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Abstract

We obtain several combinatorial results about chains, cycles and orbits
of the elements of the symmetric inverse semigroup ZS, and the set T,
of nilpotent elements in ZS,,. We also get some estimates for the growth
of |ZS,| and |T,|, and study random products of elements from ZS,,.

1 Introduction

Roughly speaking, there are three semigroups, which play a principal role in the the-
ory of transformation semigroups. The first one is the full transformation semigroup
Tur of all transformations of a set, M, the second one is the full partial transforma-
tion semigroup PT p of all partial transformations of M, and the third one is the
symmetric inverse semigroup ZSy, of all partial injective transformations of M. The
role of the last semigroup is especially important in the theory of inverse semigroups,
where this role is analogous to that of the symmetric group .S, in the group theory.

In the present paper we consider only finite sets. Hence we choose M to be the
set N = {1,2,...,n}. We denote the corresponding semigroups by 7,, PT, and
T8, respectively.

Combinatorial properties of T,,, PT , and some related transformation semigroups
(for example the semigroup O, = {a € T, : z < y = a(z) < a(y)} of all transfor-
mations preserving the natural order) were studied in a number of papers by several
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authors, see for example [10, 11, 13, 7, 15] and references therein. In particular, in
the monograph [12] many combinatorial properties of T, are collected in a separate
big chapter. At the same time the situation with the semigroup ZS, is completely
different. Only few papers, in which nilpotent elements and nilpotent subsemigroups
of ZS, are studied, deal partially with some combinatorial questions, see [8, 2, 3, 6, 4].
A survey on these combinatorial results and some new combinatorial results on ZS,
can be found in [5]. Monographs on semigroups, even those, dedicated completely
to inverse semigroups, for example [17, 19], do not go much further than giving a
formula for the cardinality of ZS,. No combinatorial results can be found even in
the monograph [18], which is dedicated completely to ZS,,.

In the present paper we study combinatorial properties of the elements of ZS,
in general. The action of the element a € ZS,, on N is described by the graph of
the action, which leads to the standard combinatorial data, including such notions
as cyclic and chain components of the graph and orbits of the elements from N. In
Sections 2 and 3 we obtain several combinatorial formulae relating the ingredients
of these data with each other, with the cardinality of the semigroup ZS,, itself, and
with the cardinality of the set T;, of all nilpotent elements from ZS,.

In Section 4 we concentrate on the study of the set T}, and discover possibly the
most surprising result of the paper, namely a strange duality between T, and ZS,,.
This duality is incarnated into a number of statements, each consisting of a pair
of equalities, dual to each other in the sense, that one of the equalities is obtained
from the other one by substituting the combinatorial data, related to ZS,,, with the
corresponding combinatorial data, related to T}, and vice versa.

In Section 5 we study the asymptotics of both |ZS,| and |T,,|. We obtain that
the growth of both |ZS,| and |T,| can be (very) roughly described by (n + 2)!, in
particular, that it is roughly the same. At the same time, it is also shown that the
limit value of the ratio |T,|/|ZS,| is 0.

Finally, in Section 6 we study random products of k elements from ZS, under
the assumption of the uniform distribution of original probabilities. We give both, a
precise formula and some estimates, for the probability of such product to equal some
fixed element from ZS,,, and show that for all £ big enough almost all products of k el-
ements from ZS,, are zero. The distribution of probabilities we calculate is controlled
by a square upper triangular matrix with non-negative integer entries. We show that
the eigenvectors of this matrix can be computed purely combinatorially, in terms of
the combinatorial data of ZS,, and derive that the corresponding transformation
matrix transforms the vector (1,1,...,1) into the vector (|ZSy,|,|ZSn-1l,-- -, |ZSol)-

2 Preliminary combinatorics

Throughout the paper for two sets, X and Y, by X C Y we mean that x € X implies
x €Y for every element z (in particular, X =Y implies X C Y).

From the definition of ZS§, it follows immediately that every element a € ZS,,
is uniquely determined by its domain dom(a), its range im(a) and a bijection from
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dom(a) to im(a). Hence

n 2
15, = ”) kL.
751= 3 (;
The number rank(a) = |dom(a)| = |im(a)| is called the rank of a and the number
def(a) = n — rank(a) is called the defect of a.
For elements from ZS,, one can use their regular table presentation

il ig PN Lk
a=| . . S,
( Jur o J2 .- Jk >
where dom(a) = {i1,...,ix} and im(a) = {j1,...,jr}. However, sometimes it is
more convenient to use the so-called chain (or chart) decomposition of a, which is
analogous to the cyclic decomposition for usual permutations. We refer the reader

to [18] for rigorous definitions, however, this decomposition is very easy to explain
on the following example. The element

12345 709
a:(74511026>61810

has the following graph of the action on {1,2,...,10}:

1 - 7
T 4 3—=5—10 9—6 8,
4 « 2

and hence it is convenient to write it as a = (1,7,2,4)[3,5,10][9,6][8]. We call
(1,7,2,4) a cycle and [3,5,10] (as well as [9,6] and [8]) a chain of the element a. We
remark that chains of length 1 correspond to those elements € N, which do not
belong to dom(a)Uim(a). It is obvious that def(a) equals the number of chains in the
chain decomposition of a. For a € ZS,, and i € N let ¢; and d; denote respectively
the number of cycles and the number of chains of length 7 in the chain decomposition
of a. The vector (ci,...,cp, di, ..., dy) is called the chain type of a, see [4, 18].

Proposition 1. ([14, Lemma V.1.9]) The set E(ZS,) of idempotents in IS, is a
semigroups, isomorphic to the semigroup B, = {A : A C N} with the intersection
of sets as the corresponding binary operation. In particular, |E(ZS,)| = 2".

The semigroup ZS, contains the zero element 0, which is the unique transfor-
mation such that dom(0) = @. Recall that if S is a semigroup with zero 0, then
the element a € S is called nilpotent provided that o = 0 for some k& > 0. We
will denote by T;, the set of all nilpotent elements in ZS,, and remark that 7T, is not
a subsemigroup of ZS, (the product of two nilpotent elements is not nilpotent in
general).

Proposition 2. ([5]) The element a € IS, is nilpotent if and only if the chain
decomposition of a contains only chains. The number of nilpotent elements in IS,

with the given defect k equals the signless Lah number L'(n, k) = Z—:(Z:i)
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By the permutational part of the element (ay,...,a,)...(by,...,b))[c1, ..., cs][dy,
...,d;] we will mean the element (ay,...,ap)...(b1,...,b,)[c1][ca] .. .[di]. The rank
of the permutational part of a € ZS, is called the stable rank of « and is denoted by
st.rank(a). This notion is analogous to the corresponding notion for 7,, see [12]. It
is obvious that st.rank(a) = st.rank(a?) for all i € N,

Taking the inverse element defines an anti-involution, o — o~ !, on ZS,. The
action of this anti-involution on « can be described as follows: one takes the graph
of the action of a and reverses all arrows in it. It follows that this map does not
change the chain type of «, in particular, nilpotent elements are sent to nilpotent
elements. Since this map switches im(«) and dom(c), it allows one to transfer all
statements about the ranges of the elements (in particular, of nilpotents) to the dual
statements about the domains, and vice versa.

Studying probabilistic characteristics of various parameters of elements in ZS,, it
is natural to assume that the original distribution of probabilities of the elements in
78, is uniform. An unexpected difficulty in this case is the fact that for two fixed
x,y € N the random events “z € dom(a)” and “y € dom(a)” are not independent
in general. For example, in ZS; we have

Pr (1 € dom(a)) = Pr (2 € dom(a)) = 21/34, but
Pr ((1 € dom(e)) and (2 € dom(e))) = 6/17 # (21/34)".

Furthermore, the random events “c € dom(«)” and “y € dom(a)” are not indepen-
dent if we consider them for T, instead of ZS,, either.
For £k =0,...,n denote

R, = {a € IS, : rank(a) = k}|,
D, = {a € IS, : def(a) = k}],
Sty = |[{a € IS, : st.rank(a) = k}|.

Then we have

2 n
n
Rox = (A> k' and IZS,| = ;Rn,k.

As rank(«) + def(a) = n, we have

n

2 n
Dn,k = Rn,n—k = (k) . (’n — k)' and |ZS7L| = ; Dn,k'

n
From Proposition 2 we have |T,,| = Z L'(n, k). Now from
k=1

' 1f”_1n_!7ﬁn2 gk
Lin k) = (k—1> M n(k) (= Bt = D

17, = Z%DM :Z”;"'Rn,k. (1)
k=1

k=1

it follows that




PARTIAL INJECTIONS 165

Remark 1. There is a purely combinatorial way to show that the sets

M, ={(a,2z) :a € T, def(a) =k, € N} and
My = {(6,1) : B € ZS,,def(8) =k, is a chain of 3}

have the same cardinality, which implies nL'(n, k) = kD, ;. Indeed, for (a,2) € M;
we define f((a,z)) = (B,1) € M, in the following way: let N, = {y € N : a'(z) =
y for some i € N} = {t1,ts,...,t5}, t1 < to,--- < t,, then dom(5) = (dom(a)UN,)\
{z}, B(y) = a(y) for all y € dom(a) \ ({z} UN,), B(ai(z)) =t foralli=1,...,s;
and [ is the chain of 3, containing z. One easily checks that (8,1) € M, and that f
is a bijection.

For z € R and k € {0,1,...} we denote by [z]; that k-th decreasing factorial

[y =x(z—1)...(x — k+1).

n—k
Proposition 3. St,; = [n]; Z L'(n —k,7).

i=1
Proof. We partition ZS,, into classes with respect to the domain A C N of the
permutational part of the element a@ € ZS,,. The element a acts as a permutation
on A and as a nilpotent on N \ A. Choosing A such that |A| = k, a permutation
on A, and a nilpotent on N \ A in all possible ways, and taking Proposition 2 into
account, we get

n—k

Stop = <7Z> KL é L(n— ki) = [0l Y L(n — k).

i=1
|

Denote by Cy the number of cycles of length k£ and by L,  the number of all
chains of length £ in all elements in ZS,.

Proposition 4. L, = [n]; - |ZSn—k| and Cy = Hn]k NZSn k]

Proof. The number of those elements in ZS,,, whose chain decomposition contains a
fixed cycle (chain) of length k, equals |ZS,_x|. On the other hand, given k elements
from N, we can form k! different chains and (k —1)! different cycles of length k. Now

the remark that (}) - k! = [n] completes the proof. 0
Invertible elements in ZS,, are exactly permutations, that is elements of the sym-
metric group S,. Hence b, = ||ISL"‘ = |Ini,"‘ characterizes (in some sense) the non-

invertability of the elements of Ign, or how far ZS, is from being a group.

Corollary 1. The average number ¢, of components in the chain decomposition of
the element a € ZS,, equals

- 1
e =b> (1 + E) by
k=1
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Proof. From Proposition 4 it follows that

= ——— N1+ = | |ZSn-k| = 1+-) —.
o= sy 20 (1) s = 32 (145) (2

k=

O

Remark 2. One can compare the last result with S, and 7,: the average number

of components (that is cycles) in the cyclic decomposition of a permutation = € S,

equals 14 3 + 3 +--- + £, and the average number of components for an element
!

- n
1 —, see |12, Le 6.1.12 16].
f € T, equals ; R = see [12, Lemma | or [16]

3 Chains and Orbits

Let L, denote the total number of chains in the chain decompositions of all elements
in ZS,.
n
Proposition 5. L, = Z(n — k)R
k=0

Proof. Each element of rank k has defect n — k and thus contains n — k chains. [

Comparing the last formula with Proposition 4 we get

Corollary 2.

k;:(n -k (Z)z’” = i[n]kllsn,u.

k=1

One more recursive relation for the cardinalities of ZS, is given by

Proposition 6.

1 n
- > (k- Rug + [0l Z8ukl) = [ZS,].
k=1

Proof. We have rank(«) + def(a) = n for every o € ZS,. Hence the sum of the
average rank and the average defect of all elements in ZS, must be equal to n as
well. Therefore

y— 1 <
—— Y kRyp+ =Y [n|i|ZSn-k| =n,
|ZS,| ; |ZS,| ;

which completes the proof. O

Theorem 1.

L, = Z st. rank(a).

a€ZS,
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Proof. Consider the sets

A=A{(a,c,z): a € IS,,cis a cycle of o, x is a point of c},
B={(5,1l) : B € ZS,,! is a chain from the chain decomposition of 5}.

The statement of the theorem is equivalent to the equality |A| = |B|.

Consider the map f : A — B, which is defined as follows: f((a, (z,a,...,b),z)) =
(8,]z,a,...,b]), where 0 is obtained from « substituting the cycle (z,a,...,b) with
the chain [z,a,...,b]. Consider also the map g : B — A, which is defined as follows:
9((8,]z,a,...,b])) = (o, (z,a,...,b), ), where « is obtained from [ substituting the
chain [z,q,...,b] with the cycle (z,q,...,b). Obviously f and g are inverse to each
other and thus |A| = |B]. O

Remark 3. It is obvious that Z st.rank(«) is equal to the total sum of lengths

a€ZS,
of all cycles of all elements in ZS,,.

Let P, denote the total number of fixed points for all elements in ZS,,. From
Burnside’s lemma it follows that the average number of fixed points for permutations
in S, equals 1. An analogue of this statement for ZS,, is the following

Theorem 2. 1
P,+ =L, =|ZS,| (2)
n
Proof. Consider the following sets:

A={(a,2): 0 € ZS,,z € N},
B ={(B,1) : p € IS,,! is a chain for the chain decomposition of 5},
C ={(7,y,2) : v € ZS,,y is a fixed point of 7,z € N}.

The equality (2) is equivalent to the equality |A| = |B|+ |C|. To prove the latter we
decompose A into a disjoint union A = A; U A,, where

Ay = {(a,z) € A: z belongs to some chain of a},
Ay = {(a,z) € A: z belongs to some cycle of a}.

Consider the transformation, which maps the cycle (z,a,...,b) with a base point =
to the chain [z, a,...,b]. Obviously, this transformation induces a bijection Ay — B.
Hence |Ay| = |B].

To prove |A;| = |C| we construct mutually inverse bijections f : A4; — C
and g : ¢ — A;. Consider any element («,z) € A;. If x is the source of some
chain [z,a,...,b] of length at least 2 from the chain decomposition of o, we define

f((a,z)) = (7, x,a), where v is obtained from « substituting the chain [z,a,...,b]
with the cycle (x) and the cycle (a,...,b). If z is the only point of the chain [z],
we define f((a,z)) = (v, z, x), where v is obtained from « substituting the chain [z]
with the cycle (). Finally, if « is contained in some chain [qa,...,b,z,c,...,d] and
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is different from the source of this chain, we define f((o,z)) = (v, z,b), where 7 is
obtained from « substituting the chain [a,...,b,z,¢,...,d] with the cycle (z) and
the chain [a,...,b,c,...,d].

Let now (7,y,2) € C. lf y = z, we define g((7,y, z)) = (@, 2), where « is obtained
from  substituting the cycle (y) with the chain [y]. If z is a point of some chain
[a1,...,as,2,b1,...,b] in the chain decomposition of v, we set g((v,y,2)) = (o, 2),
where « is obtained from 7 substituting the cycle (y) and the chain [a4, ..., as, 2, b1,

.., b with the chain [a1,...,as,2,y,b1,...,b]. Finally, if z is a point of some
cycle (a1,...,as,2) of v, we set g((7,y,2)) = («,z), where « is obtained from ~y
substituting the cycles (y) and (z, a1, ..., as) with the chain [y, z, a4, ..., as].

Obviously, f and g are inverse to each other implying |A;| = |C|, and the theorem
follows. O

If z € dom(«), the set {z,a(z),a®(z),...} is called the orbit of x under a and
the cardinality of this set is called the length of the orbit. If z ¢ dom(a), we say
that the orbit is empty and consequently the length of the orbit is 0. Since for every
transposition (z,y) € S, the conjugation « — (z,y)a(z,y) maps orbits of x to orbits
of y and vice versa, it is enough to study the orbits of the element 1.

It is easy to calculate that the average length of the orbit of 1 under the action
of the symmetric group S, equals (n + 1)/2, and the number of orbits of 1 of length
i does not depend on 7 and equals (n — 1)!. The corresponding situation in the
semigroup 7, is much more interesting. For example, it is shown in [9] that the
random function X,(«), whose value is the cardinality of the permutational part of
a € Ty, and the random function Y, (a), whose value is the length of the orbit of 1
for a € 7T,, have the same distribution. Later on an elementary proof of this fact
was found in [1] (see also the historical review of this fact in [11]). For ZS, the
corresponding statement does not hold, however, one has the following

Theorem 3. The sum of lengths of the orbits of 1 over all elements o € ZS,, equals
the total number of chains in all elements in S, .

Proof. Let

A={(a,z) : a € IS,, x is a member of the orbit of 1 for a},
B={(5,l) : B € ZS,,! is a chain from the chain decomposition of 5}.

The statement of the theorem is equivalent to the equality |A| = |B|. To prove the
latter let us construct mutually inverse bijections f: A — B and g : B — A.

Let (o,z) € A. If = is a point of the cycle (z,...,1,...,y), we define f((a,z)) =
B, [z, ...,1,...,y]), where § is obtained from « substituting the cycle (z,...,1,...,y)
with the chain [z,...,1,...,y]. If z is a point of the chain [a,...,1,...,b,x,...,(]
and z # 1, we define f((a,2)) = (B, [z, ..., c]), where 3 is obtained from « substitut-
ing the chain [a,...,1,...,b,2,...,c] with two chains, [a,...,1,...,b] and [z,...,c].
Finally, if # = 1 and it is a point of the chain [a,...,1,b,..., ], we define f((a, z)) =
(B,1b,...,c]), where g is obtained from « substituting the chain [a,...,1,b,...,¢]
with the cycle (a,...,1) and the chain [b,...,c].
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Let (8,1) € B. If | contains 1 and has the form | = [z,...,1,...,y], we set
9((8,1)) = (o, z), where « is obtained from f substituting the chain [z,...,1,...,y]
with the cycle (z,...,1,...,y). Ifl = [z,...,¢] does not contain 1 and 1 be-
longs to another chain, [a,...,1,...,b] say, we set g((5,1)) = («,z), where « is
obtained from [ substituting the chains [a,...,1,...,b] and [z,...,c] with the chain
[a,...,1,...,b,x,...,c]. If I =[z,...,c] does not contain 1 and 1 belongs to a cycle,
(a,...,1) say, we set g((5,1)) = (a,1), where « is obtained from S substituting the
chain [z,...,c] and the cycle (a, ..., 1) with the chain [a,...,1,2,...,c]. It is obvious
that under the definition of g the point  in the pair («,z) always belongs to the
orbit of 1 under the action of «.

It is easy to check that f and g are mutually inverse bijections, which completes
the proof. a

Theorem 4. Let I, denote the total number of orbits of 1, having length k, in all
elements from IS,. Then

(i) lno = |Tul,
(i) lny = |ZSpal,
(111) lpg = [0 — g—1(Lp—g + 2|1ZSp—i|) for 1 <k < n.
Proof. (i). According to the definition, [, o is the cardinality of the set
E(n,0) ={a €IS, :1¢ dom(a)}.

Consider the following decomposition of E(n,0) into a disjoint union of subsets:

En0)= |J Ea

AcC{2,3,...,n}

where E4 = {a € E(n,0) : A = Misodom(a*)}. In other words, E4 contains all
those elements from E(n,0), for which A is the domain of the permutational part.
Consider also the following decomposition of Tj, into a disjoint union of subsets:

.= |J Ta
AcC{2,3,...n}

where Ty = {0 € T), : 8 contains the chain [...,1,a1,...,a;] and {ay,...,ar} = A}.
Set A = N\ A. If we substitute the chain [by,..., by, 1,a1,...,a] with its initial
subchain [b1, ..., by], then every 5 € T4 can be transformed into the element B from
the set T4 of all those nilpotent elements from ZSy, which are not defined in the
point 1. Moreover, every such nilpotent will be obtained exactly |A|! times. Hence
|Tal = |A]'- [Tal. _

On the other hand, the set A is a-invariant for every a@ € E,, moreover, the
restriction a|y is a nilpotent element from T,. Since the restriction a|5 does not
depend on the permutational part of a, we get |E4| = |A! - |T4l.

Therefore |T4| = |E4| for all A C {2,3,...,n} and hence I(n,0) = |E(n,0)| =
T, .
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Remark 4. The equality |T4| = |E4| can also be proved purely combinatorially,
using a bijection, analogous to that, constructed in Remark 1.

(ii). The orbit of 1 under the action of « has length 1 if and only if 1 is a fixed
point of «. The elements from ZS,,, for which 1 is a fixed point, are identified with
18p33,..n) = LS, in a natural way.

(iii). If the orbit of 1 under the action of o has length & > 1, the element o has
one of the following three types:

(I) a=(1,as,...,a;).... We have (n —1)...(n —k)|ZS,—k| = [n — 1]4—1|ZSn—k]
elements of this type.

(II) «=[1,ag,...,a;].... We again have [n — 1];_1|ZS,_x| elements of this type.
(III) a=1[b1,y .-, bm, Lyas, ... ax]. ...

With every a of type (III) we associate the pair (8,[b1,...,bn]), where 5 €
ZSN\{1,as,..0x} = LSu_ is obtained from « substituting the chain [by,...,bm, 1, as,
...,ag] with the chain [b1,...,by]. It is obvious that this map is a bijection to the
set

{(B,1) : B € ZSm\{1,02,....ax}, ! is & chain from the chain decomposition of 5}.

The elements as,...,a; can be chosen in [n — 1],_; different ways, and the pair
(8,1) in L, different ways. Hence the number of elements of type (III) equals
[n — 1]g—1 - Ln—k. Adding up the last three numbers we obtained, we complete the
proof of the theorem. a

Corollary 3. |T,| equals the total number of partial injections from the set
{2,3,...,n} to the set {1,2,...,n} (or from {1,2,...,n} to {2,3,...,n}).

Proof. Follows from Theorem 4(i) and natural identification of E(n,0) with partial
injections from {2,3,...,n} to {1,2,...,n}. Inverses for the later partial injections
are exactly partial injections from {1,2,...,n} to {2,3,...,n}. O

4 Nilpotent elements

Some aspects of combinatorial properties of nilpotent elements in ZS,, were studied
in [8, 2, 3, 6], however, the main objects in these papers were not the elements from
T, but rather certain nilpotent subsemigroups in ZS,,, that is some special subsets
of T;,. The problem of calculating the cardinalities of such subsemigroups lead to
interesting combinatorial schemes, involving such classical combinatorial objects as
Bell numbers, Catalan numbers, Stirling numbers of the 2nd kind and others. An
overview of the results in this direction can be found in [5].

In this section we will investigate the combinatorial properties of the set T, itself.
A striking phenomenon we discover is a kind of duality between the cardinalities of
certain combinatorial sets, associated with ZS,, and T;,. This duality will also appear
in the next section and in the present section it will be visible in most statements.
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However, we do not have any satisfactory explanation for its existence. We start
with the theorem, which is in some sense dual to Theorem 4. We denote by L™ the
total number of chains in the chain decompositions of elements in T},, and by I™* the
total number of orbits of 1 of length % for the elements in 7,.

Theorem 5. (i) ["° =|ZS,-1].
(i1) |{a € T, : the chain decomposition of a contains the chain [1]}| = |T;—4].
(ii) 1™ =[n —1)j_1 - (L0 + Ty _4]) for 1 < k < n.

Proof. To prove (i) we note that, by definition, [™° is the cardinality of the set
B={aeT,:1¢dom(e)}. The chain decomposition of every element from the
set B has the form a = [ay,...,at,1]..., where & > 0. Let us order the elements
in {ai,...,ax} in the increasing order: a; < a;, < --- < a;,. Note that the set
A = N\ {ai,...,a,1} is a-invariant, and define @ € ZSpy3,.. ) in the following
Qi -v e Qg
ay ... ag
bijection from B to ISy 3.....n) and the statement follows.

(ii) is obvious.

To prove (iii) we partition the elements of the set

way: @la = ala, Wl{as,.ap} = . The map a — @ is obviously a

{a € T,, : the orbit of 1 under the action of « has length £}

into two classes, with respect to whether 1 is a starting point of some chain in the
chain decomposition of « or not. The chain decomposition of every element « from
the first class has the form o = [1,ay,...,a51] ..., where ay, ..., ag—1 can be chosen
in [n—1];_; different ways, and all the other chains of a define some nilpotent element
from ZSn\{1,a1,...ax_1}- Hence the first class contains [n — 1]y -+ |Th—i| elements.

The chain decomposition of every element from the second class has the form
a=[b,...,bm,1,a1,...,ap-1] ..., where m > 0. The elements ai,...,ar_1 again
can be chosen in [n —1]_; different ways. If we now fix ay,...,ax—1, we can associate
the corresponding elements « to the pair (3, [by, ..., bn]), where 8 € ZSn\{1,01,...ax_1}
is obtained from « substituting the chain [by,... by, 1, a1,...,a;_1] with the chain
[b1,...,by]. This defines, for fixed ai,...,a; 1, a bijection from the set of all corre-
sponding « to the set

{(8,1) : B is a nilpotent element from ZSn\{1,a1,...ax_1},! is a chain of 5}.

n—k

Hence the second class contains [n — 1];_; - LI"™® elements. O

Remark 5. The first parts of Theorems 4 and 5 are completely dual to each other.
The last parts of these theorems are almost dual, however, one could not expect
a perfect duality for this statement as there are no orbits of length 1 for nilpotent
elements.

Theorem 6. 1. |T,|=1L,.

n
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2. |IS,| = LY,

n+1

Proof. The element a € ZS,, can have some fixed points only in the case, when the
permutational part of a is not trivial, that is if « is not nilpotent. For every a & T,
let Ay = dom(a™) and Ay = N \ A,. Consider the set

M, ={B € IS, : dom(f") = A, and |- = B}

Since the permutational parts of the elements from M, correspond to all permu-
tations in S4,, it follows that the average number of fixed points for elements in
M, equals 1. Since M,, = M,, or M,, N M,, = @ for arbitrary M,, and M,,,
the sets M, form a partition of ZS, \ T, into a disjoint union of subsets. Hence
the total number P, of the fixed points equals |ZS, \ T,|. Theorem 2 now implies
LL, =|Z8,| - |Z8, \ To| = |Ty|. This proves (1).

To prove (2) it is enough to show that the cardinalities of the sets

A={(z,0): v € {L,2,...,n+1},a € LS 2,..nt1}\{z}} and
B ={(8,1) : B € Tny1,1 is a chain of 3}

are the same. For this we define the map f : A — B in the following way. Let
(z,a) € A and ( Zl Zk be the permutational part of o. Assume that
G v ik
a; < ay < --- < ag and set f((z,a)) = (B,1) € B, where | = [ay, ..., a;,z] and [ is
obtained from « substituting the permutational part with [.
We define the map g : B — A, g : (8,]) — (z,«) in the following way: if
I =Jai,...,ag, are1], we set * = apy1 and « is obtained from S substituting ! with

aik

. a;
the permutational part alll , where a;; < a4, < --- < a;, are elements

ai,...,a, written with respect to the natural increasing order.
It is easy to check that f and g are mutually inverse to each other, which implies
|A| = |B| and completes the proof. O

Theorem 7. 1. |T,| = |ZSp-1] + Ln-1.
2. 1ZS,| = |T,| + L™.

Proof. We start with (1). According to the first part of Theorem 4, we have |T,| =
|B|, where B = {a € ZS,, : 1 ¢ dom(«)}. We partition B into two disjoint subsets
B, ={a€ B:1¢im(a)} and By = {a € B : 1 € im(a)}. The elements of
B are identified with the elements of ZSys 3. 3 =~ ZS,—1 in a natural way. Hence
|By| = 8,1,

The elements from B, have chain decomposition of the form a = [by, ..., b, 1]. ..,
where & > 0. Sending every such « to the pair (8, [by,...,b]), where § € ZS(s3,..n}
is obtained from « substituting the chain [by,. .., by, 1] with the chain [b, ..., bg], we

get a bijection from B, to the set {(8,1) : § € ZSj23,..n},! is a chain of §}. Hence
|B2| =Ly.

Now we prove (2). Using the first part of Theorem 5, we can substitute ZS,
by B = {a € Th41 : n+1 ¢ dom(«)}. The chain decomposition of every 5 € B
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contains the chain of the form [ai,...,ar,n + 1], where 0 < k < n. For k = 0 the
corresponding elements are identified with 77, in a natural way, hence the number of
such elements in |T,|. If & > 0, we map the element /3 to the pair (3, [as,-..,az]),
where 3 € ZS, is obtained from (3 by substituting the chain [a;, . .., ag,n + 1] by the
chain [ay, ..., ax]. It is easy to see that this map is a bijection to the set {(«,) : o €
T,, 1 is a chain of a}. Hence the number of such pairs equals L™ which completes

the proof. a

Remark 6. The first part of Theorem 7 implies that nilpotent elements form a
substantial part of |ZS,|, in particular, the inequality |T},| > |ZS,-1| is very rough.

The following statement provides a precise connection between the cardinalities
of ZS, and T:

Proposition 7.

n n

IZSu| =D [nli|Tucil = D [0 = Upea(n + k)| Ti-

k=0 k=1

Proof. The first equality follows from the fact that for a fixed & > 0 the number of
elements in ZS,,, which have stable rank k equals () - k! - |T—k| = [n]i - | Tes|.

To prove the second equality one shows, analogously to the proof of Proposition 6,
that the average number of fixed points in elements of stable rank £ > 0 is 1.
Moreover, the total number of points in the domains of the permutational parts of
these elements equals & - (}) - k! - |Tn—4|. Using Theorem 2 and Theorem 1 we now

get

n n

280 = <Z> KU Tk + % ;ACZ) Tkl = 3 [0 a4 k)| Tl

k=1 k=1
d
Corollary 4.
n
Tl = kln— 11| To .
k=1
Proof. Follows from the right equality of Proposition 7. O

5 Various asymptotics
Lemma 1. For every n > 1 the following holds
(1) 2n —1 > |T,|/|Tn=1] > n + 1, moreover, both inequalities are strict for n > 2,

(2) 2n > |Z8,|/|Z8p-1] > n+ 1.



174  OLEXANDR GANYUSHKIN AND VOLODYMYR MAZORCHUK

Proof. To prove (1) we consider a chain [ay,...,a;] from the chain decomposition
of some a € T, ;. Inserting the point n on different places into this chain we
obtain k + 1 different chains [n, a4, ...,ax], [a1,n,a9,...,ax], ..., [a1,...,a,n]. If
we now perform this for every chain from the chain decomposition of a;, we will get
(n — 1) 4 def(a) different nilpotent elements in 7T,,. One more nilpotent element is
obtained by adding the chain [n] to a. Since 1 < def(a) < n — 1, we get

2n—1>(n—1)+def(e)+1>n+1 (3)

Therefore for every a € T, 1 we get at least n + 1 and at most 2n — 1 different
elements from 7,,. Certainly, performing this construction for all elements from 7}, ;
we will obtain all elements from T,,, moreover, each element will be obtained only
once. Hence
If n > 2, then the left inequality in (3) is strict for all & € T,,_; such that def(«) = 1,
and the right inequality in (3) is strict for all « € T,,_; such that def(a) = n — 1.
Hence both inequalities in (4) are strict in this case.

The proof of (2) is analogous with the following differences: one can insert the
point 7 in a cycle of length % in k different ways, one can add both the cycle (a) and
the chain [a] to the chain decomposition of a € ZS,,—;. O

If we recall that T, contains exactly L'(n,k) and ZS, contains exactly R,k

elements of defect k, the proof of Lemma 1 immediately implies
n
Lemma 2. 1. |T,4|= Z(n +k+ 1)L (n,k),
k=1
2 ZSuia| =D (n+k+2)Runk =D (20— k+2)Rus.
k=0 k=0

Lemma 3. If1<k<+n+1-1then L'(n,k+1) > L'(n,k), and if yn+1-1<
kE <n then L'(n,k + 1) < L'(n, k).

Proof. We have Lgfz;ﬁ;;)l) = k("kjrkl) and we have

n—=k
—  >S1ekr+2%k-— lel<k<vVn+1-1
k(k+1)> + n> <k<+vn+

Using analogous arguments we can see that

Lemma 4. If 1 < k < n + % — /n+5/4 then Rypy1 > Ry, and if n + % —
Vn+5/4 <k <n then Ryry1 < Rug.

Lemma 5.

- ) Rn n— n
lim " (n, 3ly/n]) =0 and lim " n =3V

S St A et P — = —=0.
n—oo /0 - L'(n, 2[/n]) n—00 /1 - Ry nafym)
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Proof. To prove the first formula we set m = [/n]. Using the Stirling formula for n!
we get

(n—1)! n!

n-L'(n,3m) " GomiGmD! Gm)

Vn-L'(n,2m) — \fp. — @D . _al

(n—2m)!(2m—1)! (2m)!

=i O DO Iy (222) ()

V3 (3m —1)(n — 3m) n—3m 3m—1

< (%)m (%)m-#-(l—ko(l)).

But we have

ﬁ, inmlj Z:?),:;%“*O(l”v (”_2m>n_mexp(m>(1+o(1>>,

(Gim) =) et vom)

(2 = (@) - o

n-L'(n,3m) 16 exp(2)

T L(nam) <Vn- <T>m (14 0(1)).

As y/n=m(1+ 0(1)) and 16 exp(2)/3% < 1, we obtain

lim n - L'(n,3[v/n]) _0
B T el

n—3m

Hence

The proof of the second formula is analogous, using R, ; = (Z)2 kL. O

Theorem 8.

lim | n+1| im |ZS7L+1| —
wmos (0 + 2)[T] ~ nowo (0 + 2)[ZS,|

Proof. From Lemma 1 it follows that for all n we have

Toal o (42T
(n+2)|T, = (n+2)

TS0l _ (n+2)/TS,]
(n+2)|ZS,] = (n+2)|ZS,]

=1, and =1

5

[T 1]
> (n+2)[Tn]

are majorized by a sequence, which converges to 1. For the sequence

and

Hence to prove the theorem it is enough to show that both sequences

|ZSn 41]
(n+2)[ZS,]
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% we have, using Lemma 2(1), the following:
> (n+k+1)L(n, k)
|Tn+1| _ k=1
(n +2)|Ts|

(n+2)> L'(n,k)
S 43Vl + )L (nk)+ Y (2n+ 1)L (n, k)

< k<3[y/n] k23[y/n]

(n+2)> L'(n,k)

L'(n, k)
<n+3[\/ﬂ+1 2n+1 r>30val
n+2 n+ 2 "

Z L'(n, k)

(5)

By Lemma 3 we have

S Lnk)< Y L(n3[Vn]) <n-L(n3[vn])
k>3[v/n] k>3[v/n]
and

n

S Lk > S Lnk) > [Val- Ln,2la).
k= [Vnl<k<2[v/n]

Applying the first part of Lemma 5 we get that the second summand of (5) converges

to 0. It is obvious that the first summand converges to 1, which completes the proof

[Tr41]
for the sequence CES) e

[Z8n 1]
For the sequence T2

we have, using Lemma 2(2), the following:

n

> (@n—k+2)Rys
|ISTL+1| __ k=0
Z Rn k

(n+2)|15n|_
> @n+2Ru+ Y. (n+3[Vn]+2)Rus

k<n—3[y/n] k>n—3[y/n]
< n
(n+2)) " Rux
k=1
Rn,k
2n + 2 k<n—3lval n+ 3[v/n] +2
= + - (6)
n—+ 2 n-+ 2

Z Rn,k

k=1
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By Lemma 4 we have

Z Ry < Z Ry nspym <1 Rpp_siym
k<n—3[y/n] k<n—3[y/n]

and

n

> Ruy > > Ry > [Vn] - Ry sl
k= n—3[yn]<k<n—2[y/n]

Applying the second part of Lemma 5 we get that the first summand of (5) converges

to 0. It is obvious that the second summand converges to 1, which completes the

proof. O

Theorem 9.
LT
im
n—o00 |IS |

=0.

Proof. Using the first statement of Theorem 7, Proposition 5 and Lemma 2(2) we
have

|Tn| o |ISn71| + Ln o |Isn—1|

|ZS,.| IZS,| |ZS,
n—1 n—1
> (n—k=1)Ru_14 > (n—k=1)Ru_14
+ k=0 _ |ISn71| + k=0
|ZS..| |ZS.,.| n-l
(2n - k)Rn—l,k
k=0

By Lemma 1(2) the first summand of the last sum converges to 0. Let us study the
second summand in more detail:

n—1
Zn—k—l n—1,k
k=0

n—1

Y ik -DRest Y. (n—k—1)Ry iy

< k<n—3[y/n—1] k>n—3[/n—1]
> (2n—k)Ry 1k
k>n—3[v/n—1]
n- Z Rn—l,k 3[\/ n — 1} . Z Rn—l,k
k<n—3[vn—1 k>n—3[v/n—1]

< +
n- Z Ro_1k n- Z R 1

k>n—3[v/n—1 k>n—3[v/n—1
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As in the proof of Theorem 8, Lemma 4 and the second part of Lemma 5 guarantee
that the first summand in the last sum converges to 0. It is obvious that the second
summand 3[v/n — 1]/n converges to 0 as well. This completes the proof. O

Theorem 10. Let m € N be fized. Then the distribution of the ranks of the elements
of ZS,, modulo m is asymptotically uniform, that is for all p € Z we have

Z Rn,k

i k€A p 1
m-——-=—
oo |ZS,] m’

where App={t €Z:0<z<n,z=p modm}.

Proof. Denote Fj, = 3 4, Rap and let kg = [n+1/2 = \/n+5/4]. For p € Z
let A) , denote the set of all x € Ay, satisfying & < ko, and A}, = Ay, \ A7 .
From Lemma 4 it follows that R, is increasing for 0 < £ < ky and decreasing for

ko < k < n. For kg the value R, y, is the maximal one (for a fixed n). Hence for all
p,q we have

|FP_F¢1|S Z Rn,k_ Z Rn,k + Z Rn,k_ Z Rn,k <2Rn,k0~

k€Al , k€Al , keAl keAl |

Lemma 6. Let n > 10000 and |k — ko| < 4 — 1. Then

R, 1
L
Proof. For s = k — (n +1/2 — \/n+5/4) we obviously have |s| < %. By direct

calculation we get

n?—2nk+k*-k-1
k+1

52 —2sy/n+5/4
n+3/2—+/n+5/4+s|

‘Rn,k+1 _ 1‘ _
Rn,k

Again by direct calculation it is easy to show that for |s| < 1 we have

s% —2s¢/n+5/4 - 6yn 1

4y/n +5/4 -
n+3/2—y/n+5/4+s

= n—+/n+5/4

w ST

and that for |s| > 1 we have

s —2s4/n+5/4 4s\/n+5/4|  6]s] 1
< < —F=< 7=
n+3/2—/n+5/4+s n—2yn N

O

4

Lemma 7. For all n big enough the inequality ky — [—"} +1<k<k+ [ﬂ] -1

6 6
Ry kg
R <2,

implies the inequality
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Proof. From Lemma 6 it follows that for all such & we have

R L\
0 1+— = 1 1)).
Rn,k<( +\%_l> e’®(1+0(1))

The remark that €'/ < 2 completes the proof. 0

From Lemma 7 it follows that for all n big enough and for all p and ¢ we have

|FP B FQ| < 2Rn,k0 2RTL ko 2Rn ko 2
|ISTL| |ZS7L| Z Rnk 2 ([i] _ 1) "Zko I:%] -1
keB,

where By = {k € Z: ko = [42] +1 < k < ko + [42] 1}, Hence

im Lo
TS |ZS| = TS
1

F,
As Fo+ Fy + -+ + Fpo1 = |ZS,], we finally get 11m —_— = O
 |ZS, | m

6 Random products

We consider the products zixs ...z of elements from ZS,, of length k. We assume
that the elements 1,2, ..., x; are chosen randomly and independently, with the
uniform distribution of probabilities, that is the probability to choose the element

a € IS, does not depend on « and equals \IS E

Lemma 8. Given a € IS, the probability of the following random event “the ran-
dom product x1xs ... x) of elements from IS, of length k equals a” depends only on
rank(a).

Proof. Letrank(a):rank(,ﬁ):manda:(Z1 Zm)ﬁ:(;l 2”)
1 - m 1 .- m
o ci ... Cm - o b1 bm
Le‘cu,TESnbesuchthatp—(a1 oa, '”>,T (d1 o,

Then puar = [ and the map
{(z1,..yzp) iz cap=a} = {(y1, - Uk) V1 - Uk = B},

(@1, wp) = (par, g, ..., Tp—1, TET)

is injective. Hence Pr(a = @1...2) < Pr(8 = y1...yx). The opposite inequality
follows by switching o and . O

Let Pk(?b denote the probability of the random event “the random product
x12T9 ... 71 of elements from ZS, of length k is equal to a fixed element of rank
¢”. From Lemma 8 it follows that P,E?L is well-defined, that it does not depend on
the choice of the element of rank 4.
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Corollary 5. Let M C ZS, and m;, i = 0,...n, denote the number of elements
i M of rank i. Then the probability of the following random event: “the random

product x1xy . .. 2y, of elements from IS, of length k belongs to M7 equals Z miP,E?L

i=0
In particular, the probability of the random event “the random product xyxs . ..xy of
n—1
elements from IS, of length k belongs to T,,” equals Z L'(n,n — Z)P,fzi
i=0

Proposition 8.

g (128" k-1 (0
P’522‘2<|I—8n|2 “([n]) I'Pk(,ra—i'

Proof. We fix a € ZS,, such that rank(a) = ¢ and have PIE?L =Pr(z;...2 = ).

Take any random product @ ...z and set Ag = dom(zy ...ay), A1 = x1(Ap),
A2 = .CUQ(Al),. sy Ak = SCk(Akfl) = 1m(:c1 . .CUA) Set B] =N \ Aj, j = ].,.. .,k.
Then with every z; we associate two maps: the bijection y; = z;|a,_, : Aj1 — A;
and the partial injection z; = $j|3j_1 : Bj_1 = B;. Moreover, the equality z; ...z, =
« becomes equivalent to the following pair of equalities: y; ... yx = @, 21...2; = 0.
The sets A, A, ..., Ag_1 and bijections y1,¥s ..., yx_1 can be chosen arbitrarily and
this can be done in ([n]i)k_l different ways. After this choice the factor ¥ is uniquely
determined.

For every j, j =0,1,...,k, we fix a bijection B; — {1,2,...,n —i}. Then every
zj + Bj_1 — Bj is associated in a natural way with a partial injection, 2; € ZS,_;.
Moreover, the condition z; ...z, = 0 becomes equivalent to the condition 2; ... 2, =
0. Since for the last equation the factors can be chosen in |ZS,_4|* - P,E?Li different
ways, we get

) (S e po
Pl = (=)
n
which completes the proof. a

Corollary 6.

IZS,_i|*

|ISn_i|k71
|ZS,.|*

()™ 2 Py 2 = ()"

Proof. This follows from Proposition 8 and the obvious inequality 1 > PO >

kn—i =

_1
[ZSn—i|" |

Corollary 7. Letn andi > 0 be fixed. Then klim PIE?L =0.
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Proof. Using Corollary 6 and Lemma 1(2) we get

P S (|IS§ )

( n—i+ 1|8l ___(n—1)|zsn2|_n-|zsn1|>"‘
|ISn z+1| |ISn71| |ISTL|
- ((n—z—i—l) on-1 mn >k_i<n—i+1>k
[n]; \(n—1i+2) n  n+l [n); \ n+1
: k
But lim =N (LM> = 0, which completes the proof. O
k—00 [n]1 n-+1

Corollary 8. Let n be fired. Then lim P,EOTB =1.
k—oo

Proof. Since z; ...z € ZS, we get Z P(Z R,; =1. Since R,y = 1, we obtain the

=0
equality P,SQ =1 —Z P,EZZLRM From Corollary 7 it follows that Z?:l P,EZZLRM —0
i=1
if k — o0, and hence P,SOTB — 1. O

Remark 7. Corollary 8 implies that the semigroup ZS,, is “almost nilpotent” in the
sense that for all £ big enough almost all products z; ...z of elements from ZS,
equal 0.

Corollary 9. P(n) (lg,”gk‘,:.

Proof. Follows from Proposition 8 and the fact that PIE%) =1asZS, = {0}. O

Corollary 10. For fired n and i we have

2
P = (Tl) 0 o,
Proof. Follows from Proposition 8 and Corollary 8. O

For i, j € N we denote by I(i, j) the number of partial injections from {1,2,...,i}
to {1,2,...,7}. It is obvious that I(7,7) = |ZS;|, I(¢,7) = 1(j,4), and

- E Qe

Consider the (n +1) x (n + 1)-matrix A = (4,;), 4,7 =0,1,2,...,n, where

A= ()G -t In—in—j), ifi<j,
! 0, otherwise.
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Theorem 11. For all positive integers n and k we have the following equality of
vectors

(0) (1) (n) ke :
(Pk,n7pk,n""?Pk,n) |IS |kA ! ( ,...,1)t.

Proof. We use 1nduct10n in k and note that the statement is obvious for £ = 1. Let
us now calculate PHM = Pr(x; ... x3xp41) = a, where o € IS, is a fixed element
of rank 4. It is obvious that

k+1 n ZPT .. Tpxpe1 = o and rank(xy...zp) = J).

The product z; ...z, can be arbitrary, satisfying dom(z; ...z;) D dom(e). Under
the additional assumption rank(z; ...z;) = j, we get that the product z; ...z can
have exactly (;‘:Z) (;L) j! different values, where (;‘:Z) is the total number of extensions
of dom(«) up to dom(z; . .. xzx), (?) is the number of ways to choose im(z; . ..z;) and
j! is the number of ways to construct a bijection from dom(z; . ..zx) to im(z; ... zx).

For a fixed ...y, the action of @441 on im(z ... xy) is uniquely defined, and
the action of @41 on N \ im(z;...xy) can be arbitrary with the only restriction
pe1 (N \ im(z; ... 2)) C N\ im(a). Hence for fixed z; ...z, we have exactly
I(n — j,n — 1) possibilities to choose xj.;. This implies that

. ; —1 L I(n—j,n—1)
P " = d K(zy...2p) = j) = PO ) (") p A2 LY
r(z1 ... 2p2pe = @ and rank(zy ... x) = 7) i)\ j Z5.] ,

where P(J) (" z)( )]' is the probability of the occurrence of the necessary factor

x1...7h, and %:‘2) is the probability of the occurrence of the independent nec-
essary factor xjy;.
Therefore
ZP ’I'Lj'.I(n—jﬂ?/—l _ ZP(Z
Bilin = ko \j—i)\G)" |28, IIS | & e
and hence . 1 ,
(0) (n) L (0) (n)\"
(P P = 5] A (PO P
Taking into account the inductive assumption we complete the proof. a

We remark that the matrix A is upper triangular with the positive integers
Aii = [n]i|ZS,—i| on the diagonal. Hence these numbers are the eigenvalues of
A. Furthermore, according to Lemma 1(2), we have

Aii [n]i| 28— |ZS,._i] n—i+1

= = - > — > 1,
Ai+1,i+1 [n}i+1|ISn—i—1| (” - Z)|ZSn—z‘—1| n—1

and thus all eigenvalues of A are different. Hence A has n + 1 linearly independent
eigenvectors.
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Proposition 9. The vectors

fo = (Rn,o,o, .. .,O)t’
fl - (_Rn,l,Rn_Lo,O, .. .,O)t,

fk = ((_1)kRn,k7 (_1)k71Rn—1,k—17 ) Rn—k,Ov 07 e O)t,

fo=((=1)"Rpn, (=1)" ' Ry_1n1,...,—Ri1, Rop)"
are the eigenvectors of A with eigenvalues Agyg, Ara,..., Ann respectively.

Proof. We are going to prove the statement using induction in n. For this we have
to denote the matrix A of order n+1 by A,, and the corresponding vectors fy, ..., f,
by £, ..., f\ respectively. Under this notation we have

I(n,n) | RyiI(n,n —1) . R, 1I(n,0)

An - 0 n- An71

and f{" = ((=1)F Ryl F" V)
For n = 0 we have Ay = (1) and f\”) = (1) and the statement is obvious.
Let us now assume that the statement is true for A,_;. Then

I(n,n) | RyaI(n,n—1) ...  Ru,I(n,0) (=1)*Rox
L) .
An 'fk o 0 n- An—l lsll;l)

I(n,n) - (=1)*Rpy + (RoaI(n,n = 1),..., RynI(n,0)) - £i"V

nAu_y - fY

n—1)

From the inductive assumption we get A, ; - f,fﬁ;l) =[n— 1]k,1|ISn,k|f,5_1

and hence nA,_; - f,Ei;l) = [n]k|ISn_k|f,Ezl).
The only thing, which is left to complete the proof, is to show the following
equality for the first coordinate:
k .
> Ruil(n,n—i)- (=1)* " Ry_ijey = [nliI(n — kyn— k) - (=1)*Rog. (7)

=0

But we have R, ; - Ry—i5—i = Rux (]f), and hence, canceling R, - (—1)¥, we reduce
(7) to the following equality:

Z(—ni (’”) I(n,n —i) = [n)I(n — k,n — k). (8)
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To prove (8) we count the number F of those a@ € ZS,, for which dom(a) D
{1,2,...,k}, in two different ways. The number of those a € ZS,, which are not
defined in ai,...,a;, equals I(n —i,n). Therefore, using the principle of inclusion

and exclusion, we get
k
Ak
F = -1y I —1).
S0y () ttnn =

On the other hand, if a € ZS, satisfies {1,2,...,k} C dom(a), we can choose the
values for o on the elements from {1,2,...,k} in (}) - k! = [n]; different ways. If
the action of « on {1,2,...,k} is already defined, the extension to N is naturally
identified with a partial injection on N\ {1,2,...,k}, and thus can be performed in
I(n — k,n — k) different ways. Hence F = [n]y - I(n — k,n — k), which completes the
proof of (8) and of the proposition. O

Proposition 10.

n

> (DHZSni| - Roge = 1.

k=0

Proof. As we have seen in the proof of Proposition 9, the number of those o € ZS,,,
which are defined in the given k points, equals [n]y - I(n — k,n — k) = [n]x - |ZSn—k|-
Hence, by the principle of inclusion and exclusion, the number of those elements in
ZS8,,, which are not defined in any point, equals

S (1) (Z) AIZS bl = 3 (1) Rk [ZS,i.

k=0 k=0

On the other hand, ZS,, contains exactly one element, 0, which is not defined in any

point. O
Corollary 11. The vector (1,1,...,1)" has coordinates (|ZS,|,|ZSn-1l,---,|ZS],
|ZSo|) in the basis, formed by vectors fo, f1,..., fn (see Proposition 9).

Proof. The vectors fo, f1,..., fn form a basis as eigenvectors, which correspond to
different eigenvalues for a linear operator with simple spectrum. Let T = (¢;;) be
the transformation matrix to the basis fy, fi,..., fn- For the entries of this matrix
we have:

P (_1)j7iRn—i,j—ia ifi <y,
"7 o, otherwise.

The necessary statement is now equivalent to the equality
T (|Z8.|,1ZSu-1l, - - -, |ZS1), | ZSo)) = (L, 1,..., 1),

which follows immediately from Proposition 10. |
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Note added in proofs. An alternative approach to some questions studied in the
present paper and some further results in this direction can be found in: S. Janson,
V. Magorchuk, Some remarks on the combinatorics of ZS,,, Semigroup Forum 70
(2005), no. 3, 391-405.
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