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Abstract

A Mendelsohn (or directed) packing triple system of order v, briefly
MPT(v) (or DPT(v)), is a pair (X,B) where X is a v-set and B is a
collection of cyclic (or transitive) triples on X such that every ordered
pair of X belongs to at most one triple of 8. An LMPT(v) (or LDPT(v))
is a large set consisting of v — 3 (or 3(v —3)) disjoint compatible MPT(v)s
(or DPT(v)s) with a 2-cycle as the common leave. In this paper, we show
that an LMPT(6k + 5) and an LDPT(6k + 5) exist for any nonnegative
integer k. Some small orders are based on the existent results of LR(9)
and LR(15).

1 Introduction

Let X be a finite set. In what follows, an ordered pair of X will always be an ordered
pair (z,y) where @ # y € X. A cyclic triple on X is a set of three ordered pairs
(z,9), (y,2), and (z,2) of X, which is denoted by (z,y,z) (or {y, z,z), or {z,z,y)).
A transitive triple on X is a set of three ordered pairs (z,y), (y,2), and (z, z) of X,
which is denoted by (z,y, 2).

A Mendelsohn (respectively, directed) packing triple system of order v, written briefly
MPT(v) (respectively, DPT(v)), is a pair (X,B) where X is a v-set and B is a
collection of cyclic (respectively, transitive) triples on X such that every ordered
pair of X belongs to at most one triple of B. An MPT(v) (respectively, DPT(v))
(X, B) is mazimum if there does not exist any MPT(v) (respectively, DPT(v)) (X, .A)
with |A| > |B|. The leave of a Mendelsohn (respectively, directed) packing triple
system (X, B) is the graph (X, E), where E consists of all the ordered pairs which
do not appear in any block of B. In particular, when v = 0,1 (mod 3), the leave of
a maximum MPT (respectively, DPT) is an empty set and the MPT (respectively,
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DPT) is a Mendelsohn (respectively, directed) packing triple system, and denoted
by MTS (respectively, DTS). It is well known that an MTS(v) exists if and only if
v=0,1(mod 3),v > 3, v # 6 [10], and a DTS(v) exists if and only if v = 0,1 (mod 3)
[4]. When v =2 (mod 3), the leave of a maximum MPT (respectively, DPT) is a 2-
cycle (001009). The existence of maximal MPT(v) is solved in [2] and the existence of
maximal DPT(v) is solved in [11]. In this paper, an MPT(v) (respectively, DPT(v))
is always assumed to be maximal.

Two packings (X, .A) and (X, B) are called disjoint if ANB = (. If two packings have
the same leave, then they are called compatible. A set of more than two packings is
called disjoint (respectively, compatible) if each pair of them is disjoint (respectively,
compatible).

Denote by My, (v) (respectively, My(v)) the maximum number of disjoint compatible
Mendelsohn (respectively, directed) packing triple systems. A large set of Mendel-
sohn (respectively, directed) packing triple systems of order v, denoted by LMPT(v)
(respectively, LDPT(v)), consists of M,,(v) MPT(v)s (respectively, My(v) DPT(v)s).
It is known that for v = 0,1 (mod 3), M,,(v) = v—2 (respectively, My(v) = 3(v—2))
and the LMPT(v) (respectively, LDPT(v)) is an LMTS(v) (respectively, LDTS(v))
in fact. It is well known that an LMTS(v) exists if and only if v = 0,1 (mod 3),v # 6
[8] and an LDTS(v) exists if and only if v = 0,1 (mod 3) [7]. For v = 2 (mod 3),
since the leaves of both an MPT(v) and a DPT(v) are 2-cycle (001005), by simple
computation we have that M,,(v) = v — 3 and My(v) = 3(v — 3).

In this paper, we shall focus on the existence of LMPT(6% + 5) and LDPT(6% + 5)
which have the 2-cycle (0coj00,) as their common leave and the following result will
be proved.

Theorem 1.1 There exist an LMPT(6k + 5) and an LDPT(6k + 5) for any non-
negative integer k.

2 Recursive Constructions for LMPT and LDPT

In this section, we shall describe a construction to obtain an LMPT from a partition-
able Mendelsohn candelabra system (PMCS) and a partitionable directed candelabra
system (PDCS).

Let v be a non-negative integer. A group divisible design (or GDD) of order v and
block size k denoted by GDD(2, k,v) is a triple (X, G, B) such that

1. X is a set of v elements (called points);

2. G = {G1,G,,...} is a collection of non-empty subsets (called groups) of X
which partition X;

3. B is a family of k-subsets of X (called blocks) such that each block intersects
any given group in at most one point;
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4. each pairs of points from two distinct groups is contained in exactly one block.

The type of the GDD is defined to be the list (|G||G € G) of group sizes.
A Mendelsohn (respectively, directed) GDD(2,3,v) is a triple (X, G, B) such that

1. X is a set of v elements (called points);

2. G = {G1,G,,...} is a collection of non-empty subsets (called groups) of X
which partition X;

3. B is a family of cyclic (respectively, transitive) triples of X (called blocks) such
that each block intersects any given group in at most one point;

4. each ordered pair from two distinct groups is contained in exactly one block.

The type of the Mendelsohn (respectively, directed) GDD is defined to be the list
(|IG||G € G) of group sizes.

Let v be a non-negative integer. A partitionable Mendelsohn (respectively, directed)
candelabra system (or PMCS (respectively, PDCS)) of order v and type (g™ : s) is a
quadruple (X, S,T, A) that satisfies the following properties:

1. X is a set of gn + s elements (called points);
2. S is a subset (called the stem of the candelabra) of X of size s;

3. I'={G1,Gs,...,G,} is a set of g-subsets (called groups or branches) of X\S,
which partition X\S;

4. A is the set of all cyclic (respectively, transitive) triples (called blocks) of X
except those cyclic (respectively, transitive) triples of SUG; for all i. It can be
partitioned into Ay, A, ..., Agn, Agnt1, - -+, Agnts—2 with the following two
properties: (i) for each group G, there are exactly g A;s (1 < ¢ < gn) such that
A; is the block set of a Mendelsohn (respectively, directed) GDD(2, 3, gn+s) of
type 19"=Y(g+ ) with GUS as the long group; (ii) for gn+1 < i < gn+s—2,
(X'\ S,G,A;) is a Mendelsohn (respectively, directed) GDD(2,3,gn) of type
g". Note that the condition (ii) is relevant only if s > 3.

In order to obtain an LMPT (respectively, LDPT) from a PMCS (respectively,
PDCS), we need a holey large set. Let X be a set of v points and let H be an
h-subset of X with h > 2. Let A; (1 < ¢ < v — 3) (respectively, (1 <i < 3(v —3))
be sets of cyclic (respectively, transitive) triples of X. (X, {A;):1 < i <wv — 3} (re-
spectively, (X, {A;) : 1 <i < 3(v—3)}) is called a holey large set of disjoint MPT(v)
(respectively, DPT(v)) on X with a hole H (denoted by HLMPT (v, h) (respectively,
HLDPT(v, h))) if A; satisty the following properties: (i) for 1 <4 < v — h (respec-
tively, 1 < i < 3(v — h)), each (X, A;) is an MPT(v) (respectively, DPT(v)) with
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the common leave of a 2-cycle (c0;005) and {ooy, 000} C H; (i) forv—h <i<v-3
(respectively, 3(v—h) < i < 3(v—3)), each (X, A;) is a Mendelsohn (respectively, di-
rected) GDD(2, 3, v) of type 1Y""h! with the long group H; (iii) (U/Z7 A)NHE) =0
(respectively, (U?Sf‘” A) N H® = (), where H(®) denotes the set of all cyclic (re-
spectively, transitive) triples of H.

Now, we are in a position to describe how to get an LMPT(v) (or an LDPT(v)] from
a PMCS (or a PDCS).

Lemma 2.1 Suppose there exists a PMCS(g" : 5). If there exist an HLMPT(g+5,5)
and an LMPT(g +5), then there is an LMPT(gn +5).

Proof: Suppose the given PMCS(¢g" : 5) (X, S,T,.A) consists of gn Mendelsohn
GDD(2,3, gn + 5)s of type 19"=Y(g + 5)! with the long group G'U S and block set
Ay,y € G and G €T, and 3 Mendelsohn GDD(2, 3, gn)s of type g™ with group set
I and block set A4;,i =1,2,3. Let S = {001,009,...,005}.

Take a group G’ € I'. For each group G € I, G # G, suppose the given HLMPT(g+
5,5) on G U S consists of ¢ MPT(g + 5)s with block sets B,(y € G) and (oco;002)
as the common leave and 2 Mendelsohn GDD(2,3, g + 5) of type 195 with the long
group S and block sets BY,i = 1, 2.

Foranyy € G, G eTl', G #G,letC, = A UB,. Forl <i <2 let( =
A; U (Uger,g2aBY).

Then, each (X,C,) is an MPT(gn + 5) with (co;002) as the leave and each C;,
A,y € G’ is the block set of a Mendelsohn GDD(2,3, gn + 5) of type 19"~ (g4 5)!

with the long group G'US. It is easy to see that these block sets are pairwise disjoint.
So, they form an HLMPT(gn + 5,9 + 5).

Further, suppose the given LMPT(g+5) on G'US consists of g+2 disjoint MPT(g+5)s
with the common leave of a 2-cycle (00100,). Denote these block sets by By (y € G')
and B;,i = 1,2 . Then, A, U B, and C; U B; are all MPT(gn + 5), and all gn + 2
MPTs form an LMPT(gn + 5). 0

Lemma 2.2 Suppose there exists a PDCS(g" : 5). If there exist a HLDPT(g+5,5)
and an LDPT(g +5), then there is an LDPT(gn + 5).

Proof: The proof is similar to the proof of Lemma 2.1. 0

To obtain the required PMCS and PDCS, we describe constructions for them from
a PCS, where PCS is introduced in [3] and plays an important in the construction
of a large set of packing on 6k + 5 points.

Let v be a non-negative integer. A partitionable candelabra system (or PCS) of order
v and type (¢" : s) is a quadruple (X, S,T', A) that satisfies the following properties:

1. X is a set of gn + s elements (called points);
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2. S is a subset (called the stem of the candelabra) of X of size s;

3. I'={G1,Gs,...,G,} is a set of g-subsets (called groups or branches) of X\S,
which partition X\S;

4. Ais the set of triples (called blocks) of X except all triples of SUG; for all i. It
can be partitioned into Ay, As, ..., Agn, Agnt1, - - -, Agnys—2 with the following
two properties: (i) for each group G, there are exactly g A;s (1 < ¢ < gn) such
that A; is the block set of a GDD(2,3,gn + s) of type 191 (g + s)! with
G U S as the long group; (ii) for gn +1 < i< gn+s—2, (X \5,G,A4;) is a
GDD(2,3, gn) of type g". Note that the condition (ii) is relevant only if s > 3.

Let (X,S,T, A) be a PCS(g"™ : s). Define
B ={(z,y,2); {z,y,2} € AAU{(z,y,2): {z,y,2} € A}.
Then (X, S,T',B) is a PMCS(g™ : s). And, define transitive triples

(w,y,z),(z,y,x) 6617 (y,z,w),(m,z,y) EBZa (z,x,y),(y,x,z) 6637

for each {z,y,2} € A. Then it is easy to see that (X,S,[',B' U B?> U B?) is a
PDCS(g™ : s).

From [5], we know that there exists a PCS(6* : 5) for any integer & > 3. Then we
can get the following results.

Lemma 2.3 There exists a PDCS(6% : 5) for any integer k > 3.
Lemma 2.4 There exists a PMCS(6% : 5) for any integer k > 3.

From the above lemmas, we easily know that the existence of HLMPT(11,5) and
LMPT(5) implies the existence of LMPT(6k +5) and the existence of HLDPT(11,5)
and LDPT(5) implies the existence of LDPT(6k + 5). These small orders will be
discussed in Section 3.

To construct required holey large sets we need an LR design. An LR design is
introduced in [9], and plays a very important role in the construction of LKTS. Here
we shall use LR designs to construct LMPT and LDPT of some small orders. A
GDD(2,3,v) of type 1” (X, G, B) is often called a Steiner triple system and denoted
by STS(v) (X,B). A STS (X, B) is resolvable if its block set B admits a partition into
parallel classes, each parallel class being a partition of the point set X. A resolvable
STS(v) is called a Kirkman triple system and is denoted by KTS(v). Let X be a
v-set; an LR design of order v (briefly an LR(v)) is a collection {(X,A4});1 < k <
(v—1)/2,7 =0,1} of KTS(v)s with the following properties:
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1. Let the resolution of Al be Ty = {A}(h);1 < h < (v—1)/2}. There is an
element in each I} , which without loss of generality, we can suppose is A%(1),

such that
(v=1)/2 (v=1)/2

U am= U 4m=4
and (X, A) is a KTS(v).

2. For any triple T = {x,y,2} C X,z #y # =, there exist k, j such that T € AJ.

Lemma 2.5 If there exists an LR(v), then there exist an HLMPT(v + 2,5) and an
HLDPT(v +2,5).

Proof: Let {(X, Ai); 1<k < (v—1)/2,j5 = 0,1} be the given LR(v). Let {001, 002}N
X = 0. We shall construct the required design on X U {oo;, 005} with (001, 005) as
the common leave.

For any 1 < k < (v — 1)/2 and each block A = {z,y,2} € A)(1), we construct an
LMPT(5) on {z,y, z,001,00;} which consists of two MPT(5)s with the block sets
B, 7 = 0,1. For each block A’ = {a',v/,2'} € A}, with A" ¢ A, we construct an
LMTS(3) on {2/,y',2'} with the block set By. Then for 1 < k < (v —1)/2 and
j = 0,1, each (UA’eAf;(h),2§h§(v—1)/2‘BA') U (UAeAi(l)Bi) is an MPT(v + 2). These
obtained v — 1 MPT (v + 2)s form an LMPT(v +2). It is easy to see that if we delete
an LMPT(5) on {x,y, 2,001,003} ({z,y,2} € A%(1)) we can get v — 3 MPT (v + 2)s
and two Mendelsohn GDD(2, 3, v+2)s of type 1v~35! which form an HLMPT(v+2, 5).
In the same way, an HLDPT(v + 2, 5) can be obtained. 0

3 Some small orders

In this section, we shall construct HLMPT(11,5), LMPT(5) and HLDPT(11,5),
LDPT(5). The 2-cycle (0oj009) is always assumed to be the common leave.

Lemma 3.1 There ezists an LMPT(5).
Proof: Take the point set X = {0,1,2,001,00,}. Let

By: <001,0,1> <1,001,2> <0,2,00; >
<OOQ,2,0> <2,002,1> <1,0,002>.

By: <1,0,00; > <2,00,1> <o001,2,0>
<0,2,000 > <1,009,2> < 009,0,1>.

Then it is easy to check that (X, B;) and (X, B;) are the required two MPTs which
form an LMPT(5). 0
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Lemma 3.2 There exists an LDPT(5).
Proof: Take the point set X = {0,1,2,001,00,}. Let

Bl : (0017071) (1,00172) (0,2,001)
(002,2,0) (2,002,1) (1,0,002).

BQ : (1,0,001) (2,00171) (001,2,0)
(0,2,002) (1,00272) (002,0, ].)
Then it is easy to check that B; and B, together generate the required six DPTs
mod 3. a

Lemma 3.3 There exist an HLMPT(v,5) and an HLDPT(v,5) for v = 11 and
v=17.

Proof: From [6, 9], there exist an LR(9) and an LR(15). By Lemma 2.5, we get the
required results. 0

4 Proof of Theorem 1.1

In this section we prove the main result stated in Theorem 1.1.

Proof of Theorem 1.1: For k = 0, 1, 2, there exists an LMPT(6k + 5) and an
LDPT(6k + 5) by Lemmas 3.1, 3.2 and 3.3. For k > 3, the result follows from
Lemmas 2.1-2.4 and Lemmas 3.2 and 3.3.
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