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Abstract

Characterisations of interval graphs, comparability graphs, co-compara-
bility graphs, permutation graphs, and split graphs in terms of linear
orderings of the vertex set are presented. As an application, it is proved
that interval graphs, co-comparability graphs, AT-free graphs, and split
graphs have bandwidth bounded by their maximum degree.

1 Introduction

We consider finite, simple and undirected graphs G with vertex set V(G), edge set
E(G), and maximum degree A(G). The complement of G is the graph G with
vertex set V(@) and edge set {vw : v,w € V(G),vw ¢ E(G)}. A vertex ordering
of G is a total order (v, vs,...,v,) of V(G). Let S be a finite family of sets. The
intersection graph of S has vertex set S and edge set {AB : A,B € S,AN B # (}.
This paper presents characterisations of a number of popular intersection graphs in
terms of vertex orderings. In particular, we consider interval graphs in Section 2,
comparability and co-comparability graphs in Section 3, AT-free graphs in Section 4,
and chordal graphs in Section 5.

In a vertex ordering (vy,vs, ... ,v,) of a graph G, the width of an edge v,v; € E(G)
is |i—j|. The maximum width of an edge is the width of the ordering. The bandwidth
of G is the minimum width of a vertex ordering of G. Bandwidth is a ubiquitous
concept with numerous applications (see [2]). Obviously the bandwidth of G is
at least %A(G). As an application of our results, we prove upper bounds on the
bandwidth of many intersection graphs G in terms of A(G).
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2 Interval Graphs

An interval graph is the intersection graph of a finite set of closed intervals in R.
Jamison and Laskar [12] (and later Olariu [18]) characterised interval graphs as
follows.

Theorem 1 ([12]). A graph G is an interval graph if and only if G has a vertex
ordering (vy,v, . ..,v,) such that

Vi<j<k, vu, € E(G) = VUj € E(G) . (1)

A similar result by Gilmore and Hoffman [9] states that G is an interval graph if
and only if there is an ordering of the maximal cliques of G such that for each vertex
v, the maximal cliques containing v appear consecutively.

Theorem 1 implies the following result of Fomin and Golovach [7].

Corollary 1 ([7]). Every interval graph G has bandwidth at most A(G).

Proof. In the vertex ordering (vy,vs, ..., v,) from Theorem 1, the width of an edge
vivg € E(GQ) is |[{vv; € E(G) 11 < j < k}| < deg(v;) < A(G). O

A proper interval graph is the intersection graph of a finite set S of closed intervals
in R such that A ¢ B for all A,B € S§. The following characterisation is due to
Jamison and Laskar [12] (and later Looges and Olariu [17]).

Theorem 2 ([12]). A graph G is a proper interval graph if and only if G has a
vertex ordering (v, va, ..., v,) such that,

Vi< j<k, v € E(G) = vv; € E(G) AN vju, € E(G) . (2)

It is easily seen that the bandwidth of a proper interval graph is one less than the
maximum clique size. Moreover, Kaplan and Shamir [13] proved that the bandwidth
of any graph G equals the minimum, taken over all proper interval supergraphs G’
of G, of the bandwidth of G'.

Note that Hell and Huang [11] recently characterised the ‘interval bigraphs’ in
terms of the existence of vertex orderings that avoid certain forbidden patterns.

3 Comparability Graphs

Let (P,=) be a poset. The comparability graph of (P, =) has vertex set P, and
distinct elements are adjacent if and only if they are comparable under <. We have
the following well-known characterisation of comparability graphs.

Theorem 3. The following are equivalent for a graph G:
(a) G is a comparability graph,
(b) G has a vertex ordering (vy,vs, .. .,v,) such that,

Vi< j<k, vv; € E(G) N vju, € E(G) = vu, € E(G) . (3)
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Proof. Let G be the comparability graph of a poset (V(G), <). A linear extension
of < satisfies (3). Given a vertex ordering that satisfies (3), define v; < v; whenever
vv; € E(G) and ¢ < j. Thus (V(G),=) is a poset, and G is a comparability
graph. O

A co-comparability graph is a complement of a comparability graph. As illustrated
in Figure 1, a function diagram is a set {¢; : 1 < i < n}, where each ¢; is a curve
{(z, fi(z)) : 0 < & < 1} for some function f; : [0,1] = R. If each ¢; is a line segment
we say {¢;: 1 <i < n}is linear.

Figure 1: A vertex ordering of the intersection graph of a function diagram.

Theorem 4. The following are equivalent for a graph G:
(a) G is a co-comparability graph,

(b) G is the intersection graph of a function diagram, and
(c) G has a vertex ordering (vy,vs, ..., v,) such that,

Vi< j<k, v € E(G) = vv; € E(G) V vju, € E(G) . (4)

Proof. Kratochvil et al. [16] and Golumbic et al. [10] independently proved that (a)
and (b) are equivalent.

We now prove that (c) implies (a). Suppose that G has a vertex ordering
(v1,v2, .. .,vp) satisfying (4). Define v; < v; if i < j and vv; € E(G). Obviously <
is antisymmetric. Suppose v; < v; and v; < v;. Then ¢ < k and vvy € E(G), as
otherwise (4) fails. That is, v; < v;. Thus < is transitive, and (V(G), X) is a poset,
whose comparability graph is G. Therefore G is a co-comparability graph.

We now prove that (b) implies (c). Let G be the intersection graph of a function
diagram {¢; : 1 <4 < n} with corresponding functions {f; : 1 <i < n}. Re-index so
that f;(0) < fi41(0) for all 1 <4 < n — 1. Associate a vertex v; with each function
fi- Consider an edge vyvy, € E(G) and a vertex v; with ¢ < j < k. There is a region
S bounded by ¢;, ¢, and the line X = 0, such that ¢; intersects the closed interior
of S and the closed exterior of S. Thus c; intersects the boundary of S. Since f;
is a function on [0, 1], ¢; intersects the boundary of S at a point on ¢; or ¢;. Thus
ciNecj £ 0orejNe, # 0. Hence vu, € E(G) or vyur € E(G). That is, the vertex
ordering (vy,vs,...,v,) satisfies (4). Note that we could have ordered the vertices
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with respect to any fixed value of zo € [0, 1], and in general, there are many vertex
orderings that satisfy (4). O

Corollary 2. Every co-comparability graph G has bandwidth at most 2A(G) —

Proof. In the vertex ordering (vy,vs,...,v,) from Theorem 4, the width of an edge
vivy € E(G) is at most |[{v,v; € E(G) : i < j < k}|+ |{vjur € E(G) 11 < j <
E} 41 < (deg(v;) — 1) + (deg(vg) — 1) + 1 < 2A(G) — 1. 0

It is interesting to ask whether Corollary 2 is tight. It is easily seen that the
complete bipartite graph K, ,, which is a co-comparability graph with maximum
degree n, has bandwidth 3n/2.

Let 7 be a permutation of {1,2,...,n}. Let 77!(i) denote the position of 7 in =.
The permutation graph associated with 7 has vertex set {vq, v, ..., v, } and edge set
{v; : (i — j)(7=1(i) = 771(j)) < 0}. The following characterisations of permutation
graphs can be derived from results of Dushnik and Miller [4] and Baker et al. [1].
Part (e) is proved as in Theorems 3 and 4.

Theorem 5 ([1, 4]). The following are equivalent for a graph G:

a) G is a permutation graph,

b) G is the intersection graph of a linear function diagram,

c) G is a comparability graph and a co-comparability graph,

d) G is the comparability graph of a two-dimensional poset,

e) G has a vertex ordering that simultaneously satisfies (3) and (4).

(
(
(
(
(

4 AT-free Graphs

An asteroidal triple in a graph consists of an independent set of three vertices such
that each pair is joined by a path that avoids the neighbourhood of the third. A
graph is asteroidal triple-free (AT-free) if it contains no asteroidal triples.

Lemma 1. Every AT-free graph G has bandwidth at most 3A(G).

Proof. A caterpillar is a tree for which a path (called the spine) is obtained by
deleting all the leaves. Let (v, vs, ..., vn) be the spine of a caterpillar 7. The vertex
ordering of T obtained by inserting the leaves adjacent to each v; immediately after
v; has bandwidth at most A(T).

Kloks et al. [15] proved that every (connected) AT-free graph G has a spanning
caterpillar subgraph T, and adjacent vertices in G are at distance at most four in 7.
Moreover, for any edge vw € E(G) with v and w at distance four in T', both v and
w are leaves of T'. Consider the above vertex ordering of T' to be a vertex ordering
of G. The bandwidth is at most 3A(T') < 3A(G). O
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5 Chordal Graphs

A chord of a cycle C is an edge not in C' connecting two vertices in C. A graph is
chordal if every induced cycle on at least four vertices has at least one chord. The
following famous characterisation of chordal graphs is due to Dirac [3], Fulkerson
and Gross [8], and Rose [19].

Theorem 6 ([3, 8, 19]). The following are equivalent for a graph G:
(a) G is chordal,

(b) G is the intersection graph of subtrees of a tree, and

(c) G has a vertex ordering (vy,vs, ..., v,) such that,

Vi<j<k, Vv € E(G) N vivg € E(G) = Vv € E(G) . (5)

A vertex ordering that satisfies (5) is called a perfect elimination vertex ordering.

A chord zy in an even cycle C is odd if the distance in C between z and y is
odd. A graph is strongly chordal if it is chordal and every even cycle on at least six
vertices has an odd chord. Farber [5] characterised the strongly chordal graphs as
follows.

Theorem 7 ([5]). The following are equivalent for a graph G:
(a) G is strongly chordal,
(c) G has a perfect elimination vertex ordering (vy,vs, ..., v,) such that,

Vi<j<k</{ v, € E(G) AN vy € E(G) N vju, € E(G) = vju € E(G) .

It is not possible to bound the bandwidth of every chordal or every strongly
chordal graph G in terms of A(G). For example, the bandwidth of the complete
binary tree on n vertices is = n/logn [20].

A graph G is a split graph it V(G) = K U I, where K induces a complete graph
of G, and I is an independent set of G.

Theorem 8. The following are equivalent for a graph G:
(a) G is a split graph,
(b) G is chordal and G is chordal,

(c) G has a vertex ordering (v1,v2, ..., v,) simultaneously satisfying (5) and
Vi<j<k, v € E(G) = vjuy € E(G) V vy, € E(G) , (6)
(d) G has a vertex ordering (vy,vs, .. .,vy,) such that,
Vi<j<k, v € E(G) = vju, € E(G) . (7)

Proof. Féldes and Hammer [6] proved that (a) and (b) are equivalent.

Observe that (d) implies (c) trivially. We now prove that (a) implies (d). Let G be
a split graph with V(G) = K U I, where K induces a complete subgraph and [ is an
independent set. Let m = |I|. Consider a vertex ordering (vy,vs, ..., v,) of G where
I=A{vi,ve,...,vn} and K = {vpms1,Vms2,.-.,Un}. Suppose that 1 <i<j<k<n
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and v;v; € E(G). There is no edge with both endpoints in I. Thus j > m + 1, and
both vj, vy € K. Hence vju, € E(G), and (v1,vs,. . .,v,) satisfies (7).

It remains to prove that (c) implies (b). Let (vy,vs,...,v,) be a vertex ordering
of a graph G satistying (5) and (6). By Theorem 6, G is chordal. Equation (6) is
equivalent to:

Vi<j<k, Vv € E(G) N vvg € E(G) = VU € E(G) . (8)
That is, (vn,Vn-1, . - .,v1) is a perfect elimination vertex ordering of G. By Theorem 6,
G is chordal. 0

We have the following bounds on the bandwidth of split graphs. Note that Kloks
et al. [14] studied the computational complexity of determining the bandwidth of
split graphs.

Theorem 9. Every split graph G has bandwidth at most A(G) (A(G) + 2). For
all A > 2 there is a split graph G with A(G) = A, and G has bandwidth at least
A(G)*/12.

Proof. First we prove the upper bound. Let G be a split graph with V(G) = KU,
where K induces a complete subgraph, and I is an independent set. The result is
trivial if K = (). Now assume that K # 0. Let I, be the set of isolated vertices in G.
Consider a vertex ordering 7 in which the vertices in I, precede all other vertices.
Let I; = I\ Iy. Regardless of the order of I} U K, the bandwidth of 7 is at most
|I;| + | K| — 1. Thus it suffices to prove that |I;]| + |K| < A(G) (A(G) +2) + 1.

If I; = 0 then 7 has bandwidth A(G). Now assume that I; # (. Let a be the
average degree of vertices in I;. Thus 1 < a < |K|. For each vertex v € K, let
b, = deg(v) — |K|+ 1. That is, b, is the number of edges between v and I;. Let
b=73,cxbv/|K|. Thus a|l;| = b|K|, which implies that

b K|

L]+ K| = T+|K| =

(b+a)|K|
-
Now A(G) is at least the average degree of the vertices in K. That is, A(G) >
|K| — 1+ b. Hence
LI+ K] (0+a)|E]
(A(G)+1)* = a(lK|+b)*

Since a < |K]|,
L +IE] K]
(A@)+1)* = a(lE|+0b)

Since a > 1 and b > 0,
|L] + K] < (A(G)+1)? = AG)(A(G)+2)+1,

as required.
Now we prove the lower bound. Given A, let n = |A/2]|. Let G be the split
graph with V(@) = K U I, where K is a complete graph on n vertices, and I is an
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independent set on n(A —n + 1) vertices, such that every vertex in K is adjacent to
A —n—+1 vertices in I, and every vertex in [ is adjacent to exactly one vertex in K.
Clearly G has diameter 3, maximum degree A, and n+n(A—n+1) = n(A+n—2)
vertices. It is easily seen that every connected graph with n' vertices and diameter
d' has bandwidth at least (n’ —1)/d' [2]. Thus G has bandwidth at least

wavenon - (3B = 5
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