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Abstract

Let A be an abelian group with non-identity elements A*. A graph is
A-magic if it has an edge-labeling by elements of A* which induces a
constant vertex labeling of the graph. In this paper we determine, for
certain classes of triominoes and polyominoes, for which values of k£ > 2
the graphs are Zj-magic.

1 Introduction

Let G = (V,E) be a connected graph without multiple edges or loops. For any
abelian group A (written additively), let A* = A — {0}. A function f : E(G) — A*
is called a labeling of G. Any labeling induces a map f+ : V(G) — A, defined by
fT(v) = Zf(u,v) where (u,v) € E(G). If there exists a labeling f which induces
a constant label ¢ on V(G), we say that f is an A-magic labeling and that G is an
A-magic graph with index c. We denote by Zj, the group of integers (mod k). In
this paper, we are interested in determining for which values of k& > 2 a graph is
Zy-magic. The set {k : G is Zy-magic, k > 2} is called the integer-magic spectrum
of a graph G and is denoted by IM(G).

Z-magic graphs were considered by Stanley [19, 20], where he pointed out that
the theory of magic labelings could be studied in the general context of linear homo-
geneous diophantine equations. They were also considered in [1, 16]. Doob [2, 3, 4]
and others [9, 12, 13, 15] have studied A-magic graphs and Z;-magic graphs were
investigated in [6, 8, 10, 11, 14].
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Within the mathematical literature, various definitions of magic graphs have been
introduced. The original concept of an A-magic graph is due to J. Sedlacek [17, 18],
who defined it to be a graph with real-valued edge labeling such that (i) distinct
edges have distinct nonnegative labels, and (ii) the sum of the labels of the edges
incident to a particular vertex is the same for all vertices. Previously, Kotzig and
Rosa [7] had introduced yet another definition of a magic graph. Over the years,
there has been great research interest in graph labeling problems. In fact, many
different graph labelings have been introduced into the literature. They include
edge-magicness, vertex-magicness, anti-magicness as well as countless others. The
interested reader is directed to Wallis’ [21] recent monograph on magic graphs and
to Gallian’s [5] excellent dynamic survey of graph labelings.

2 Tessellation graphs

A tessellation is a tiling of the plane, using polygons. If a tessellation consists
of congruent polygons, it is a regular tessellation. Thus, there are only three reg-
ular tessellations, utilizing equilateral triangles, squares, or regular hexagons. A
tessellation graph is a finite subgraph of a regular tessellation, consisting of a grid
of congruent polygons where each polygon shares at least one common edge with
another.

Definition. A region € in the plane is n-connected if the complement of  has
exactly n components.

Definition. For n > 2, an n-tessellation graph is a graph which tessellates an n-
connected region in the plane.

For example, a 1-tessellation graph tessellates a simply-connected, bounded region
in the plane. The reader should note the following remarks.
Remarks. Let G be an n-tessellation graph, n > 2.
(i) In G, the boundaries of a hole and the outer boundary of G have no vertices in
common.
(ii) If G is an n-tessellation graph with n > 3, then the boundaries of any two holes
have no vertices in common.

In this paper, we examine the integer-magic spectra of tessellation graphs con-
structed from equilateral triangles and squares, respectively. Lee and Wang [14] have
analyzed the integer-magic spectrum of the honeycomb graphs.

3 Triominoes

Consider a tessellation of the plane, using congruent equilateral triangles. Two tri-
angles are connected if they share a common edge. Let T be a connected collection
of triangles. Then, T is a connected planar graph, consisting of a grid of C3’s with
each (3 sharing at least one common edge with another. A connected collection
of triangles is called a triomino. T is called an n-triomino if it is an n-tessellation
graph.
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Figure 1. Two different triominoes.

Definition. A graph G is outerplanar if it can be embedded in the plane so that
every vertex of G lies on the boundary of the exterior region.

We first analyze the integer-magic spectra of a few classes of 1-triominoes. The
following two theorems which were proved in other papers will be needed. In their
study of maximal outerplanar graphs, Lee, Ho and Low [8] showed the following
result:

Theorem A. FEvery outerplanar 1-triomino is Zs,-magic, for all k > 2.

While studying eulerian graphs, Low and Lee [15] showed the following theorem:
Theorem B. Every eulerian graph is Zs,-magic, for all k > 1.

We begin with the following definition.

Definition. A snake of length n is a 1-triomino, formed by n equilateral triangles
in the following way:

Yavg Waval

Snake of length 2 Snake of length 3
Figure 2.

Remarks.

(i) The only snake which is Zy-magic is the one of length 1.

(ii) A snake of length 1 has integer-magic spectrum N — {1}.

(iii) In [8], it was shown that a snake of length 2 has integer-magic spectrum 2N —{2}.
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Theorem 3. Let S be a snake of length n, n > 3. Then, IM(S) = N — {1, 2}.

Proof. Since the vertices of S are not of the same parity, S is not Zy-magic. Also,
since S is outerplanar, by Theorem A we have that 2N — {2} C IM(S). In analyzing
the rest of IM(S), we consider the possible cases.

CASE 1 Suppose n is odd. The following diagram gives a Zaj1-magic labeling,

k>1,for S:
s 2ki jzk
1

CASE 2 Suppose n is even and n = 0 (mod 4). The following diagrams give
Zsy1-magic labelings, k£ > 1, for S:

O 2
2

1 2 2

Figure 3.

1 2 1 2

Zs-magm labeling ZQK”—magic labeling, k=2,3,.

Figure 4.

CASE 3 Suppose n is even and n = 2 (mod 4). We first illustrate a Zay41-magic
labeling, £ > 1, for a snake of length 6.

22K+ ]—maglc labeling, k=1,2,..

Figure 5.

Note that the induced vertex labeling is 0. For snakes of length 10, 14, 18, ..., we
obtain Zsj1-magic labelings, k > 1, by attaching snakes of length 4 to this particular
snake of length 6. The edges which are identified with each other have a new labeling,
namely the sum of the original labelings. The induced vertex labeling is 0 and none of
the edges are labeled 0. The following diagrams illustrate the Zy41-magic labelings:
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i 2 1 2 1
2ol
2K 4|< 2k 2 2 2 2 2 2
YRYRF A + o
1 1 2 1 2 1 2

-magic labeling, k=1
Eaca M8 9

1 k 1 k

22K+ W—mag\c labeling, k=23 ..

Figure 6.
d

Definition. A pyramid of height n is a 1-triomino, formed by layering n snakes in

the following way:

Pyramid of height 2 Pyramid of height 3

Figure 7.

The reader should note the following observations.
Observations. Let P be a pyramid of height n, n > 1.
(i) Every layer of P is a snake of odd length.

(ii) The base layer of P is a snake of length 2n — 1.

(iii) P is an eulerian graph.

(iv) P has an odd number of edges if and only if n =1 or 2 (mod 4).

(v) f n =1 (mod 4) and n > 1, then the top n — 1 layers of P form an eulerian
pyramid having an even number of edges.

(vi) If n = 2 (mod 4) and n > 2, then the top n — 2 layers of P form an eulerian
pyramid having an even number of edges.

(vii) If n = 1, then IM(P) = N — {1}.
Theorem 4. Let P be a pyramid of height 2. Then, IM(P) = N — {1, 3}.

Proof. Since P is eulerian, Theorem B implies that 2N C IM(P). It is straight-
forward to show via an indirect proof, that P is not Zs-magic. For brevity, we will
omit this particular detail. The following diagram illustrates a Zy;41-magic labeling,
k > 2, for P:
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Figure 8.

O

Theorem 5. Let P be a pyramid of height n, n > 3. If n = 0 or 3 (mod 4), then
IM(P) = N — {1}. Otherwise, {2,4,5,6,...} CIM(P).

Proof. Since P is eulerian, Theorem B implies that 2N C IM(P). To analyze the
rest of IM(P), we consider the possible cases.

CASE 1 Suppose n = 0 or 3 (mod 4). Then, P is an eulerian graph with an
even number of edges. Let ejeses--- ey, be an eulerian circuit, starting and ending
at vertex v. The following labeling scheme will give an Zs;.1-magic labeling of P,
k>1:

1, if ¢ is odd.
fle) = {Qk, if 7 is even.

The induced vertex labeling is 0. Thus, IM(P) = N — {1}.

CASE 2 Suppose n = 1 (mod 4). Note that P can be formed by attaching a snake
of length 2n — 1 to a pyramid of height n — 1. We obtain a Zy;,;-magic labeling
of P, k > 2, by labeling these two components individually and then performing
the attachment. By observation (v), the top n — 1 layers of P form an eulerian
graph with an even number of edges. Label this pyramid of height n — 1, using the
labeling scheme described in CASE 1. Now, label the snake of length 2n — 1, using
the scheme described in the proof of Theorem 3. Both Z,;;-magic labelings, £ > 1,
have induced vertex labeling 0. The bottom edges of the pyramid of height n — 1
are labeled with either 1 or 2k. The top edges of the snake of length 2n — 1 are
labeled with 2. By attaching the components together, each of the identified edges
has a new labeling, namely the sum of the respective original ones. We now have a
Zyj41-magic labeling of P, k > 2. Thus, {2,4,5,6,...} C IM(P).

CASE 3 Suppose n = 2 (mod 4). Note that P can be formed by attaching two
snakes in succession to a pyramid of height n — 2. We obtain a Zy;+;-magic labeling
of P, k > 2, by labeling these three components individually and then performing the
attachments. By observation (vi), the top n — 2 layers of P form an eulerian graph
with an even number of edges. Label this pyramid of height n — 2, using the labeling
scheme described in CASE 1. Now, label the snakes of lengths 2n — 3 and 2n — 1,
using the scheme described in the proof of Theorem 3. As in CASE 2, attaching the
snake of length 2n — 3 to the pyramid of height n — 2 yields a Zy;1;-magic labeling,
k > 2, of a pyramid of height n — 1. In this labeling, note that the bottom edges
of the pyramid of height n — 1 are labeled with 1 or 2. In similar fashion, we now
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attach the labeled snake of length 2n — 1 to obtain a Zyyi-magic labeling, £ > 2, of
P. Thus, {2,4,5,6,...} CIM(P).
d

Note that in general, the Z3-magic case has not been proven to be inside the integer-
magic spectrum, when n = 1 or 2 (mod 4). However, we have the additional result
for n = 5.

Theorem 6. Let P be a pyramid of height 5. Then, IM(P) = N — {1}.

Proof. Since P is eulerian, Theorem B implies that 2N C IM(P). The following
diagram gives a Zsyy1-magic labeling, £ > 1, for P.

2k

Ly
1 1
2& KA e B9y,
1 z - 2

ZQKH—maglc labeling, k=1,2,..

Figure 9.
O

Let us now focus on the integer-magic spectra of more general triominoes. We
begin with the following definition, which will be used to construct a specific type of
triomino.

Definition. A diamond is a triomino, consisting of two equilateral triangles.

Theorem 7. Let T be a 1-triomino, constructed by tiling diamonds. Then for k > 2,
T has a Zs,-magic labeling with induced vertex labeling 0. Furthermore, this labeling
labels the interior edges of T with k and the boundary edges of T with 1,k—1,k+1,
or 2k — 1.

Proof. We induct on the number of diamonds n used to tile T.
(ANCHOR CASE) If n = 1, then T can be labeled in the following way:
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Figure 10. Fundamental labeling of a diamond.

This particular labeling of the diamond will be used throughout the proof. We call
this the fundamental labeling of a diamond.

(INDUCTION HYPOTHESIS) Assume that any 1-triomino which can be tiled
using n—1 diamonds has a Zy;-magic labeling with induced vertex labeling 0, in which
the interior edges are labeled k and the boundary edges are labeled 1,k — 1,k + 1,
or 2k — 1.

Now, let T be a 1-triomino which can be tiled with n diamonds. Thus, 7" can be
constructed by adjoining a diamond D,, to a 1-triomino T arising from the tiling of
n — 1 diamonds. Since T is a 1-triomino, the adjoining of D, to T} is accomplished
by identifying one, two, or three edges (and their respective vertices) of D, and
T,.. By the induction hypothesis, T, has a Zy;-magic labeling with induced vertex
labeling 0, in which the interior edges are labeled & and the boundary edges are
labeled 1,k — 1,k + 1, or 2k — 1. For k > 2, we now construct a Zy,-magic labeling
of T with these properties.

In adjoining D,, to Ty, one of four possible cases can occur:

1. Identifying exactly one edge of D, with a labeled edge of T.

2. Identifying two edges of D,, with two labeled edges of T, as shown in Fig. (ii).
3. Identifying two edges of D,, with two labeled edges of T, as shown in Fig. (iii).
4. Identifying three edges of D,, with three labeled edges of T, as shown in Fig. (iv).

Figure {ii} Figure (il

Figure 11.
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Figure (iv)

Figure 12.

We will label T" according to the following scheme:

CASE (i) Let €} be the labeled edge of T, which is to be identified with an edge
of D,. If e = 1, adjoin D, to T, by identifying the labeled edge £ — 1 from the
fundamental labeling of D,, to T, and adding the two labels. This gives a Zs,-magic
labeling of T" with induced vertex labeling 0, in which the interior edges are labeled
k and the boundary edges are labeled 1,k — 1,k + 1, or 2k — 1. In the cases where
e} =k—1,el =k+1ore] =2k —1, a Zy-magic labeling of T" with the desired
properties can be obtained in a similar manner. An example is illustrated in Figure
13.

Figure 13.

CASE (ii) Let e} and e} be the two labeled edges of T, which are to be identified
with two edges of D,. Then, we have the following labeled configuration:
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Figure 14.

Thus, k+k+k+ef+e; =0 (mod 2k). If ef =1, then e =k — 1. If e] =k — 1,
then el =1. If e] =2k — 1, then e} =k + 1. If e] = k+ 1, then e; = 2k — 1. Thus
for k > 2, we can use the fundamental labeling of D,, and adjoin D, to T to give a
Zy-magic labeling of T'. Furthermore, this labeling has an induced vertex labeling of
0, the interior edges are labeled k and the boundary edges are labeled 1,k — 1,k +1,
or 2k — 1. An example is shown in Figure 15.

k+1

2k -1

Figure 15.

CASE (iii) Let ¢} and e} be the two labeled edges of T, which are to be identified
with two edges of D,,. Then, we have the following labeled configuration:

Figure 16.

Thus, k+k+k+Ek+ej+e; =0 (mod 2k). If e =1, then e; =2k —1. If ] = 2k — 1,
then ey =1. If e =k +1,then el =k —1. If e =k — 1, then e = k+ 1. Thus
for k > 2, we can use the fundamental labeling of D, and adjoin D, to T, to give a
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Zsr-magic labeling of T'. Furthermore, this labeling has an induced vertex labeling of
0, the interior edges are labeled k and the boundary edges are labeled 1,k — 1,k +1,
or 2k — 1. An example is shown in Figure 17.

Figure 17.

CASE (iv) Let e}, e; and e} be the three labeled edges of T, which are to be
identified with three edges of D,,. Then, we have the following labeled configuration:

Figure 18.

Thus, k+k+k+k+ef +es =0 (mod 2k) and k+ k + &k + €5 + e5 = 0 (mod
2k). If et =1, then e} =2k — 1l and e} = k+ 1. If ¢; = 2k — 1, then e} = 1 and
es=k—1.Ife;=k+1,thene;=k—1landei =1 Ifef=k—1,thene;=k+1
and ej = 2k — 1. Thus for £ > 2, we can use the fundamental labeling of D,, and
adjoin D, to T, to give a Zy-magic labeling of T'. Furthermore, this labeling has an
induced vertex labeling of 0, the interior edges are labeled k and the boundary edges
are labeled 1,k — 1,k + 1, or 2k — 1. An example is shown in Figure 19.
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2k-1

Figure 19.
This finishes the induction proof. a

Corollary 1. Let T be a I1-triomino, constructed by tiling diamonds. If every vertex
of T has the same parity, then 2N C IM(T). Otherwise, 2N — {2} C IM(T).

One should note that the integer-magic spectrum of 1-triominoes constructed by
tiling diamonds can sometimes contain more than just 2N — {2}. For example, the
integer-magic spectrum of K; + Ps is N — {1,2,3}.

Theorem 8. Let T be an n-triomino, n > 2, constructed by tiling diamonds. Fur-
thermore, suppose that each hole in T can be tessellated with diamonds. If every
vertex of T has the same parity, then 2N C IM(T). Otherwise, 2N — {2} C IM(T).

Proof. Clearly, if every vertex of T has the same parity, then T is Z,-magic. Let
k > 2. We wish to find a Zs,-magic labeling of T. Now, suppose that 11,75, ..., 11
denote the holes in T. For each hole T}, there is an associated 1l-triomino T7,
obtained by tessellating 7; with diamonds. Also, let T* be the 1l-triomino ob-
tained from T, by filling in the holes T; with diamonds. Thus, V(T) = V(T*) —
Uj{interior vertices of T} and E(T') = E(T™*) — Uj;{interior edges of T }.

From Theorem 7, there are Zs;-magic labelings of 7 and each of the T’ in which
the internal edges of T and 17 are labeled k, with the vertices having an induced
labeling 0.

Now, overlay the labeled T} onto the labeled T™, by adding the values of the
respective edges. This gives a new labeling of 7*. In particular, this overlaying
process causes the internal edges of T7 to be labeled k + k, which is congruent to 0
(mod 2k). Also, the boundary edges of the T’ are now labeled with (2k — 1) + &,
14k, (k+1)+k, or (k—1)+ k. Note that none of these are congruent to 0 (mod
2k), k> 2.

In this new labeling of T, delete all edges which are labeled 0 as well as any
disconnected vertices. The resulting labeled graph will yield a Zy;-magic labeling of
T, for k > 2. This labeling has magic index 0. 0l

Figure 20 illustrates the overlaying of labeled T} onto labeled T, for a 2-triomino
T. For the sake of clarity, only the relevant edges have been labeled.
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Figure 20. A Z,-magic labeling, obtained by overlaying process.

4 Polyominoes

A cell is the boundary of a unit square (= C4) in the zy-plane, where the vertices
of the square are at lattice points. Two cells are connected if they share a common
edge. Let S be a connected collection of connected cells. Thus, S can be viewed as
a connected planar graph, consisting of a grid of Cy’s with each C, sharing at least
one common edge with another. A connected collection of connected cells is called
a polyomino.

Figure 21. Two different four—cell polyominoes.

In this section, we examine the integer-magic spectrum of polyominoes.
Lemma 1. Ifc € 2N and 2k { (5 + k), then 2k 1 (5 — k).

Theorem 9. For every outerplanar 1-polyomino P, there exists a Zap-magic labeling
having index ¢, where ¢ € 2N, 2kt §, and 2k { (5 + k).

Proof. In P, let Cy be a cell which has a vertex of degree two and label all of its
edges with £. This gives a Zy,-magic labeling of Cy, of index c.

For each cell C; adjacent to Co, let €} denote the common edge between C; and
Cy. Now, perform the following labeling scheme on each Cj:
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CASE 1 Suppose e} is labeled . In this case, label the unlabeled edges of C; and
re-label ¢} as described in Figure A.

CASE 2 Suppose €] is labeled $+ k. In this case, label the unlabeled edges of C;
and re-label e} as described in Figure B.

CASE 3 Suppose e; is labeled § — k. In this case, label the unlabeled edges of C;

and re-label ¢; as described in Figure C.

(c/2) (c/2)

Figure A. Figure B. Figure C.

Figure 22.

Notice that in all of these cases, none of the edges have been labeled 0. This follows
from the hypothesis and Lemma 1. Furthermore, the subgraph (comprised of Cy and
the adjacent cells C;) has an induced vertex labeling of c.

Since P is an outerplanar 1-polyomino, we can continue to perform this labeling
scheme on cells adjacent to labeled cells Cj, etc..., until P has been completely
labeled. The final labeling will be a Zy,-magic labeling with index c. O

Theorem 10. Let P be an n-polyomino, n > 1. If every vertex of P has the same
parity, then IM(P) = N — {1}. Otherwise, IM(P) = N — {1,2}.

Proof. Clearly, if every vertex of P has the same parity, then P is Z,-magic. In P,
let Cy be a cell which has a vertex of degree two. Label the edges of Cy as found in
Figure 23. This gives a Z;-magic labeling (k > 3) for Cj.

Figure 23.

Now, perform the following labeling scheme for all cells C; adjacent to Cl:
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A.. Label all the respective unlabeled edges e; in the same way as described in Figure
23.
B. Replace each previously labeled edge e; (having label f(e;)) in C; with the new
label 2 - f(e;).
Observe that labeling the adjacent cells C; in this way preserves the induced vertex
labeling of 0 on the vertices. Since f(e;) = 1 or k — 1, we have that 2 f(e;) # 0
(mod k), for k > 3.

Continue this labeling scheme on cells adjacent to cells C;, etc..., until P has
been completely labeled. The final labeling will be a Z,—magic labeling (k > 3) with
an induced vertex labeling of 0. a

Figure 24 gives a few examples which illustrate Theorem 10.

Figure 24. Two examples of a Z;-magic labeling, k& > 3.
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