On large cycles with lengths differing by one or two

HONG WANG

Department of Mathematics The University of Idaho Moscow, Idaho 83844 U.S.A.

Abstract

Let $k \geq 3$ be an integer and G a graph with at most two vertices of degree less than k. We show that G contains two cycles of order at least k such that their lengths differ by one or two, unless G has at most two vertices. This generalizes the result of Bondy and Vince [J.A. Bondy and A. Vince, Cycles in a graph whose lengths differ by one or two, J. Graph Theory 27 (1998), 11-15].

1 Introduction

Bondy and Vince proved that if G is a graph with at most two vertices of degree less than 3, then G contains two cycles whose lengths differ by one or two, unless G has at most two vertices. We ask when G has two cycles of order at least k for a given integer $k \geq 3$ such that their lengths differ by one or two. By observing mK_k (the union of m vertex-disjoint copies of K_k), we need G to have vertices of degree at least k for a degree condition. In this note, we will prove the following.

Theorem Let $k \geq 3$ be an integer and G a graph with at most two vertices of degree less than k. Then G contains two cycles of order at least k such that their lengths differ by one or two, unless G has at most two vertices.

We discuss only finite simple graphs and use standard terminology and notation from [1] except as indicated. Let G be a graph. For a vertex $u \in V(G)$ and a subgraph H of G, N(u, H) is the set of neighbors of u contained in H. We let d(u, H) = |N(u, H)|. Thus d(u, G) is the degree of u in G. If d(u, G) = 1, we say that u is an endvertex of G. We use $d_G(u, v)$ to denote the distance of two vertices u and v in G. If G is a cycle or path, we use l(G) to denote the length of G.

2 Proof of the Theorem

Let $k \geq 3$ be an integer and G a graph of order n with at most two vertices of degree less than k. Clearly, if G has more than two vertices, then $n \geq k + 1$. The theorem obviously holds for the graphs of order not larger than k + 1. The proof

of the theorem is by contradiction. Assume that G is a counter example with the smallest order. Thus $n \geq k+2$. We shall derive a contradiction. To do so, we will adopt the idea from [2]. We will also use the following two lemmas from [3] and [4], respectively.

Lemma 2.1 (Theorem 1 of [3]) Let x and y be two distinct vertices in a 2-connected graph H. Suppose that the average degree of the vertices other than x and y is r. Then H contains a path of length at least $\lceil r \rceil$ from x to y.

Lemma 2.2 [4] If H is a graph of order $m \ge 3$ such that $d(x) + d(y) \ge m + 1$ for each pair of non-adjacent vertices x and y of H, then H is hamiltonian connected.

By Bondy and Vince's result, $k \geq 4$. Clearly, if G was not 2-connected, then an appropriate block of G would satisfy the condition of the theorem and therefore by the minimality of G, the block would contain two required cycles, a contradiction. Hence G is 2-connected. We choose an induced cycle C of G such that

The order of a largest component of
$$G - V(C)$$
 is maximum. (1)

We claim

$$G - V(C)$$
 has exactly one component. (2)

Proof of (2). On the contrary, suppose that G-V(C) has at least two components. Let B be a largest component of G - V(C) and F be a component G - V(C) with $F \neq B$. As G is 2-connected, there exist two distinct vertices x and y of C such that d(x,B) > 0 and d(y,B) > 0. There are also two distinct vertices x' and y' of C such that d(x', F) > 0 and d(y', F) > 0. If $\{x, y\} \neq \{x', y'\}$, say $x \notin \{x', y'\}$, then $G[V(C \cup F)] - x$ contains a cycle C' and G - V(C') has a component containing B+x, contradicting (1). Hence we must have that $\{x,y\}=\{x',y'\}$. Let z be an arbitrary vertex in $V(C) - \{x, y\}$. We claim that N(z, G) = N(z, C) and so d(z,G)=2 for all $z\in V(C)-\{x,y\}$. If this is not true, let $u\in V(C)-\{x,y\}$ be such that $d(u, G - V(C)) \ge 1$. As G is 2-connected, there exists a component H of G - V(C) and a vertex $v \in V(C)$ such that $u \neq v$, $d(u, H) \geq 1$ and $d(v, H) \geq 1$. If $H \neq B$, the above argument shows that $\{x,y\} = \{u,v\}$, a contradiction. If H = B, then $\{u, v\} = \{x', y'\}$, a contradiction. Therefore N(z, G) = N(z, C) for all $z \in V(C) - \{x, y\}$. As G has at most two vertices of degree less than k, we see that either B + x + y or F + x + y satisfies the condition of the theorem. By the minimality of G, one of B + x + y and F + x + y contains two required cycles, a contradiction. So (2) holds.

Choose the cycle C as defined above and let B be the unique component of G - V(C). Assume for the moment that $4 \le k \le 5$. As C contains at most two vertices of degree less than k in G, we see that there exist two distinct vertices x and y on C and two distinct vertices x and y on y on y and two distinct vertices y and y on y of two different paths y and y of y of y from y to y differ by one or two, unless y and y and y has two non-consecutive vertices whose degrees are two in y. In the latter case, we delete the two non-consecutive vertices from y to obtain a subgraph

G' of G. Clearly, G' satisfies the condition of the theorem and therefore it contains two required cycles by the minimality of G, a contradiction. So the former case must hold. Then we choose four vertices u, v, x and y such that the length of a longest path L from u to v in B is maximum. Clearly, $L \cup C + xu + yv$ has two cycles of lengths at least 4 and their lengths differ by one or two. Therefore $k \neq 4$ and so k=5 by the assumption on G. Then we see that $l(C)\leq 4$ and l(L)=1 for otherwise the two cycles have lengths at least 5 and therefore G is not a counterexample as assumed, a contradiction. Thus the edge of L must be a cut-edge of B. Let B_u and B_v be the two components of B-uv with $u\in V(B_u)$ and $v\in V(B_v)$. By the choice of x, y, u and v, we see that for each $w \in V(B_u) - \{u\}$, it holds that d(w, C - y) = 0and for each $z \in V(B_v) - \{v\}$, it holds that d(z, C - x) = 0. For the same reason, we see that either $d(x, B_v - v) = 0$ or $d(y, B_u - u) = 0$. Without loss of generality, say the former holds. Then $d(z,G) \leq 4$ for all $z \in V(C) - \{y\}$. Since G has at most two vertices of degree less than 5, we see that l(C) = 3 and $d(v, B_v) \ge 1$. Clearly, $d(z, B_v) \geq k$ for all $z \in V(B_v) - \{v\}$. Thus B_v satisfies the condition of the theorem for k=5. By the minimality of G, B_v contains two required cycles, a contradiction. Therefore k > 6.

Let I be the set of non-cut vertices of B and σ be the set of vertices of G with degree less than k. Then B-x is connected for all $x \in I$ and $|\sigma| \leq 2$. We claim

If
$$l(C) \ge 4$$
, then $d(x,C) \le 2$ for all $x \in I$. (3)

Proof of (3). On the contrary, suppose that $l(C) \geq 4$ and $d(x_0,C) \geq 3$ for some $x_0 \in I$. Let u and v be two distinct vertices in $N(x_0,C)$ with $d_C(u,v)$ as small as possible. First, suppose that $d_C(u,v)=1$. Then $C'=x_0uvx_0$ is an induced cycle in G. By (1), $d(y,B-x_0)=0$ for all $y \in V(C)-\{u,v\}$. Thus $\sigma \supseteq V(C)-\{u,v\}$. As $|\sigma| \leq 2$, we see that l(C)=4 and $\sigma=V(C)-\{u,v\}$. Let C=uvyzu be such that $yx_0 \in E$. Then x_0vyx_0 is a triangle in G and similarly, we must have $u \in \sigma$, a contradiction. Hence we must have that $d_C(u,v) \geq 2$. Let P be the shortest path from u to v on C. Then $C''=P+ux_0+x_0v$ is an induced cycle in G and V(C)-V(P) has at least three distinct vertices. As $|\sigma| \leq 2$, there exists $y \in V(C)-V(P)$ with $y \not\in \sigma$ such that $d(y,B-x_0)>0$. Thus G-V(C'') is connected, contradicting (1). So (3) holds.

We now choose a block B' from B as follows. If B is a block, we define B'=B. Otherwise, let S be the set of vertices x of B with d(x,B)=1. By (3) and the fact that $k\geq 6$, we see that $S\subseteq \sigma$ and so $|S|\leq 2$. If |S|<2, let B' be an endblock of B with $|B'|\geq 3$. Furthermore, we can choose B' such that if x_0 is the cut vertex of B with $x_0\in B'$ then $|\sigma\cap V(B'-x_0)|\leq 1$. If |S|=2, then B has exactly two endblocks. Moreover, they are of order 2. In this case, let x_0x_1 be an endblock of B such that x_1 is the cut vertex of B. Then we define B' to be the block of B such that $B'\neq x_0x_1$ but $x_1\in V(B')$. We can see that B' is of order at least 3 as follows. As $k\geq 6$ and by (3), we see that σ consists of the two endvertices of σ . If σ is of order 2, then σ contains a cycle σ such that σ connected with at least two vertices. Thus σ connected, contradicting (1).

For any two distinct vertices u and v of B', let P_{uv} be a longest path from u to v in B'. Let t = |V(B')| - 2. For each pair of distinct vertices u and v in B', we claim

If
$$l(C) > 4$$
, then $l(P_{uv}) > k - 3$; (4)

If
$$l(C) = 3$$
, then $l(P_{uv}) \ge k - 4$. (5)

Proof of (4) and (5). By the choice of B', we see that there are two vertices x' and x'' in B such that $V(B') - \{x', x''\} \subseteq I$ and $d(x, G) \ge k$ for each $x \in V(B') - \{x', x''\}$. Set

$$r_{uv} = \frac{1}{t} \sum_{x \in V(B') - \{u, v\}} d(x, B').$$

First, suppose that $l(C) \geq 4$. By (3), $d(x, B') \geq k-2$ for all $x \in V(B') - \{x', x''\}$. Thus $t \geq k-3$ and $r_{uv} \geq ((t-2)(k-2)+4)/t$. If $l(P_{uv}) < k-3$, then $r_{uv} \leq k-4$ by Lemma 2.1. This implies that $t \leq k-4$, a contradiction.

Next, suppose that l(C) = 3. Then $d(x, B') \ge k - 3$ for all $x \in V(B') - \{x', x''\}$. Thus $t \ge k - 4$ and $r_{uv} \ge ((t - 2)(k - 3) + 4)/t$. If $l(P_{uv}) < k - 4$, then $r_{uv} \le k - 5$ by Lemma 2.1. This implies that $t \le k - 5$, a contradiction. So (4) and (5) hold.

We are now in the position to complete the proof of the theorem. For each $w \in V(C)$, we let A_w be the set of vertices y of C such that the lengths of the two paths from w to y on C differ by one or two. It is easy to see that $|A_w| = 2$ for all $w \in V(C)$. We divide the proof into the following three cases.

Case 1. B' = B.

As G is 2-connected and $|\sigma| \leq 2$, we readily see that there exist $w \in V(C)$ and $z \in A_w$ and two distinct vertices u and v in B such that $\{wu, zv\} \subseteq E$. If $l(P_{uv}) \geq k-3$, then G contains two required cycles, a contradiction. So $l(P_{uv}) \leq k-4$. By (4) and (5), we see that l(C) = 3 and $l(P_{uv}) = k-4$. Then $r_{uv} \leq k-4$. This implies that $t \leq 2k-10$. Thus $n \leq 2k-5$. Let y_1 and y_2 be two distinct vertices of G such that $d(x,G) \geq k$ for all $x \in V(G) - \{y_1,y_2\}$. Then $k \leq n-2 = |V(G')| \leq 2k-7$ and $\delta(G') \geq k-2$ where $G' = G-y_1-y_2$. By Lemma 2.2, G' is hamiltonian connected. Clearly, G has two required cycles, a contradiction.

Case 2. $B' \neq B$ and B' is an endblock of B.

Let x_0 be the cut vertex of B with $x_0 \in B'$. As G is 2-connected, there exists $w \in V(C)$ such that $d(w, B' - x_0) > 0$. Let $u \in V(B' - x_0)$ be such that $wu \in E$. We divide this case into the following two cases.

Case 2.1. There exists $z \in A_w$ such that d(z, B - u) > 0.

In this subcase, there exists a path L of G from z to a vertex v of B' with $v \neq u$ such that no internal vertex of L is in $C \cup B'$. We choose such a path L with l(L) as large as possible. Clearly, if $l(P_{uv}) \geq k-3$, or $l(P_{uv}) = k-4$ and $l(L) \geq 2$, then the theorem holds, a contradiction. By (4) and (5), we must have that l(C) = 3, $l(P_{uv}) = k-4$ and l(L) = 1. Say $C = w_1w_2w_3w_1$ with $w = w_1$. This argument implies that $N(w_2, B) \cup N(w_3, B) \subseteq V(B')$. Let B'' be another endblock of B. As G is 2-connected, there exists a vertex y of B'' such that $w_1y \in E$ and $y \in I$. Suppose

that either $d(w_2, B' - x_0) > 0$ or $d(w_3, B' - x_0) > 0$. Say without loss of generality the former holds. Let $x \in V(B' - x_0)$ be such that $w_2x \in E$. By (5), we see that there exists a path L' of B from x to y such that $x_0 \in V(L')$ and $l(L') \geq k - 3$, a contradiction. Therefore we must have that $d(w_2, B' - x_0) = 0$ and $d(w_3, B' - x_0) = 0$. We obtain that $\sigma = \{w_2, w_3\}$. Then $B' + w_1$ has at most two vertices of degree less than k. By the minimality of G, $B' + w_1$ contains two required cycles, a contradiction.

Case 2.2. d(z, B - u) = 0 for each $z \in A_w$.

In this subcase, we have that $\sigma = A_w$. Let B'' be another endblock of B. As G is 2-connected, there exist a vertex y of B'' and a vertex w_1 of C such that $w_1y \in E$ and $y \in I$. As B'' can play the role of B' in the above argument, we see that $\sigma = A_{w_1}$, i.e., $w = w_1$, and d(z, B - y) = 0 for each $z \in A_w$. So d(z, B) = 0 for each $z \in A_w$. Then $G - A_w$ has at most two vertices of degree less than k. By the minimality of G, $G - A_w$ contains two required cycles, a contradiction.

Case 3. $B' \neq B$ and B' is not an endblock of B.

By the choice of B', let x_0x_1 be an endblock with $x_1 \in V(B')$. Let y_0 be the other endvertex of B. By (3), $d(x_0, G) \leq 3$ and $d(y_0, G) \leq 3$. So $\sigma = \{x_0, y_0\}$. Let $w \in V(C)$ be such that $wx_0 \in E$. Let $z \in A_w$. As $d(z, G) \geq k$, there exists $v \in V(B) - \{x_0, x_1\}$ such that $zv \in E$. By (4) and (5), we see that B has a path L'' from x_0 to v such that $l(L'') \geq k - 3$, and it follows that G has two required cycles, a contradiction. This completes the proof of the theorem.

Remark. For each integer $k \geq 3$, let h(k) be the largest integer such that if G is a graph of order at least k+1 with at most h(k) vertices of degree less than k, then G contains two cycles of order at least k such that their lengths differ by one or two. From our theorem, we see that $h(k) \geq 2$. By observing the graph $K_{\lfloor k/2 \rfloor} + (\lceil k/2 \rceil + 1)K_1$, we see that $h(k) \leq \lceil k/2 \rceil$. So h(3) = 2. We conjecture that $h(k) = \lceil k/2 \rceil$.

References

- [1] B. Bollobás, Extremal Graph Theory, Academic Press, London (1978).
- [2] J. A. Bondy and A. Vince, Cycles in a graph whose lengths differ by one or two, J. Graph Theory 27 (1998), 11-15.
- [3] Genhua Fan, Long Cycles and the Codiameter of a Graph, I, J. Combinatorial Theory, Ser. B 49 (1990), 151–180.
- [4] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly 67 (1960), 55.