G is included in a perfect matching of G. In J. J. Yuan, Induced Matching Extendable Graph, J. Graph Theory, 28(1998), 203-213, it was shown that a connected IM-extendable graph on 2n vertices has at least 3n-2 edges, and the only IM-extendable graph with 2n vertices and 3n-2 edges is $T \times K_2$, where T is an arbitrary tree on n vertices. We show in this paper that the only IM-extendable graph with $2n \ge 6$ vertices and 3n-1 edges is $T \times K_2 + e$, where T is an arbitrary tree on n vertices and e is any edge connecting two vertices that lie in different copies of T and have distance 3 between them in $T \times K_2$.

1 Introduction

Graphs considered in this paper are finite and simple. Let G be a graph with vertex set V(G) and edge set E(G). For any vertex set $S \subseteq V(G)$, set

$$E(S) = \{uv \in E(G) : u, v \in S\}.$$

For any edge set $M \subseteq E(G)$, set

 $V(M) = \{u \in V(G) : \text{ there is a vertex } v \text{ of } G \text{ such that } uv \in M\}.$

For any vertex $v \in V(G)$, the neighbor set $N_G(v)$ of v is defined by

 $N_G(v) = \{u \in V(G) \setminus \{v\} : \text{ there is a vertex } u \text{ of } G \text{ such that } uv \in E(G)\}.$

^{*} Reasearch Supported by NNSFC(10371112) and an NSF of Henan Province

If vertices u and v are connected in G, the distance between u and v in G, denoted by $d_G(u, v)$, is the length of a shortest (u, v)-path in G. For any $v \in V(G)$, set

$$N_G^{(2)}(v) = \{ u \in V(G) : d_G(u, v) = 2 \}.$$

A set of edges $M \subseteq E(G)$ is called a *matching* of G if no two of them share a common endpoint. A matching is *perfect* if it covers all vertices of G. A matching M is *induced* [2] if E(V(M)) = M. We say that a graph G is *induced matching extendable* [10], shortly IM-extendable, if every induced matching M of G is included in a perfect matching of G. Clearly, an IM-extendable graph must have an even number of vertices. Researches on the IM-extendable graphs can be found in [3, 6 – 13].

The product of two graphs T and H, denoted by $T \times H$, is the graph with vertex set

$$V(T) \times V(H) = \{(u, v) : u \in V(T), v \in V(H)\}$$

such that two vertices $(u, v), (x, y) \in V(T) \times V(H)$ are adjacent in $T \times H$ if and only if either $[u = x \text{ and } vy \in E(H)]$ or $[v = y \text{ and } ux \in E(T)]$. When $H = K_2, T \times K_2$ can be defined by setting

$$V(T \times K_2) = \{(x, i) : x \in V(T), i = 1, 2\}$$

and

$$E(T \times K_2) = \{(x, 1)(x, 2) : x \in V(T)\} \cup \{(x, i)(y, i) : xy \in E(T), i = 1, 2\}.$$

For i = 1, 2, the subgraph T_i of $T \times K_2$ induced by $\{(x, i) : x \in V(T)\}$ is called the i-th copy of T.

A graph isomorphic to $T \times K_2$ (where T is a tree) is said to be a fat tree. A graph isomorphic to $T \times K_2 + e$ where e is an edge connecting two vertices that lie in different copies of T and has distance 3 between them $T \times K_2$ is called a braced fat tree. A (braced) fat tree with 2n vertices is called a braced fat n-tree.

In [11], Yuan proved that a connected IM-extendable graph on 2n vertices has at least 3n-2 edges, and the only IM-extendable graph with 2n vertices and 3n-2 edges is a fat tree. We show in this paper that the only IM-extendable graph with $2n \geq 6$ vertices and 3n-1 edges is a braced fat tree.

Terminology and notation not defined here can be found in [1].

2 Preliminaries

Lemma 2.1 [11] If G is a connected IM-extendable graph with $|V(G)| \ge 4$, then |V(G)| is even and G is 2-connected.

Lemma 2.2 [11] For every graph G and every positive integer r, $G \times K_{2r}$ is IM-extendable.

Lemma 2.3 (Tutte's Theorem) [5] A graph G has perfect matchings, if and only if, for every $S \subseteq V(G)$, $o(G - S) \leq |S|$.

In Lemma 2.3, o(H) is the number of odd components of Graph H.

Lemma 2.4 [11] A graph G is IM-extendable, if and only if, for every induced matching M of G and every $S \subseteq V(G) \setminus V(M)$, $o(G - V(M) - S) \leq |S|$.

Let $u \in V(G)$ be a vertex of degree 2 and $N_G(u) = \{v, w\}$. We use $G^* = G \bullet \{u, v, w\}$ to denote a new graph obtained from G by identifying u, v, w to a new vertex u^* .

Lemma 2.5 [11] If G is IM-extendable, then G^* is IM-extendable.

Lemma 2.6 [11] If G is IM-extendable, $uv \in E(G)$ such that d(u) = d(v) = 2, then $G - \{u, v\}$ is IM-extendable.

Lemma 2.7 [11] If G is a connected IM-extendable graph with 2n vertices, then $|E(G)| \geq 3n-2$; the equality holds if and only if G is a fat tree.

The following lemma is implied in [11] (pp. 207–208).

Lemma 2.8 Suppose that G is a connected IM-extendable graph on 2n vertices, where $n \geq 4$. If G has no adjacent vertices of degree 2 and every vertex of degree 2, if any, is not contained in any cycle of length 4, then $|E(G)| \geq 3n$.

3 Main Results and Proofs

Denote by $K_{3,3}^-$ the graph obtained from $K_{3,3}$ by deleting an arbitrary edge. It is routine to check that the only braced fat tree with 6 vertices (up to isomorphism) is $K_{3,3}^-$. We can see that every braced fat tree must contain an induced subgraph isomorphic to $K_{3,3}^-$. We can also observe that every every braced fat tree must be bipartite.

Suppose that G is a connected IM-extendable graph with 2n vertices and 3n-1 edges. Let $S = \{u : d_G(u) = 2\}$. It is trivial to check that there is no IM-extendable graph with 4 vertices and 5 edges. Hence, we suppose $n \geq 3$ in the sequel.

Proposition 3.1 $\delta(G) = 2$ and $|S| \ge 2$. Furthermore, for every vertex $u \in S$, $N_G(u)$ is an independent set.

Proof $\delta(G) \geq 2$ is implied in Lemma 2.1. $|S| \geq 2$ can be deduced from the facts $\delta(G) \geq 2$, |V(G)| = 2n and |E(G)| = 3n - 1. This further implies that $\delta(G) = 2$.

Now, let $u \in S$ and $N_G(u) = \{v, w\}$. If $vw \in E(G)$, then $\{vw\}$ is an induced matching of G such that u is an isolated vertex in $G - \{v, w\}$. So, $\{vw\}$ cannot be included in a perfect matching of G, a contradiction. Hence, for every vertex $u \in S$, $N_G(u)$ is an independent set.

Proposition 3.2 Let $u \in S$, $N_G(u) = \{v, w\}$. Then $|N_G(v) \cap N_G(w)| \leq 3$.

Proof Otherwise, suppose $u \in S, N_G(u) = \{v, w\}$ such that $|N_G(v) \cap N_G(w)| \ge 1$

4. By Lemma 2.5, $G^* = G \bullet \{u, v, w\}$ is IM-extendable. But G^* has 2(n-1) vertices and less than 3(n-1)-2 vertices, contradicting Lemma 2.7.

Proposition 3.3 Each IM-extendable graph G with 6 vertices and 8 edges is isomorphic to $K_{3,3}^-$.

Proof If $E(S) \neq \emptyset$, let $uv \in E(S)$. Then by Lemma 2.6, $G^* = G - \{u, v\}$ is IM-extendable. We can see that G^* has 4 vertices and 5 edges, and there is no such IM-extendable graph. Then $E(S) = \emptyset$. If |S| > 3, let $S^* \subset S$ be such that $|S^*|=3$. By the facts |V(G)|=6 and |E(G)|=8, G-S must be a path of length 2, say G - S = xyz. Then $G - \{x, y\} - z$ has three isolated vertices, contradicting Lemma 2.4. Hence, we must have |S|=2. Let $S=\{u,x\}$ and $N_G(u)=\{v,w\}$. If $N_G(u) = N_G(x)$, then there is $y \in V(G) \setminus \{u, x, v, w\}$ such that $vy \in E(G)$. But then, $\{vy\}$ is an induced matching of G such that $G - \{v,y\} - w$ has at least two isolated vertices u and x, contradicting Lemma 2.4. If $w \in N_G(x)$ and $v \notin N_G(x)$, we assume that $N_G(x) = \{w, y\}$. By the facts |V(G)| = 6 and $d_G(v), d_G(y) \geq 3$, vy must be an edge of G. Again, $\{vy\}$ is an induced matching of G such that $G - \{v, y\} - w$ has at least two isolated vertices u and x, contradicting Lemma 2.4. Hence, we must have $N_G(u) \cap N_G(x) = \emptyset$. By the facts |V(G)| = 6 and |E(G)| = 8 again, one can see that G is isomorphic to the graph obtained from K_4 by replacing two independent edges with two paths of length 2, respectively. Namely, G is isomorphic to $K_{3,3}^-$, which is indeed an IM-extendable graph.

Proposition 3.4 A connected IM-extendable graph with at least 6 vertices is a braced fat tree.

Proof. We prove the theorem by induction. By Proposition 3.3, the result is true when n=3.

Suppose that $n \geq 4$ and the result is true for any connected IM-extendable graph with $2m \leq 2n-2$ vertices and 3m-1 edges. Let G be a connected graph with 2n vertices and 3n-1 edges. By Proposition 3.1, we have $|S| \geq 2$. We first prove the following claim.

Claim 1: $E(S) \neq \emptyset$.

Otherwise, S is independent in G. By Proposition 3.1, for each $u \in S$, $N_G(u)$ is independent in G. By Proposition 3.2, for any $u \in S$ with $N_G(u) = \{v, w\}$, we have $|N_G(u) \cap N_G(w)| \leq 3$.

Suppose first that there is a vertex $u \in S$ with $N_G(u) = \{v, w\}$ such that $|N_G(v) \cap N_G(w)| = 3$, say, $N_G(v) \cap N_G(w) = \{u, v', w'\}$. By Lemma 2.5, $G^* = G \bullet \{u, v, w\}$ is IM-extendable. Since G^* has 2(n-1) vertices and 3(n-1)-2 edges, from Lemma 2.7, G^* is isomorphic to $T^* \times K_2$, where T^* is a tree with n-1 vertices. We assume $G^* = T^* \times K_2$ so that the vertices of $T^* \times K_2$ correspond to that of G^* . It is easy to see that $T^* \times K_2$ has r disjoint pairs of adjacent vertices of degree 2, where $r \geq 2$ is the number of vertices of degree 1 in T^* . Let u^* be the new vertex of G^* obtained by identifying u, v, and w. Then $d_G(x) = d_{G^*}(x)$ for $x \in V(G^*) \setminus \{u^*, v', w'\}$; furthermore, there are at most two vertices in $\{u^*, v', w'\}$ being of degree 2 in G^* . Let $S^* = \{x \in V(G^*) : d_{G^*}(x) = 2\}$. Then $|S^* \cap \{u^*, v', w'\}| \leq 2$. Since G has no

two adjacent vertices of degree 2, each pair of adjacent vertices of degree 2 in G^* contains at least one vertex in $S^* \cap \{u^*, v', w'\}$. Thus $r \leq |S^* \cap \{u^*, v', w'\}| \leq 2$. From the fact $r \geq 2$, we deduce $r = |S^* \cap \{u^*, v', w'\}| = 2$. It follows that T^* must be a path. By noting that two nonadjacent vertices of degree 2 in G^* are in $\{u^*, v', w'\}$ and $v'u^*w'$ is a path in G^* , the only possibility is that T^* is a path of length 2 and $v'u^*w'$ is one of the copies of T^* in $T^* \times K_2$. Let xyz be the other copy of T^* with $v'x, u^*y, w'z \in E(G^*)$. Then, exactly one of vy and vy, say, vy, belongs to vy. The structure of vy is shown in Figure 1.

Figure 1.

It can be seen that $M = \{vw', xy\}$ is an induced matching of G such that G - V(M) has an isolated vertex z, contradicting the assumption that G is IM-extendable. Hence, for every $u \in S$, say $N_G(u) = \{v, w\}$, we must have $|N_G(v) \cap N_G(w)| \leq 2$.

Suppose $u \in S$ with $N_G(u) = \{v, w\}$ such that $|N_G(v) \cap N_G(w)| = 2$, say, $N_G(v) \cap N_G(w) = \{u, x\}$. Choose $v' \in N_G(v) \setminus \{u, x\}$ and $w' \in N_G(w) \setminus \{u, x\}$. Then $v'w' \in E(G)$, otherwise, $M = \{vv', ww'\}$ is an induced matching of G such that u is an isolated vertex of G - V(M), contradicting Lemma 2.4. By Lemma 2.5, $G^* = G \bullet \{u, v, w\}$ is IM-extendable. Since G^* has 2(n-1) vertices and 3(n-1)-1 edges, by the induction hypothesis, G^* is a braced fat tree. Since $v'w' \in E(G)$, we have $v'w' \in E(G^*)$ and then $u^*v'w'u^*$ is a 3-cycle of G^* , where u^* is the new vertex of G^* obtained by identifying u, v and w. This contradicts the fact that G^* is bipartite.

Thus, for every vertex $u \in S$, say, $N_G(u) = \{v, w\}$, we have $N_G(v) \cap N_G(w) = \{u\}$. Consequently, S is independent and any cycle of length 4 in G contains no vertices in S. By Lemma 2.8, $|E(G)| \geq 3n$. This is contrary to the assumption that |E(G)| = 3n - 1, and completes the proof of Claim 1.

Now, let $u, v \in S$ such that $uv \in E(G)$. By Lemma 2.6, $G^* = G - \{u, v\}$ is a connected IM-extendable graph. Since $|E(G^*)| = |E(G)| - 3 = 3(n-1) - 1$, then by induction hypothesis, G^* is a braced fat tree, i.e., $G^* \cong T^* \times K_2 + e$, where T^* is a tree with n-1 vertices and e is an edge connecting two vertices that lie in different copies of T and have distance 3 between them in $T \times K_2$. We reminder the reader that G^* is an IM-extendable bipartite graph.

Let $N_G(\{u,v\}) = \{x,y\}$ be such that $ux, vy \in E(G)$. Suppose, to the contrary,

that $xy \notin E(G)$. If $N_{G^*}(x) \cap N_{G^*}(y) = \emptyset$, there must be a certain vertex $a \in N_G(x) \setminus \{u\}$ such that $a \notin N_G(y) \setminus \{v\}$. Then $M = \{xa, vy\}$ is an induced matching of G such that u is an isolated vertex in G - V(M), contradicting the assumption that G is IM-extendable. Hence, we must have $N_{G^*}(x) \cap N_{G^*}(y) \neq \emptyset$. Let (A, B) be the bipartition of G^* . By the IM-extendability of G^* , we have |A| = |B|. From the above discussion, either $\{x, y\} \subseteq A$ or $\{x, y\} \subseteq B$. Suppose $\{x, y\} \subseteq A$. Then $N = \{ux\}$ is an induced matching of G such that $G - V(N) - A \setminus \{x\}$ has $|B| + 1 > |A \setminus \{x\}|$ isolated vertices, contradicting Lemma 2.4.

Now, we relabel the vertices and edges of G^* in the following way. Suppose $V(T^*)$ and $E(T^*)$ have been given. Write

$$V(G^*) = \{(x, i) : x \in V(T^*), i = 1, 2\},\$$

$$E(G^*) = \{e\} \cup \{(x,1)(x,2) : x \in V(T^*)\} \cup \{(x,i)(y,i) : xy \in E(T^*), i = 1,2\}.$$

Since G^* is a braced fat tree, there must be $a, b, c \in V(T^*)$ such that $ab, bc \in E(T^*)$, and either e = (a, 1)(c, 2) or e = (a, 2)(c, 1). By symmetry, we may assume that e = (a, 1)(c, 2).

If n=4, then G^* is isomorphic to $K_{3,3}^-$. It is routine to verify that G is indeed a braced fat tree. Three typical cases of $N_G(\{u,v\})$ are shown in Figure 2.

Figure 2.

In the following, we suppose $n \geq 5$. Then either $d_{T^*}(b) \geq 3$ or $\max\{d_{T^*}(a), d_{T^*}(c)\}$ ≥ 2 . We distinguish the following four cases.

Case 1 $N_G(\{u, v\}) = \{(x, 1), (x, 2)\}$ for some $x \in V(T^*)$.

In this case, G is clearly a braced fat tree.

Case 2 $N_G(\{u,v\}) = \{(a,1),(c,2)\}.$

Suppose $u(a,1), v(c,2) \in E(G)$. If $d_{T^*}(b) \geq 3$, we pick $w \in N_{T^*}(b) \setminus \{a,c\}$. Then $M = \{u(a,1), (b,2)(w,2)\}$ is an induced matching of G such that G - V(M) has odd components, contradicting Lemma 2.4. If $\max\{d_{T^*}(a), d_{T^*}(c)\} \geq 2$, say $d_{T^*}(c) \geq 2$, we pick $z \in N_{T^*}(c) \setminus \{b\}$. Then $N = \{u(a,1), (c,1)(z,1)\}$ is an induced matching of G such that G - V(N) - (c,2) has three odd components, contradicting Lemma 2.4. Hence, Case 2 does not occur.

Based on the discussions of Case 1 and Case 2 we assume in the following that $N_G(\{u,v\}) = \{(x,i),(y,i)\}$ for some $xy \in E(T^*)$ and some i with $1 \le i \le 2$ such that $u(x,i),v(y,i) \in E(G)$.

Case 3 $|\{x,y\} \cap \{a,b,c\}| \le 1$.

Since $|V(T^*)| = n - 1 \ge 4$, one of x and y, say y, must be of degree at least 2 in T^* . Pick $z \in N_{T^*}(y) \setminus \{x\}$. Then $M = \{u(x,i), (y,3-i)(z,3-i)\}$ is an induced matching of G such that G - V(M) has odd components, contradicting Lemma 2.4. Hence, Case 3 does not occur.

Case 4 $\{x,y\} \subseteq \{a,b,c\}$.

In this case, either $\{x,y\} = \{a,b\}$ or $\{x,y\} = \{b,c\}$. Hence $b \in \{x,y\}$. We distinguish three subcases according to $d_{T^*}(b)$ and $\min\{d_{T^*}(x),d_{T^*}(y)\}$.

Case 4.1 $d_{T^*}(b) \geq 3$.

Suppose $u(x, i) \in E(G)$, $v(y, i) \in E(G)$, y = b and $w \in N_{T^*}(b) \setminus \{a, c\}$. Then $M = \{u(x, i), (b, 3 - i)(w, 3 - i)\}$ is an induced matching of G such that G - V(M) - (b, i) has three odd components, contradicting Lemma 2.4. Hence, this case does not occur.

Case 4.2 $d_{T^*}(b) = 2$ and $\min\{d_{T^*}(x), d_{T^*}(y)\} \ge 2$.

Suppose $u(x,i) \in E(G)$, $v(y,i) \in E(G)$, y = b and $w \in N_{T^*}(x) \setminus \{b\}$. Then $M = \{(x,3-i)(w,3-i),v(b,i)\}$ is an induced matching of G such that G - V(M) - (x,i) has three odd components, contradicting Lemma 2.4. Hence, this case does not occur.

Case 4.3 $d_{T^*}(b) = 2$ and $\min\{d_{T^*}(x), d_{T^*}(y)\} = 1$.

Suppose x=a and y=b. Then $d_{T^*}(a)=1$, $d_{T^*}(b)=2$. Let $T'=T^*-\{a,b\}$. Then $Q=G^*-\{(a,1),(a,2),(b,1),(b,2)\}$ is isomorphic to $T'\times K_2$. If i=1, $N_G(\{u,v\})=\{(a,1),(b,1)\}$; as shown in Figure 3, G is a braced fat tree. If i=2, $N_G(\{u,v\})=\{(a,2),(b,2)\}$; as shown in Figure 4, G is a braced fat tree. This completes the proof of Proposition 3.4.

Figure 3.

Proposition 3.5 Suppose G is a a braced fat tree with no less than 6 vertices. Then G is IM-extendable.

Proof Let M be an induced matching of G. If $e \notin M$, then $N = \{x_iy_i : x_{3-i}y_{3-i} \in M\} \cup \{x_1x_2 : \{x_1,x_2\} \cap V(M) = \emptyset\} \cup M$ is a perfect matching of G containing M. If $e \in M$, say, $e = x_iz_{3-i}$, xy, $yz \in E(T)$, then $N = \{x_iy_i : x_{3-i}y_{3-i} \in M\} \cup \{x_1x_2 : \{x_1,x_2\} \cap V(M) = \emptyset\} \cup M \cup \{x_{3-i}y_{3-i},y_iz_i\}$ is a perfect matching of G containing M. Hence, G is IM-extendable.

Combining Proposition 3.4 and Proposition 3.5, we have

Theorem 3.6 Suppose that G is a connected graph with $2n \ge 6$ vertices and 3n-1 edges. Then G is IM-extendable if and only if G is a braced fat tree.

References

- J. A. Bondy and U.S.R. Murty, Graph Theory with Applications, London, Macmillan Press Ltd, 1976.
- [2] K. Cameron, Induced Matchings. Discrete Appl. Math. 24(1989), 97–102.
- [3] Y. Liu, J. J. Yuan and S. Y. Wang, Degree conditions of IM-extendable graphs, Appl. Math. J. Chinese Univ. Ser. B 15B:1 (2000), 1-6.
- [4] L. Lovasz and M. D. Plummer, Matching Theory, Elsevier Science Publishers B. V., 1985.
- [5] W. T. Tutte, The factorization of linear graphs, J. London Math. Soc. 22(1947), 107–111.
- [6] Q. Wang and J. J. Yuan, Degree sum conditions of induced matching extendable graphs, J. Zhengzhou Univ. Nat. Sci. Ed. 32:1(2000), 19-21.
- [7] Q. Wang and J. J. Yuan, Maximal IM-extendable graphs, Discrete Math. 240(2001), 295–298.
- [8] L. S. Wu, Q. Wang and J. J. Yuan, Local Operation of Induced Matching Extendable Graphs, J. Math. Study 35:2(2002), 16-20.
- [9] F. Yang and J. J. Yuan, NP-completeness of induced matching problem and co-NP-completeness of induced matching extendable problem, OR Transactions 4:1(2000), 76-80.
- [10] F. Yang and J.J. Yuan, IM-extendable Claw-free Graphs, J. Math. Study 32:1(1999), 34–37.
- [11] J. J. Yuan, Induced Matching Extendable Graph, J. Graph Theory 28(1998), 203–213.
- [12] J. J. Yuan and Q. Wang, Induced matching extendability of G^3 , Graph Theory Notes N. Y. XLIII(2002), 16–19.
- [13] J. Zhou, W.L. Yao and X. X. Lu, Induced Matching Extendability of Claw free Graphs of Diameter 2, J. Zhengzhou Univ. Nat. Sci. Ed. 35:3(2003), 12–15.

(Received 28 Jan 2004)