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Abstract

We prove that the weakly connected domination number of every tree
T on n > 3 vertices and with n; end vertices satisfies the inequality
Yw(T) > (n(T) +1—n4(T))/2 and we characterize the extremal trees.

1 Introduction

Let G = (V, E) be a connected undirected graph. The neighbourhood N¢(v) of a
vertex v € V(@) is the set of all vertices adjacent to v. For a set X C V(G), the open
neighbourhood Ng(X) is defined to be (J,cx Na(v) and the closed neighbourhood
Ng[X] = Ng(X) U X. A subset D of V(G) is dominating in G if every vertex of
V(G) — D has at least one neighbour in D. Let 7(G) be the minimum cardinality
among all dominating sets in G. The degree of a vertex v is dg(v) = |Ng(v)|. Further,
D C V(Q) is a connected dominating set in G if D is dominating and the subgraph
G[D] induced by D in G, is connected.

A dominating set D C V(G) is a weakly connected dominating set in G if the
subgraph G[D],, = (Ng[D], E,,) weakly induced by D, is connected, where E,, is the
set of all edges having at least one vertex in D. Dunbar et al. [1] define the weakly
connected domination number v,(G) of a graph G to be the minimum cardinality
among all weakly connected dominating sets in G.

The distance dg(u,v) between two vertices u and v in a connected graph G is the
length of the shortest (u — v)-path in G. For unexplained terms and symbols see [3].

Here we consider trees on at least three vertices. If T is a tree, let n = n(T)
be the order of T and let ny = n,(T) denote the number of end-vertices of T. The
set of all end-vertices in T is denoted by Q(T'). A vertex v is called a support if it is
adjacent to an end-vertex.

Let D be a weakly connected dominating set of a tree 7. We say that D has
the property F if D contains no end-vertex of T. It is obvious that in every tree
on at least three vertices exists a minimum weakly connected dominating set having
property F.
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We say that vertices x,y € D are adjacent in D if there exists an edge e = zy or
if there exists an (z — y)-path whose vertices different from z and y do not belong
to D.

It is known [4] that v(T') > (n(T) +2 — n.(T'))/3 for a tree T on n > 3 vertices.
Here we prove a similar inequality for the weakly connected domination number, i.e.
we show, that v, (1) > (n(T) + 1 —ny(7T'))/2 and we characterize the family of all
trees T for which v,(T) = (n(T) + 1 — ny(T))/2.

2 Results

We begin with the following result.
Theorem 1 IfT is a tree of order at least three, then v,(T) > (n(T)+1—n.(T))/2.

Proof. We use induction on n, the order of a tree. The result is trivial for each
tree of order 3. Let T be a tree of order n > 3 and assume that v,,(7") > (n(T") +
1 —ny(T"))/2 for each tree T" with 3 < n(T") < n — 1. Let D be a minimum weakly
connected dominating set having property F in T', let P = (v, v1, . .., v;) be a longest
path in T and let 7" = T — {v,} be the subtree of 7. Without loss of generality we
may assume, that P is chosen in such a way that dr(v;) is as large as possible. We
consider two cases: dr(vy) > 2 and dr(vi) = 2.

Case 1. If dr(vy) > 2, then D is a minimum weakly connected dominating set of 7' =
T —{vo} and thus 7, (T") = 7, (T). By induction, v,(T") > (n(T")+1-ny(T"))/2 and
therefore v, (T) > (n(T)+1—=ny(T))/2 as ny(T") = ny(T) =1 and n(T") = n(T) - 1.

Case 2. If dp(v;) = 2, then we consider two subcases: 7,(T") < 7,(T) and 7,(T") =
Yu(T).

Subcase 2.1. If 7, (T") < Yol Yu(T) — 1.
By induction, v,(T") > (n(T") + 1 — nl( "))/2 and consequently, v,,(T) > (n(T) +
1 —ny(T))/2 as ny(T") = ny(T) and n(T') = n(T) — 1.

Subcase 2.2. If 7,(T") = 7,(T), then v, ¢ D (otherwise D — {v;} would be a
weakly connected dominating set of 7" and equality 7,(T") = 7,(T) would not
hold) and I > 4. It is easy to observe that D" = D — {v;} is a minimum weakly
connected dominating set of 7" = T — {vy,v,}. We consider separately dr(vy) > 2
and dr(vy) = 2.

If dr(vy) > 2, then ny(T") = ny (T)—l,n(T") =n(T)—2and 7,(T") = 7,(T) - 1.
Then, by 1nduct10n7 Yu(T") > (n(T")+1-n1(T"))/2 and therefore 7,,(T) > (n(T)—

Yw(T'), then it is easy to observe that v, (T") =

1

If dp(vy) = 2, then, by induction, v,(T") > (n(T") + 1 — ny(T"))/2 and thus
%Eg > 1(n(T) —n(T) +1)/2 as n(T") = ny(T),n(T") = n(T) — 2 and 7,(T") =
Tw - "

Now we consider a family R which will provide the extremal trees in Theorem 1.

If T) and T3 are two trees, then let K (7%, 75) denote a tree obtained from 7; and T
by identifying one end-vertex of 77 with one end-vertex of T5.
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We say that a tree 7' belongs to the family R if and only if there exists a
sequence of stars Si,...,S, such that every star has at least three vertices and
T=K(K(...K(K(51,53),53)...),Sp) (see Fig. 1).
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Figure 1: An example of a tree from the family R
The following two observations are obvious from definition of the family R.

Observation 1 If T is a tree belonging to the family R, then the distance between
any two end-vertices of T is an even number.

Observation 2 If T belonging to the family R is a tree obtained from the stars
S1,...,Sp and if vertices cy, . . ., ¢, are centers of the stars, then the set D = {c; ..., c,}
18 a unique minimum weakly connected dominating set of T. Additionally, every non-
end vertex belonging to V(T') — D, has degree two.

Proof. Reader may use induction on p to show that D = {c;...,¢,} is a unique
minimum weakly connected dominating set of 1" belonging to the family R. ]

Now we prove the following theorem.

Theorem 2 For every tree T on n > 3 vertices is v,(T) = (n(T) — ny(T) +1)/2 if
and only if T belongs to the family R.

Proof. Let T be a tree belonging to the family R and let D be a minimum weakly
connected dominating set having property F in 7. From Observation 1 and Observa-
tion 2 it follows that for every two vertices u,v € D, the distance dy(u,v) is an even
number and the distance between any two adjacent in D vertices is exactly two. Any
two vertices adjacent in D are separated by exactly one vertex of degree two belong-
ing to V(T')—D. Thus we have n(T) = |D|+|V(T)—D| = |D|+n:(T)+(]D|-1), and
hence n(T") = ny(T) 4 27v,(T) — 1, which finally gives v, (T) = (n(T) —n,(T) +1)/2.

Now we show that if ,,(T") = (n(T") — ny(T) + 1)/2, then T belongs to the family
R. It suffices to show that v, (T) > (n(T") —ny(T') +1)/2 if T does not belong to R.

Let T be a tree not belonging to the family R. It is obvious, that T is not a
star, because every star belongs to R. Thus n > 4 and for n =4 T is a path on four
vertices and it is easy to check that v, (T) > (n(T)—ni(T)+1)/2. Assume that T has
at least five vertices and assume that v,,(T") > (n(T") —n.(T") +1)/2 for each tree T"
not belonging to the family R, where n(T") < n(T) — 1. Let P = (vg,v1,v,...,1;)
be a longest path in 7" and let D be a minimum weakly connected dominating set
satisfying property F in 7. Without loss of generality we may assume, that P is
chosen in such a way that dr(vi) is as large as possible. We consider two cases:
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dT(Ul) > 2 and dT(Ul) = 2.

Case 1. If dr(vy) > 2, then T" = T — {v,} does not belong to R and D is a minimum
weakly connected dominating set of 7". Thus we have 7,(T") = 7, (7). By induction,
Yu(T) > (n(T") + 1 — ny(T"))/2 and therefore 7,(T) > (n(T) + 1 — ny(T))/2 as
ni(T") = ny(T) = 1,n(T") = n(T) — 1.

Case 2. If dr(v,) = 2, then we consider T" = T — {uvg,v1}. Tt is easy to observe
that D — {v;} is a minimum weakly connected dominating set of 7". Thus we have
3ulT) = 3(T) ~ 1

If dr(vg) = 2, then T" ¢ R (in the other case T would belong to the family R). By
induction 7, (T") > (n(T") —n1(T") +1)/2 and hence 7,,(T) > (n(T) —ny(T) +1)/2
as ny(T") = ny(T) and n(T") = n(T) — 2.

If dr(vy) > 2, then we have ny(T") = n,(T) — 1,n(T") = n(T) — 2 and 7, (T") =
Y(T) = 1. T ¢ R, then 7,(T) = 1> (n(T) =2 —n1(T) + 1+ 1)/2, so v,(T) >
(n(T) = m(T) +2)/2 > (n(T) = na(T) +1)/2.

If 7" € R, then 7,(T") = (n(T") — ny(T") + 1)/2. Since T" € R, we have
dr(vy) > 2 (in the other case T' would belong to R). Thus 7, (T) — 1= (n(T) — 2 —
ni(T) +14+1)/2, 50 7,(T) = (n(T) —ny(T) +2)/2 > (n(T) — ny(T) + 1) /2. [

Since every connected dominating set is a weakly connected dominating set and
every weakly connected dominating set is a dominating set, we have the following
inequality chain for every tree T: v(T) < 7(T) < 7.(T). It is known [5] that
Ye(T) = n(T)—n1(T), so we also have an upper bound for v,,(T) in terms of n(T") and
n1(T). We can characterize all trees T for which the equality v, (T) = n(T) — ni(T)
holds.

Theorem 3 For a tree T on at least three vertices 1,(T) = n(T) — ni(T) if and
only if every non-end vertex of T is a support.

Proof. Let T be a tree of order n > 3 and let 7, (T) = n(T) — ni(T). Let D be
a minimum weakly connected dominating set with property F in 7. Since D has
property F and 7, (T) = n(T) — ny(T), every non-end vertex of T belongs to D.
Suppose that in T there exists a non-end vertex u which is not a support. Then
D — {u} is a weakly connected dominating set of 7', a contradiction.

Now assume that 7" is a tree in which every non-end-vertex is a support and let D
be a minimum weakly connected dominating set with property F in T'. Every support
belongs to D and no end vertex belongs to D, so |D| = n(T) — ni(T) = 1,(T). =

The bound n — n; is also an upper bound for the domination number «y. Favaron
[2] proved that y(T") < (n(T') +ny(T))/3 for every tree T on at least 3 vertices. For
trees with a great number of end vertices, i.e. for every tree T with ny(T") > (n(T))/2
we have (n(T)+ny(T))/3 > n(T) —ny(T'), so the bound n(T') —ny(T) is better than
(n(T) + ma(T)) 3
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3 Concluding remarks

From [5] and the above results it follows that (n(T") + 1 — ny(7T'))/2 < 7,(T) <
n(T)—ny(T') for every tree T on at least three vertices. The example of the caterpillar
given in Fig. 2 showes that the difference between 7, (1) and (n(T) +1 —ny(71))/2
can be arbitrarily large. It is no problem to observe that 7v,(7;) — (n(T3) + 1 —
n1(T7))/2 = 1/6 for any integer I = 0 (mod 3).
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Figure 2: Caterpillar T;
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