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Abstract

Let k£ > 3 be an integer and G a graph with at most two vertices of
degree less than k. We show that G contains two cycles of order at least
k such that their lengths differ by one or two, unless G has at most two
vertices. This generalizes the result of Bondy and Vince [J.A. Bondy and
A. Vince, Cycles in a graph whose lengths differ by one or two, J. Graph
Theory 27 (1998), 11-15].

1 Introduction

Bondy and Vince proved that if G is a graph with at most two vertices of degree
less than 3, then G contains two cycles whose lengths differ by one or two, unless G
has at most two vertices. We ask when G has two cycles of order at least £k for a
given integer k > 3 such that their lengths differ by one or two. By observing mKj,
(the union of m vertex-disjoint copies of K}), we need G to have vertices of degree
at least & for a degree condition. In this note, we will prove the following.

Theorem Let k > 3 be an integer and G a graph with at most two vertices of degree
less than k. Then G contains two cycles of order at least k such that their lengths
differ by one or two, unless G has at most two vertices.

We discuss only finite simple graphs and use standard terminology and notation
from [1] except as indicated. Let G be a graph. For a vertex v € V(@) and a
subgraph H of G, N(u, H) is the set of neighbors of u contained in H. We let
d(u, H) = |N(u, H)|. Thus d(u, @) is the degree of v in G. If d(u,G) = 1, we say
that « is an endvertex of G. We use dg(u,v) to denote the distance of two vertices
wand v in G. If G is a cycle or path, we use [(G) to denote the length of G.

2 Proof of the Theorem

Let £ > 3 be an integer and G a graph of order n with at most two vertices of
degree less than k. Clearly, if G has more than two vertices, then n > k + 1. The
theorem obviously holds for the graphs of order not larger than & + 1. The proof
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of the theorem is by contradiction. Assume that G is a counter example with the
smallest order. Thus n > k + 2. We shall derive a contradiction. To do so, we will
adopt the idea from [2]. We will also use the following two lemmas from [3] and [4],
respectively.

Lemma 2.1 (Theorem 1 of [3]) Let  and y be two distinct vertices in a 2-connected
graph H. Suppose that the average degree of the vertices other than x and y is r.
Then H contains a path of length at least [r] from  to y.

Lemma 2.2 [4] If H is a graph of order m > 3 such that d(z) + d(y) > m + 1 for
each pair of non-adjacent vertices x andy of H, then H is hamiltonian connected.

By Bondy and Vince’s result, £ > 4. Clearly, if G was not 2-connected, then an
appropriate block of G would satisfy the condition of the theorem and therefore by
the minimality of G, the block would contain two required cycles, a contradiction.
Hence G is 2-connected. We choose an induced cycle C' of G such that

The order of a largest component of G —V(C) is mazimum. (1)
We claim
G — V(C) has exactly one component. (2)

Proof of (2). On the contrary, suppose that G—V(C) has at least two components.
Let B be a largest component of G — V(C) and F be a component G — V(C') with
F # B. As G is 2-connected, there exist two distinct vertices z and y of C such
that d(z, B) > 0 and d(y, B) > 0. There are also two distinct vertices 2’ and y' of
C such that d(z’, F) > 0 and d(y', F) > 0. If {z,y} # {«,y'}, say « & {2',9'}, then
G[V(C U F)] — z contains a cycle C' and G — V(C") has a component containing
B + x, contradicting (1). Hence we must have that {z,y} = {2/,y'}. Let z be
an arbitrary vertex in V(C) — {z,y}. We claim that N(z,G) = N(z,C) and so
d(z,G) =2 for all z € V(C) — {w,y}. If this is not true, let v € V(C) — {z,y} be
such that d(u,G — V(C)) > 1. As G is 2-connected, there exists a component H of
G — V(C) and a vertex v € V(C) such that v # v, d(u,H) > 1 and d(v,H) > 1.
It H # B, the above argument shows that {z,y} = {u,v}, a contradiction. If
H = B, then {u,v} = {«/,y'}, a contradiction. Therefore N(z,G) = N(z,C) for
all z € V(C) — {x,y}. As G has at most two vertices of degree less than k, we see
that either B + x + y or F + x + y satisfies the condition of the theorem. By the
minimality of G, one of B + z + y and F + x + y contains two required cycles, a
contradiction. So (2) holds.

Choose the cycle C' as defined above and let B be the unique component of
G — V(C). Assume for the moment that 4 < & < 5. As C contains at most two
vertices of degree less than k in G, we see that there exist two distinct vertices x
and y on C and two distinct vertices v and v in B such that {zu,yv} C E and the
lengths of two different paths P, and P, of C' from z to y differ by one or two, unless
[(C) =4 and C has two non-consecutive vertices whose degrees are two in G. In the
latter case, we delete the two non-consecutive vertices from G to obtain a subgraph
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G’ of G. Clearly, G' satisfies the condition of the theorem and therefore it contains
two required cycles by the minimality of GG, a contradiction. So the former case must
hold. Then we choose four vertices u,v,z and y such that the length of a longest
path L from u to v in B is maximum. Clearly, L U C 4+ zu + yv has two cycles of
lengths at least 4 and their lengths differ by one or two. Therefore k& # 4 and so
k =5 by the assumption on G. Then we see that [(C') < 4 and (L) = 1 for otherwise
the two cycles have lengths at least 5 and therefore GG is not a counterexample as
assumed, a contradiction. Thus the edge of L must be a cut-edge of B. Let B, and
B, be the two components of B — uv with u € V(B,) and v € V(B,). By the choice
of &, y,u and v, we see that for each w € V(B,) — {u}, it holds that d(w,C —y) =0
and for each z € V(B,) — {v}, it holds that d(z,C — ) = 0. For the same reason,
we see that either d(z, B, —v) = 0 or d(y, B, — u) = 0. Without loss of generality,
say the former holds. Then d(z,G) < 4 for all z € V(C) — {y}. Since G has at most
two vertices of degree less than 5, we see that I(C') = 3 and d(v, B,) > 1. Clearly,
d(z,By,) > k for all z € V(B,) — {v}. Thus B, satisfies the condition of the theorem
for k£ = 5. By the minimality of G, B, contains two required cycles, a contradiction.
Therefore k& > 6.

Let I be the set of non-cut vertices of B and o be the set of vertices of G with
degree less than k. Then B — x is connected for all z € I and |o| < 2. We claim

If (C) >4, then d(z,C) <2 forall z € I. (3)

Proof of (3). On the contrary, suppose that [(C) > 4 and d(zo,C) > 3 for some
zg € I. Let u and v be two distinct vertices in N(zq, C') with d¢(u,v) as small as
possible. First, suppose that dc(u,v) = 1. Then C' = wouvzg is an induced cycle
in G. By (1), d(y, B — 2p) = 0 for all y € V(C) — {u,v}. Thus 0 2 V(C) — {u, v}.
As |o| < 2, we see that I(C') =4 and 0 = V(C) — {u,v}. Let C = uvyzu be such
that yzo € E. Then xgvyx, is a triangle in G and similarly, we must have u € o, a
contradiction. Hence we must have that dc(u,v) > 2. Let P be the shortest path
from u to v on C. Then C”" = P+uxzg+xov is an induced cycle in G and V(C) -V (P)
has at least three distinct vertices. As |o| < 2, there exists y € V(C) — V(P) with
y ¢ o such that d(y, B — z¢) > 0. Thus G — V(C") is connected, contradicting (1).
So (3) holds.

We now choose a block B’ from B as follows. If B is a block, we define B’ = B.
Otherwise, let S be the set of vertices z of B with d(z, B) = 1. By (3) and the fact
that £ > 6, we see that S C o and so |S| < 2. If |S| < 2, let B’ be an endblock of
B with |B'| > 3. Furthermore, we can choose B’ such that if zy is the cut vertex
of B with zg € B’ then |0 N V(B' — xp)| < 1. If |S| = 2, then B has exactly two
endblocks. Moreover, they are of order 2. In this case, let zgz; be an endblock of
B such that z; is the cut vertex of B. Then we define B’ to be the block of B such
that B’ # woxq but x; € V(B'). We can see that B’ is of order at least 3 as follows.
As k > 6 and by (3), we see that o consists of the two endvertices of B. If B’ is of
order 2, then d(z;,C) > 4 and d(w, B) > 4 where w € V(C) and wzy € E. Then
we see that C'+ z; — w contains a cycle C' such that C' — V(C") is connected with
at least two vertices. Thus G — V(") is connected, contradicting (1).
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For any two distinct vertices u and v of B’, let P,, be a longest path from u to v
in B'. Let t = |V/(B')| — 2. For each pair of distinct vertices u and v in B', we claim

If I(C) >4, then I(Py,) > k — 3; (4)
If 1(C) =3, then I(Py) > k — 4. (5)

Proof of (4) and (5). By the choice of B’, we see that there are two vertices 2’ and
2" in B such that V(B')—{z’,2"} C I and d(z,G) > k for each z € V(B')—{«', 2" }.
Set

Tyy = 1 Z d(]ﬁ,B’)

t z€V (B')—{u,v}

First, suppose that [(C) > 4. By (3), d(z,B') > k—2forallz € V(B')—{z',2"}.
Thus t > k — 3 and r,, > ((t — 2)(k —2)+4)/t. If I(P,,) <k —3, thenr,, <k—4
by Lemma 2.1. This implies that ¢t < k£ — 4, a contradiction.

Next, suppose that I(C') = 3. Then d(z, B') > k— 3 for all z € V(B') — {2, 2"}.
Thus ¢ > k — 4 and 7y > (¢ — 2)(k — 3) + 4)/t. If I(Py,) < k — 4, then ryy < k — 5
by Lemma 2.1. This implies that ¢t < k — 5, a contradiction. So (4) and (5) hold.

We are now in the position to complete the proof of the theorem. For each
w € V(C), we let A, be the set of vertices y of C such that the lengths of the two
paths from w to y on C differ by one or two. It is easy to see that |[A4,| = 2 for all
w € V(C). We divide the proof into the following three cases.

Case 1. B' = B.

As G is 2-connected and |o| < 2, we readily see that there exist w € V(C)
and z € A, and two distinct vertices uw and v in B such that {wu,zv} C E. If
[(Pyy) > k—3, then G contains two required cycles, a contradiction. So I(P,,) < k—4.
By (4) and (5), we see that {(C) = 3 and I(P,,) = k — 4. Then r,, < k — 4. This
implies that ¢ < 2k —10. Thus n < 2k—5. Let y; and ys be two distinct vertices of G
such that d(z,G) > kforall v € V(G)—{y1,y2}. Then k <n—-2=|V(G)| <2k-7
and §(G') > k—2 where G’ = G—y;—y2. By Lemma 2.2, G’ is hamiltonian connected.
Clearly, G has two required cycles, a contradiction.

Case 2. B' # B and B’ is an endblock of B.

Let zq be the cut vertex of B with zy € B'. As G is 2-connected, there exists
w € V(C) such that d(w, B’ — z) > 0. Let u € V(B' — x¢) be such that wu € E.
We divide this case into the following two cases.

Case 2.1. There exists z € A, such that d(z, B —u) > 0.

In this subcase, there exists a path L of G from z to a vertex v of B’ with v # u
such that no internal vertex of L is in C'U B'. We choose such a path L with (L)
as large as possible. Clearly, if [(P,,) > k — 3, or l[(Py,) = k —4 and {(L) > 2, then
the theorem holds, a contradiction. By (4) and (5), we must have that {(C) = 3,
I(Py) = k—4and I(L) = 1. Say C = wjwswsw; with w = w;. This argument
implies that N(wq, B)U N(ws, B) C V(B'). Let B" be another endblock of B. As G
is 2-connected, there exists a vertex y of B” such that w;y € E and y € I. Suppose
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that either d(w,, B' — z¢) > 0 or d(ws, B' — x9) > 0. Say without loss of generality
the former holds. Let # € V(B — xg) be such that wyz € E. By (5), we see that
there exists a path L' of B from & to y such that xp € V(L) and I(L') > k-3, a
contradiction. Therefore we must have that d(ws, B'—¢) = 0 and d(ws, B'—¢) = 0.
We obtain that o = {ws,ws}. Then B’ + w; has at most two vertices of degree less
than k. By the minimality of G, B'+w; contains two required cycles, a contradiction.

Case 2.2. d(z,B —u) = 0 for each z € A,.

In this subcase, we have that o = A,,. Let B” be another endblock of B. As G is
2-connected, there exist a vertex y of B” and a vertex w; of C such that w,y € E and
y € I. As B" can play the role of B’ in the above argument, we see that o = A,
i.e., w =wy, and d(z,B — y) = 0 for each z € A,. So d(z,B) = 0 for each z € A,.
Then G — A, has at most two vertices of degree less than k. By the minimality of
G, G — A, contains two required cycles, a contradiction.

Case 3. B' # B and B’ is not an endblock of B.

By the choice of B', let zoz; be an endblock with ; € V(B'). Let yo be the
other endvertex of B. By (3), d(zo,G) < 3 and d(yp,G) < 3. So 0 = {xg,y0}-
Let w € V(C) be such that wzy € E. Let z € A,. As d(z,G) > k, there exists
v € V(B) — {xg, 21} such that zv € E. By (4) and (5), we see that B has a path L”
from o to v such that I(L") > k — 3, and it follows that G has two required cycles,
a contradiction. This completes the proof of the theorem.

Remark. For each integer k > 3, let h(k) be the largest integer such that if G
is a graph of order at least k& + 1 with at most h(k) vertices of degree less than
k, then G contains two cycles of order at least k& such that their lengths differ by
one or two. From our theorem, we see that h(k) > 2. By observing the graph
Ko + ([k/2] + 1)K, we see that h(k) < [k/2]. So h(3) = 2. We conjecture that
h(k) = [k/2].
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