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Abstract

A total dominating set T of a graph G is a subset of the vertices of G
such that every vertex of GG is adjacent to a vertex in 7. When G repre-
sents a communication network, a total dominating set corresponds to a
collection of servers having a certain desirable backup property, namely,
that every server is adjacent to some other server. Total dominating sets
of small cardinality are therefore of interest. We refer to the size of a
smallest total dominating set of a graph G as the total domination num-
ber of G. In this paper we present upper bounds on the total domination
number of random regular graphs. This is achieved by analysing the per-
formance of a randomised greedy algorithm on random regular graphs
using differential equations.

1 Introduction

Throughout this paper we consider simple graphs that are undirected, unweighted
and contain no loops or multiple edges. A graph G is said to be d-regular if every
vertex in V(G) has degree d (i.e. each vertex is adjacent to precisely d other vertices
in G). When discussing any graph G, we let n denote the cardinality of V(G) and
note that for d-regular graphs on n vertices, dn must be even. For other basic
graph-theoretical definitions we refer the reader to Diestel [3].

A total dominating set 7 of a graph G is a subset of the vertices of G such that
every vertex of G is adjacent to a vertex in 7. When G represents a communication
network, a total dominating set corresponds to a collection of servers having a cer-
tain desirable backup property, namely, that every server is adjacent to some other
server [6]. Total dominating sets of small cardinality are therefore of interest.

We refer to the size of a smallest total dominating set of a graph G as the total
domination number of G and denote this using y7(G). For an arbitrary graph G
the problem of determining 7 (G) is known to be NP-hard [5]. Determining y7(G)
remains NP-hard for bipartite graphs, split graphs [2] and circle graphs [8]. On
the positive side, determining y7(G) may be achieved in polynomial time for other
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classes of graphs [7]. As far as the author is aware, no previous results were known
regarding bounds on the total domination number of regular graphs.

We consider random d-regular graphs that are generated uniformly at random
(u.a.r.) and need some associated notation. We say that a property B = B, of a
random graph holds asymptotically almost surely (a.a.s.) if the probability that B
holds tends to 1 as n tends to infinity. When considering d-regular graphs, this is
modified so that n is restricted to even numbers if d is odd. For other basic random
graph theory definitions we refer the reader to Bollobés [1].

In this paper we analyse the average-case performance of a simple heuristic, which
is a randomised greedy algorithm, that gives upper bounds on y7(G) when G is
a random d-regular graph. In the following section we give a description of our
algorithm and in Section 3 we outline the method used for its analysis. Our analysis
uses a theorem of Wormald [12] which we restate in Section 3. The results of this
paper are encompassed by the following theorem, the proof of which is given in
Section 4.

Theorem 1 Letd > 3 be fixzed. Then, for a random d-regular graph G on n vertices,
the size of a minimum total dominating set is asymptotically almost surely less than
T.(d)n where, for 3 < d < 10, the constants T,(d) are given in Table 1.

Table 1: Bounds on v7(G) when G is a random d-regular graph on n vertices.

d  Tu(d)n
03 0.3901n
04 0.3272n
05 0.2855n
06 0.2552n
07 0.2319n
08 0.2132n
09 0.1978n
10 0.1849n

The constants 7,(d) referred to in Theorem 1 arise from the solution of particular
sets of differential equations.

2 Prioritising choices

Consider the following algorithm that greedily finds a total dominating set of a graph
G. Repeatedly choose an edge uv randomly from G and add w and v to a set 7.
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After each edge is chosen, remove u, v and all their neighbours from G along with
all edges incident with neighbours of v and v. For any non-dominated vertex w that
attains degree zero, add to 7 a vertex that was a neighbour of w that was also a
neighbour of w or v and remove w from G. Once no vertices remain, the set 7T is
a total dominating set in G as any vertices that were removed from G either (7)
became part of 7 at the same time as one of their neighbours also became part of
T, or (ii) they were totally dominated by adding a pair of vertices to T, or (iii) they
were totally dominated by adding an additional neighbour of one of a pair of vertices
that were added to T.

We modify this algorithm slightly by the way in which each subsequent pair of
vertices are chosen to be part of 7. We assign a priority to vertices of current
minimum degree. Our algorithm is presented in Figure 1. It takes a d-regular n-
vertex graph G as input and returns a total dominating set 7 for G. We use the
notation deg(v) to denote the current degree of the vertex v in G. Let N(v) denote
the set of neighbours of a vertex v and in the case that deg(v) = 1, by a slight abuse
of notation, we also use N(v) to denote the unique neighbour of v. Also, we use V;
to denote the set of vertices of current degree i in G, 0 < i < d.

while ( |V(G)| >0)
do
k < MIN[deg(p) | p € V(G)];
select u u.a.r. from Vj;
if (k=1Adeg(N(u))=1)
then
v U w — N(u);
else
k + MAX [deg(p) | p € N(u)];
select v w.a.r. from {N(u) N Vi };
k < MAX[deg(p) | p € {N(v) \ u}];
select w u.a.r. from {{N(v) \ u} N V;};
endif
T+ T U{v,w};
remove all edges incident with vertices in N(v) from E(G);
remove all edges incident with vertices in N(w) from E(G);
add at most one vertex to 7 for each non-dominated vertex in V4 created;
remove all vertices in V; from V(G).
enddo

Figure 1: Total dominating set algorithm

The algorithm proceeds in a series of operations. In each operation, a pair of
vertices are added to 7T along with zero or more additional vertices and all edges
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incident with the neighbours of the pair of vertices are removed from G. All oper-
ations start by selecting a vertex u of current minimum degree in G. If the degree
of both w and N(u) is 1, this edge is isolated from the rest of the edges in G and
we simply assign v to be u and w to be N(u). In all other cases, a neighbour v of
u is selected u.a.r. from those vertices of current maximum degree in N(u). Then a
neighbour w of v (not w) is selected u.a.r. from those vertices of current maximum
degree in the set {N(v) \ u}. Once v and w have been chosen, v and w are added to
T and all edges incident with the neighbours of these vertices are removed from G.
For each non-dominated vertex that attains degree zero, at most one vertex is added
to 7 and the vertices of degree zero are removed from G. These additional vertices
are chosen arbitrarily from what were the neighbours of v and w so as to dominate
the vertices that become isolated. These steps are repeated until no vertices remain
in G and once this stage is reached, the set 7 forms a total dominating set for G.

We refer to algorithms such as the one above as prioritised algorithms. The anal-
ysis of prioritised algorithms requires complex arguments involving branching pro-
cesses and large deviation inequalities and the justifications of those require checking
complex conditions regarding derivatives (see [4], for example). In order to reduce the
number of conditions that are required to be checked, the analysis of the prioritised
algorithm presented in this section will be carried out using a technique introduced
by Wormald [12]. This approach approximates the performance of a prioritised al-
gorithm by analysing associated deprioritised algorithms. These algorithms entirely
avoid prioritising by using a randomised mixture of operations. The particular mix-
ture used for any sequence of operations is prescribed in advance but changes over
the course of the algorithm in order to approximate the prioritised algorithm.

3 Use of deprioritised algorithms

The operations and priorities described in the prioritised algorithm given in Section 2
may be analysed using [12, Theorem 1]. This provides us with a set of differential
equations whose solution describes the state of a deprioritised version of the algorithm
during its execution. From this, we deduce asymptotically almost sure bounds on
the size of the total dominating set at the end of the algorithm.

What is now considered to be the standard model for random d-regular graphs
is as follows. Take a set of dn points in n buckets labelled 1,2,...,n, with d points
in each bucket, and choose u.a.r. a pairing P = py, ..., pgn/2 of the points such that
each p; is an unordered pair of points and each point is in precisely one pair p;.
The resulting probability space of pairings is denoted by P,q. Form a d-regular
pseudograph on n vertices by placing an edge between vertices ¢ and j for each pair
in P having one point in bucket ¢ and one in bucket j. In order to prove that a
property is a.a.s. true of a uniformly distributed random d-regular (simple) graph,
it is enough to prove that it is a.a.s. true of the pseudograph corresponding to a
random pairing (see Bollobés [1] and Wormald [10]).

As in [11], we redefine this model slightly by specifying that the pairs are cho-
sen sequentially. The first point in a random pair may be selected using any rule
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whatsoever, as long as the second point in that random pair is chosen u.a.r. from all
the remaining free (unpaired) points. This preserves the uniform distribution of the
final pairing.

When a pair has been determined in the sequential process, we say that it has
been exposed. By exposing pairs in the order which an algorithm requests their
existence, the generation of the random pairing may be combined with the algorithm
(as in [4, 9, 11]). In this way, the algorithm such as the one in the previous section,
which deletes edges, may be described in terms of operations incorporated into the
pairing generation. The definition of the operations may be extended to do whatever
other tasks the algorithm needs to carry out.

The algorithm proper acts upon the final (pseudo)graph of the generation process
and the set of exposed pairs builds up this final graph during the course of the
generation process which incorporates the algorithm. The order in which the edges
are deleted corresponds to the order in which the pairs were exposed.

The setting of [12, Theorem 1] requires a number of definitions and may be
described as follows. It concerns a class of processes applied to the random pairing.
As described above, this may be defined in terms of the generation algorithm which
exposes pairs. The beginning of the generation algorithm is the empty pairing Go.
The pairing G4 is obtained from G; by applying an operation which may expose
some of the pairs. The operation, op,, which is applied to G; must be one of some
prespecified set of operations, Op;, i = 1,...,d, where Op,; consists of selecting a
bucket uw of degree d — ¢ (corresponding to a vertex of degree ¢) in G; u.a.r., and
then applying some specified set of tasks involving some random choices, resulting
in Gyi1; the degree of a bucket is the number of points it contains in exposed pairs.
A subset T of V(G) U E(G) is selected during the operations, with T, = 0 initially,
and T = T; for the pairing G;.

For1 <i < d,let Y; = Y;(t) denote the number of buckets of degree d—i in Gy and
let Y11 = Yy41(t) denote cardinality of the set T;. Put Y(t) = (Yi(¢),..., Yo (f)).
We refer the reader to [12, Theorem 1] for motivation for the following definitions
and provide a little explanation below. Let y denote (yi(z),...,ys+1(z)). Given
functions f;, (z,y), define

Oék(% Y) = fd—k—l,d—k (Ia}’) )
(1)
Tk(% Y) = _fd—k—l,d—k—l (ﬂia}’) )
where . Yit
p=l yw = Y0 )

We will consider the equations

dy; .
% = F(z,y,i,k) where (3)
: T fra k(@ y) + =2 fiap (z,y) (fk<d—2)
F(zx,y,i,k) = Thtak T Trtag s ® ) 4

oy ) { fir(zyy) (ifk=d-1) (4)
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and work with the parameters of f;, in the domain
Dc={(z,y):0<2<d, 0<y; <dfor 1 <i<d+1, ys > ¢} (5)

for some pre-chosen value of € > 0. The behaviour of the process will be described
in terms of the function § = §(x) = (71(x),...,Ja+1(x)) defined as follows, with
reference to an initial value z = zo = to/n of interest:

Ji(zo) = Yi(to)/n, i =1,...,d+ 1, and inductively for k£ > 1, ¥ is the solution

of (3) with initial conditions y(zp—1) = ¥(x—1), extending to all x € [zg_1, z£],
where xy, is defined as the infimum of those @ > x;_; for which at least one of (6)
the following holds: (i) 7, < Oand k<d—1; (ii) 7+ oy < eand k < d—1;

(iii) Jq—r < 0; or (iv) the solution is outside D, or ceases to exist.

The interval [x)_1, x;] is called phase k. This inductive definition of ¥ continues for
phases k =1,2,...,m, where

m denotes the smallest k for which either k£ = d — 1, or any of the termination (1)
conditions (ii), (iii) or (iv) for phase k in (6) come into effect at zy.

Wormald [12] proved that the phases all have nonempty interior provided

. > 0at (zg-1,¥(zx-1)
1<k
T+ ar > €at (Tp_1,¥(Tr-1)

(1 <k < min{d — 2,m}),
facra-1 > 0at (wo,¥(x0)), (8)

fakai™ + faraw1fip_rar > 0at (zp1,¥(2p1))*
(1 <k < min{d — 2,m}),
fokar > 0at (241, F(741))” (L<k<m),
fir > 0at (g 2,¥(z42)" (fm=d-1),

)
< min{d — 2,m}),

~—

with f’ denoting W and (z,¥(z))* and (x,§(z))~ referring to the right-hand
and left-hand limits as functions of x.

We may now restate [12, Theorem 1] which we will use in the following section
in connection with the total dominating set algorithm.

Theorem 2 ([12]) Let d > 3. Assume that for some fized € > 0 the operations Op,
satisfy

E(Yi(t+1) = i(t) | Gi Afop, = Op,}) = fur(t/n,Yi/n, .. Yasa/n) +o(1)  (9)

for some fized functions fi,(z,y1(2),...,ya41(2)) and fori = 1,...,d+ 1, r =
1,...,d, with the convergence in o(1) uniform over all t and Gy for which Y,(t) > 0
and Yy(t) > en. Assume furthermore that

(i) there is an upper bound, depending only upon d, on the number of pairs exposed,
and on the number of elements added to T (i.e. |Ty41] — |T%|), during any one
operation;
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(it) the functions f;, are rational functions of x, y1,...,Ya+1 with no pole in D,

defined in (5);

(111) there exist positive constants Cy, Cy and Cs such that for 1 < i < d, everywhere
on D, fir 2 C1yip1 — Coyi when v #4, and f;, < C3ysyy for allr.
Define § as in (6), set xg = 0, define m as in (7), and assume that (8) holds.
Then there is a randomised algorithm on Py 4 for which a.a.s. there exists t such that
|73 = n¥at1(Tm) + o(n) and Yi(t) = ngi(zm) + o(n) for 1 < i< d. Also §;(z) =0
foraxpy <z <z, 1<i<d-k—-1(1<k<m)

Some of these definitions may be easily explained. The algorithm in Section 2 works
by deleting edges; the edges deleted correspond to pairs exposed in the corresponding
pairing generation algorithm as described above. In particular, a vertex of degree ¢ in
the original algorithm corresponds to a bucket of degree d — ¢ in the pairing version;
we use verter degree and bucket degree to distinguish these complementary measures.
The algorithm gives higher priority to the buckets of highest degree (vertices of lowest
degree). The phase is determined by the set of bucket degrees which are reasonably
common (meaning, roughly, more than c¢n buckets have that degree for some ¢ > 0).
Phase k corresponds to a period in which the smallest such common vertex degree
is d — k (i.e. largest common bucket degree is k). At such a time, vertices of degree
d — k — 1, when created, will immediately be used up, by being chosen for u in
the subsequent steps, until the minimum positive vertex degree returns to d — k.
So phase k basically consists of a mixture of two operations: Op,_; and Opy_,_;.
The functions a and 7 represent respectively the expected net increase in Yjy; in an
Op,_; and the expected net decrease in Yy in an Op,_,_;. From these quantities,
one may estimate the proportions of these operations being performed at any stage.
The randomised algorithm referred to in the theorem uses roughly the same mixture
of operations. This in turn allows us calculate the expected changes in the variables,
and the result is (4), which leads to the differential equation (3).

4 Proof of Theorem 1

We specify the tasks in Op,, 1 < r < d. Here Op, must first select a random bucket,
u, of degree d — r and expose pairs in u. The set of randomised tasks consists of
choosing a bucket v, exposing pairs in v, choosing a bucket w and exposing pairs in
all buckets neighbouring v and w. For each bucket that attains degree d (that is not
v, w or one of their neighbours), we add another bucket to T (along with v and w).

We may verify the hypotheses of Theorem 2. First we will show that, for functions
fir defined below, (9) holds when Yy(t) > en (for any € > 0). From here onwards in
this description, v-degree refers to vertex degree, so v-degree ¢ means bucket degree
d — i. Let y; denote Y;/n and let

o= (87— (827
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where S¢ = Z;’.:a P;,P; = % and s = Z?:l 1y;. Then, when performing an instance
of Op,, the probability that the neighbours of u have maximum v-degree exactly q;
is x1 + o(1) (see [4] for similar arguments).
Let
- —1yq1-1
Xz = (SF)m 71— (SPT)mh

Then, when performing an instance of Op,, assuming that the neighbours of u have
maximum v-degree q;, the probability that the neighbours of v (other than u) have
maximum v-degree exactly ¢a is x2 + o(1).

Similarly, for an instance of Op,, the probability that u has b, neighbours of
v-degree ¢;, given that the maximum v-degree amongst the neighbours of u is ¢, is
b1+ o(1) where

By = (Py)" (7")<531*>T-’“
by

and the probability that v has b, neighbours (other than w) of v-degree ¢», given
that the maximum v-degree amongst the neighbours of u is ¢; and there are b; such
neighbours, is 2 + o(1) where

-1
o= @ (U syt
by
Also, the expected number of neighbours of w that have v-degree j;, 1 < j; <
q1 — 1, given that u has b; neighbours of v-degree ¢; and ¢; is the maximum v-degree
of all neighbours of w, is 1 /61 + o(1) where

r

"= (qu)bl (bl) (Sgl_l)riblil(r — bl)le.

The expected number of neighbours of v (other than w) that have v-degree j,, 1 <
j2 < @o — 1, given that w has b; neighbours of v-degree g;, v has by neighbours of
v-degree g9, ¢; is the maximum v-degree of all neighbours of u and g» is the maximum
v-degree of all neighbours of v is 72 /05 + o(1) where

g —1 C1Ngi—2—
= () SE - 1P

The pairs incident with u are always exposed and the effect, on the expected
change in Y}, of changing the v-degree of u to 0 is just

_52':7

where, here and in the following, g = 1 if the statement R is true, 0 otherwise.
Similarly, the pairs incident with v and w are always exposed and the effect, on
the expected change in Y;, of changing the v-degree of v and w to 0 is just —d;—q,
and —d;—,, respectively.
The effect, on the expected change in Y;, of exposing pairs in all neighbours of w
(other than v) is

(Q2 - 1)%%
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where

pi = —Pi+p Y s y@—1)P,+o0(1) and

pi = —Pi+Piidiicat 0(1)'

The effect, on the expected change in Y;, of each of the neighbours of v of degree
¢2 (other than w) having all their pairs exposed is

—0imgy + (02 = 1)pi-
The effect, on the expected change in Y;, of each of the neighbours of v of degree
J2, 1 < 75 < g2 — 1, having their pairs exposed is
—bi=jp + (2 — )pi-
The effect, on the expected change in Y;, of each of the neighbours of u of degree
¢1 (other than v) each having their v-degree increased by 1 is
Oiz=gr—1 = Oizqy -

The effect, on the expected change in Y;, of each of the neighbours of u of degree
71, 1 <71 < @1 — 1, each having their v-degree increased by 1 is

Oizjr—1 — Oizjy -

So we have that (9) holds with

fir = —0i= T+ZX1[ zq1+251 bi = 1)(di=gy-1 — 6i=q1):|

q1=1 b1=1

q1—1
+ZX1[Z’Y1 i1 — 2]1+ZX2 Simgs + QZ_l)Ni}:|

q1=1 Jj1=1 g2=1

(10)

+ZX12X2 [25252—1 Oi=gy (2—1)/%')]

a=1 g=1 b2=1

+ Z X1 Z X2 |:22: '72 z ]2 .]2 - ]-)pz):|

q1=1 g2=1 J2=1

It also follows that (9) also holds for ¢ = d+1 with fy11, defined as 2+ fo,.+o(1),
since in each Op,., two vertices are added to the total dominating set T, the expected
number of non-dominated buckets attaining degree d is fo,, as defined in (10), and
the effect of not necessarily adding one vertex to 7 for each of these vertices is only

o(1).
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Hypothesis (i) of Theorem 2 is immediate since in any operation only a bounded
number of pairs are exposed and a bounded number of vertices are added to 7. The
functions f;, satisfy (ii) because from (10) their (possible) singularities satisfy s = 0,
which lies outside D, since in D, s > y4 > €. Hypothesis (iii) follows from (10) again
using s > y4 > € and the boundedness of the functions y; (which follows from the
boundedness of D,). Thus, defining § as in (6) with ¢y = 0, Y3(0) = n and Y;(0) =0
for i # d, we may solve (3) numerically to find m, verifying (8) at the appropriate
points of the computation.

It turns out that these hold for each d in Table 1, and that in each case m = d—1,
for sufficiently small ¢ > 0. For such e, the value of §gi+1(zy,) may be computed
numerically (the result is shown as the constants 7,(d) in Table 1), and then by
Theorem 2, this is the asymptotic value of the size of the total dominating set
T (scaled by n) at the end of some randomised algorithm. So the conclusion is
that a random d-regular graph a.a.s. has a total dominating set of size at most
NYg+1(Tm) + o(n). Note also that (by the theorem) §;(z) = 0 in phase k for 1 <
i < d—k —1, and by the nature of the differential equation, §;(x) will be strictly
positive for i > d — k. So by (6) and (7), the end of the process (for e arbitrarily
small) occurs in phase d — 1 when §; becomes 0.

This completes the proof of Theorem 1.
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