Large sets of disjoint directed and Mendelsohn packing triple systems on 6k + 5 points

AIHONG WU

Jingfan Middle School Suzhou 215006 China wu.aihong@163.com

Abstract

A Mendelsohn (or directed) packing triple system of order v, briefly MPT(v) (or DPT(v)), is a pair (X,\mathcal{B}) where X is a v-set and \mathcal{B} is a collection of cyclic (or transitive) triples on X such that every ordered pair of X belongs to at most one triple of \mathcal{B} . An LMPT(v) (or LDPT(v)) is a large set consisting of v-3 (or 3(v-3)) disjoint compatible MPT(v)s (or DPT(v)s) with a 2-cycle as the common leave. In this paper, we show that an LMPT(6k+5) and an LDPT(6k+5) exist for any nonnegative integer k. Some small orders are based on the existent results of LR(9) and LR(15).

1 Introduction

Let X be a finite set. In what follows, an ordered pair of X will always be an ordered pair (x, y) where $x \neq y \in X$. A cyclic triple on X is a set of three ordered pairs (x, y), (y, z), and (z, x) of X, which is denoted by $\langle x, y, z \rangle$ (or $\langle y, z, x \rangle$, or $\langle z, x, y \rangle$). A transitive triple on X is a set of three ordered pairs (x, y), (y, z), and (x, z) of X, which is denoted by (x, y, z).

A Mendelsohn (respectively, directed) packing triple system of order v, written briefly MPT(v) (respectively, DPT(v)), is a pair (X,\mathcal{B}) where X is a v-set and \mathcal{B} is a collection of cyclic (respectively, transitive) triples on X such that every ordered pair of X belongs to at most one triple of \mathcal{B} . An MPT(v) (respectively, DPT(v)) (X,\mathcal{B}) is maximum if there does not exist any MPT(v) (respectively, DPT(v)) (X,\mathcal{A}) with $|\mathcal{A}| > |\mathcal{B}|$. The leave of a Mendelsohn (respectively, directed) packing triple system (X,\mathcal{B}) is the graph (X,\mathcal{E}) , where \mathcal{E} consists of all the ordered pairs which do not appear in any block of \mathcal{B} . In particular, when $v \equiv 0, 1 \pmod{3}$, the leave of a maximum MPT (respectively, DPT) is an empty set and the MPT (respectively,

DPT) is a Mendelsohn (respectively, directed) packing triple system, and denoted by MTS (respectively, DTS). It is well known that an MTS(v) exists if and only if $v \equiv 0, 1 \pmod{3}, v \geq 3, v \neq 6$ [10], and a DTS(v) exists if and only if $v \equiv 0, 1 \pmod{3}$ [4]. When $v \equiv 2 \pmod{3}$, the leave of a maximum MPT (respectively, DPT) is a 2-cycle $\langle \infty_1 \infty_2 \rangle$. The existence of maximal MPT(v) is solved in [2] and the existence of maximal DPT(v) is solved in [11]. In this paper, an MPT(v) (respectively, DPT(v)) is always assumed to be maximal.

Two packings (X, \mathcal{A}) and (X, \mathcal{B}) are called *disjoint* if $\mathcal{A} \cap \mathcal{B} = \emptyset$. If two packings have the same leave, then they are called *compatible*. A set of more than two packings is called disjoint (respectively, compatible) if each pair of them is disjoint (respectively, compatible).

Denote by $M_m(v)$ (respectively, $M_d(v)$) the maximum number of disjoint compatible Mendelsohn (respectively, directed) packing triple systems. A large set of Mendelsohn (respectively, directed) packing triple systems of order v, denoted by LMPT(v) (respectively, LDPT(v)), consists of $M_m(v)$ MPT(v)s (respectively, $M_d(v)$ DPT(v)s). It is known that for $v \equiv 0, 1 \pmod{3}$, $M_m(v) = v - 2$ (respectively, $M_d(v) = 3(v - 2)$) and the LMPT(v) (respectively, LDPT(v)) is an LMTS(v) (respectively, LDTS(v)) in fact. It is well known that an LMTS(v) exists if and only if $v \equiv 0, 1 \pmod{3}$, $v \neq 6$ [8] and an LDTS(v) exists if and only if $v \equiv 0, 1 \pmod{3}$ [7]. For $v \equiv 2 \pmod{3}$, since the leaves of both an MPT(v) and a DPT(v) are 2-cycle $\langle \infty_1 \infty_2 \rangle$, by simple computation we have that $M_m(v) = v - 3$ and $M_d(v) = 3(v - 3)$.

In this paper, we shall focus on the existence of LMPT(6k + 5) and LDPT(6k + 5) which have the 2-cycle $\langle \infty_1 \infty_2 \rangle$ as their common leave and the following result will be proved.

Theorem 1.1 There exist an LMPT(6k + 5) and an LDPT(6k + 5) for any non-negative integer k.

2 Recursive Constructions for LMPT and LDPT

In this section, we shall describe a construction to obtain an LMPT from a partitionable Mendelsohn candelabra system (PMCS) and a partitionable directed candelabra system (PDCS).

Let v be a non-negative integer. A group divisible design (or GDD) of order v and block size k denoted by GDD(2, k, v) is a triple $(X, \mathcal{G}, \mathcal{B})$ such that

- 1. X is a set of v elements (called *points*);
- 2. $\mathcal{G} = \{G_1, G_2, \ldots\}$ is a collection of non-empty subsets (called *groups*) of X which partition X;
- 3. \mathcal{B} is a family of k-subsets of X (called blocks) such that each block intersects any given group in at most one point;

4. each pairs of points from two distinct groups is contained in exactly one block.

The type of the GDD is defined to be the list $(|G||G \in \mathcal{G})$ of group sizes.

A Mendelsohn (respectively, directed) GDD(2,3,v) is a triple $(X,\mathcal{G},\mathcal{B})$ such that

- 1. X is a set of v elements (called *points*);
- 2. $\mathcal{G} = \{G_1, G_2, \ldots\}$ is a collection of non-empty subsets (called *groups*) of X which partition X;
- 3. \mathcal{B} is a family of cyclic (respectively, transitive) triples of X (called *blocks*) such that each block intersects any given group in at most one point;
- 4. each ordered pair from two distinct groups is contained in exactly one block.

The type of the Mendelsohn (respectively, directed) GDD is defined to be the list $(|G||G \in \mathcal{G})$ of group sizes.

Let v be a non-negative integer. A partitionable Mendelsohn (respectively, directed) candelabra system (or PMCS (respectively, PDCS)) of order v and type ($g^n : s$) is a quadruple (X, S, Γ, A) that satisfies the following properties:

- 1. X is a set of gn + s elements (called *points*);
- 2. S is a subset (called the *stem* of the candelabra) of X of size s;
- 3. $\Gamma = \{G_1, G_2, \dots, G_n\}$ is a set of g-subsets (called groups or branches) of $X \setminus S$, which partition $X \setminus S$;
- 4. \mathcal{A} is the set of all cyclic (respectively, transitive) triples (called *blocks*) of X except those cyclic (respectively, transitive) triples of $S \cup G_i$ for all i. It can be partitioned into $\mathcal{A}_1, \mathcal{A}_2, \ldots, \mathcal{A}_{gn}, \mathcal{A}_{gn+1}, \ldots, \mathcal{A}_{gn+s-2}$ with the following two properties: (i) for each group G, there are exactly $g \mathcal{A}_i$ s $(1 \leq i \leq gn)$ such that \mathcal{A}_i is the block set of a Mendelsohn (respectively, directed) $\mathrm{GDD}(2,3,gn+s)$ of type $1^{g(n-1)}(g+s)^1$ with $G \cup S$ as the long group; (ii) for $gn+1 \leq i \leq gn+s-2$, $(X \setminus S, \mathcal{G}, \mathcal{A}_i)$ is a Mendelsohn (respectively, directed) $\mathrm{GDD}(2,3,gn)$ of type g^n . Note that the condition (ii) is relevant only if $s \geq 3$.

In order to obtain an LMPT (respectively, LDPT) from a PMCS (respectively, PDCS), we need a holey large set. Let X be a set of v points and let \mathcal{H} be an h-subset of X with $h \geq 2$. Let \mathcal{A}_i ($1 \leq i \leq v - 3$) (respectively, ($1 \leq i \leq 3(v - 3)$) be sets of cyclic (respectively, transitive) triples of X. (X, $\{\mathcal{A}_i\}$: $1 \leq i \leq v - 3$) (respectively, (X, $\{\mathcal{A}_i\}$: $1 \leq i \leq 3(v - 3)$)) is called a holey large set of disjoint MPT(v) (respectively, DPT(v)) on X with a hole \mathcal{H} (denoted by HLMPT(v, v) (respectively, HLDPT(v, v))) if \mathcal{A}_i satisfy the following properties: (i) for $1 \leq i \leq v - v$ (respectively, $1 \leq i \leq 3(v - v)$), each (v, v) is an MPT(v) (respectively, DPT(v)) with

the common leave of a 2-cycle $\langle \infty_1 \infty_2 \rangle$ and $\{\infty_1, \infty_2\} \subset \mathcal{H}$; (ii) for $v - h \leq i \leq v - 3$ (respectively, $3(v - h) \leq i \leq 3(v - 3)$), each (X, \mathcal{A}_i) is a Mendelsohn (respectively, directed) GDD(2, 3, v) of type $1^{v-h}h^1$ with the long group \mathcal{H} ; (iii) $(\bigcup_{i=1}^{v-3} \mathcal{A}_i) \cap \mathcal{H}^{(3)} = \emptyset$ (respectively, $(\bigcup_{i=1}^{3(v-3)} \mathcal{A}_i) \cap \mathcal{H}^{(3)} = \emptyset$), where $\mathcal{H}^{(3)}$ denotes the set of all cyclic (respectively, transitive) triples of \mathcal{H} .

Now, we are in a position to describe how to get an LMPT(v) (or an LDPT(v)) from a PMCS (or a PDCS).

Lemma 2.1 Suppose there exists a $PMCS(g^n : 5)$. If there exist an HLMPT(g+5,5) and an LMPT(g+5), then there is an LMPT(gn+5).

Proof: Suppose the given $PMCS(g^n:5)$ (X,S,Γ,\mathcal{A}) consists of gn Mendelsohn GDD(2,3,gn+5)s of type $1^{g(n-1)}(g+5)^1$ with the long group $G\cup S$ and block set $\mathcal{A}_y,y\in G$ and $G\in \Gamma$, and 3 Mendelsohn GDD(2,3,gn)s of type g^n with group set Γ and block set $\mathcal{A}_i,i=1,2,3$. Let $S=\{\infty_1,\infty_2,\ldots,\infty_5\}$.

Take a group $G' \in \Gamma$. For each group $G \in \Gamma$, $G \neq G'$, suppose the given $\operatorname{HLMPT}(g + 5, 5)$ on $G \cup S$ consists of g MPT(g + 5)s with block sets $\mathcal{B}_y(y \in G)$ and $\langle \infty_1 \infty_2 \rangle$ as the common leave and 2 Mendelsohn $\operatorname{GDD}(2, 3, g + 5)$ of type $1^g 5^1$ with the long group S and block sets \mathcal{B}_i^G , i = 1, 2.

For any $y \in G$, $G \in \Gamma$, $G \neq G'$, let $C_y = A_y \cup B_y$. For $1 \leq i \leq 2$, let $C_i = A_i \cup (\bigcup_{G \in \Gamma, G \neq G'} \mathcal{B}_i^G)$.

Then, each (X, \mathcal{C}_y) is an MPT(gn+5) with $\langle \infty_1 \infty_2 \rangle$ as the leave and each \mathcal{C}_i , $\mathcal{A}_y, y \in G'$ is the block set of a Mendelsohn GDD(2,3,gn+5) of type $1^{g(n-1)}(g+5)^1$ with the long group $G' \cup S$. It is easy to see that these block sets are pairwise disjoint. So, they form an HLMPT(gn+5,g+5).

Further, suppose the given LMPT(g+5) on $G' \cup S$ consists of g+2 disjoint MPT(g+5)s with the common leave of a 2-cycle $\langle \infty_1 \infty_2 \rangle$. Denote these block sets by $\mathcal{B}_y(y \in G')$ and $\mathcal{B}_i, i = 1, 2$. Then, $\mathcal{A}_y \cup \mathcal{B}_y$ and $\mathcal{C}_i \cup \mathcal{B}_i$ are all MPT(gn + 5), and all gn + 2 MPTs form an LMPT(gn + 5).

Lemma 2.2 Suppose there exists a $PDCS(g^n:5)$. If there exist a HLDPT(g+5,5) and an LDPT(g+5), then there is an LDPT(gn+5).

Proof: The proof is similar to the proof of Lemma 2.1.

To obtain the required PMCS and PDCS, we describe constructions for them from a PCS, where PCS is introduced in [3] and plays an important in the construction of a large set of packing on 6k + 5 points.

Let v be a non-negative integer. A partitionable candelabra system (or PCS) of order v and type $(g^n:s)$ is a quadruple (X, S, Γ, A) that satisfies the following properties:

1. X is a set of gn + s elements (called *points*);

- 2. S is a subset (called the *stem* of the candelabra) of X of size s;
- 3. $\Gamma = \{G_1, G_2, \dots, G_n\}$ is a set of g-subsets (called groups or branches) of $X \setminus S$, which partition $X \setminus S$;
- 4. \mathcal{A} is the set of triples (called *blocks*) of X except all triples of $S \cup G_i$ for all i. It can be partitioned into $\mathcal{A}_1, \mathcal{A}_2, \ldots, \mathcal{A}_{gn}, \mathcal{A}_{gn+1}, \ldots, \mathcal{A}_{gn+s-2}$ with the following two properties: (i) for each group G, there are exactly $g \mathcal{A}_i s$ $(1 \leq i \leq gn)$ such that \mathcal{A}_i is the block set of a GDD(2, 3, gn + s) of type $1^{g(n-1)}(g+s)^1$ with $G \cup S$ as the long group; (ii) for $gn + 1 \leq i \leq gn + s 2$, $(X \setminus S, \mathcal{G}, \mathcal{A}_i)$ is a GDD(2, 3, gn) of type g^n . Note that the condition (ii) is relevant only if $s \geq 3$.

Let (X, S, Γ, A) be a $PCS(g^n : s)$. Define

$$\mathcal{B} = \{ \langle x, y, z \rangle; \ \{x, y, z\} \in \mathcal{A} \} \cup \{ \langle z, y, x \rangle; \{x, y, z\} \in \mathcal{A} \}.$$

Then $(X, S, \Gamma, \mathcal{B})$ is a PMCS $(g^n : s)$. And, define transitive triples

$$(x, y, z), (z, y, x) \in \mathcal{B}^1, \quad (y, z, x), (x, z, y) \in \mathcal{B}^2, \quad (z, x, y), (y, x, z) \in \mathcal{B}^3,$$

for each $\{x, y, z\} \in \mathcal{A}$. Then it is easy to see that $(X, S, \Gamma, \mathcal{B}^1 \cup \mathcal{B}^2 \cup \mathcal{B}^3)$ is a $PDCS(g^n : s)$.

From [5], we know that there exists a $PCS(6^k : 5)$ for any integer $k \geq 3$. Then we can get the following results.

Lemma 2.3 There exists a $PDCS(6^k:5)$ for any integer $k \geq 3$.

Lemma 2.4 There exists a $PMCS(6^k:5)$ for any integer $k \geq 3$.

From the above lemmas, we easily know that the existence of $\operatorname{HLMPT}(11,5)$ and $\operatorname{LMPT}(5)$ implies the existence of $\operatorname{LMPT}(6k+5)$ and the existence of $\operatorname{HLDPT}(11,5)$ and $\operatorname{LDPT}(5)$ implies the existence of $\operatorname{LDPT}(6k+5)$. These small orders will be discussed in Section 3.

To construct required holey large sets we need an LR design. An LR design is introduced in [9], and plays a very important role in the construction of LKTS. Here we shall use LR designs to construct LMPT and LDPT of some small orders. A GDD(2, 3, v) of type 1^v (X, \mathcal{G} , \mathcal{B}) is often called a Steiner triple system and denoted by STS(v) (X, \mathcal{B}). A STS (X, \mathcal{B}) is resolvable if its block set \mathcal{B} admits a partition into parallel classes, each parallel class being a partition of the point set X. A resolvable STS(v) is called a Kirkman triple system and is denoted by KTS(v). Let X be a v-set; an LR design of order v (briefly an LR(v)) is a collection $\{(X, \mathcal{A}_k^j); 1 \leq k \leq (v-1)/2, j=0,1\}$ of KTS(v)s with the following properties:

1. Let the resolution of \mathcal{A}_k^j be $\Gamma_k^j = \{A_k^j(h); 1 \leq h \leq (v-1)/2\}$. There is an element in each Γ_k^j , which without loss of generality, we can suppose is $A_k^j(1)$, such that

$$\bigcup_{k=1}^{(v-1)/2} A_k^0(1) = \bigcup_{k=1}^{(v-1)/2} A_k^1(1) = \mathcal{A}$$

and (X, \mathcal{A}) is a KTS(v).

2. For any triple $T = \{x, y, z\} \subset X, x \neq y \neq z$, there exist k, j such that $T \in \mathcal{A}_k^j$.

Lemma 2.5 If there exists an LR(v), then there exist an HLMPT(v+2,5) and an HLDPT(v+2,5).

Proof: Let $\{(X, \mathcal{A}_k^j); 1 \leq k \leq (v-1)/2, j=0, 1\}$ be the given LR(v). Let $\{\infty_1, \infty_2\} \cap X = \emptyset$. We shall construct the required design on $X \cup \{\infty_1, \infty_2\}$ with $\langle \infty_1, \infty_2 \rangle$ as the common leave.

For any $1 \leq k \leq (v-1)/2$ and each block $A = \{x,y,z\} \in A_k^0(1)$, we construct an LMPT(5) on $\{x,y,z,\infty_1,\infty_2\}$ which consists of two MPT(5)s with the block sets B_A^j , j=0,1. For each block $A'=\{x',y',z'\} \in \mathcal{A}_k^j$ with $A' \notin \mathcal{A}$, we construct an LMTS(3) on $\{x',y',z'\}$ with the block set $B_{A'}$. Then for $1 \leq k \leq (v-1)/2$ and j=0,1, each $(\bigcup_{A'\in A_k^j(h),2\leq h\leq (v-1)/2}B_{A'}) \cup (\bigcup_{A\in A_k^j(1)}B_A^j)$ is an MPT(v+2). These obtained v-1 MPT(v+2)s form an LMPT(v+2). It is easy to see that if we delete an LMPT(5) on $\{x,y,z,\infty_1,\infty_2\}$ $(\{x,y,z\}\in A_1^0(1))$ we can get v-3 MPT(v+2)s and two Mendelsohn GDD(2,3,v+2)s of type $1^{v-3}5^1$ which form an HLMPT(v+2,5). In the same way, an HLDPT(v+2,5) can be obtained.

3 Some small orders

In this section, we shall construct HLMPT(11, 5), LMPT(5) and HLDPT(11, 5), LDPT(5). The 2-cycle $\langle \infty_1 \infty_2 \rangle$ is always assumed to be the common leave.

Lemma 3.1 There exists an LMPT(5).

Proof: Take the point set $X = \{0, 1, 2, \infty_1, \infty_2\}$. Let

$$\mathcal{B}_1: <\infty_1, 0, 1> <1, \infty_1, 2> <0, 2, \infty_1> <\infty_2, 2, 0> <2, \infty_2, 1> <1, 0, \infty_2>.$$

Then it is easy to check that (X, \mathcal{B}_1) and (X, \mathcal{B}_2) are the required two MPTs which form an LMPT(5).

Lemma 3.2 There exists an LDPT(5).

Proof: Take the point set $X = \{0, 1, 2, \infty_1, \infty_2\}$. Let

$$\mathcal{B}_1: (\infty_1, 0, 1) (1, \infty_1, 2) (0, 2, \infty_1) (\infty_2, 2, 0) (2, \infty_2, 1) (1, 0, \infty_2).$$

$$\mathcal{B}_2: (1,0,\infty_1) \quad (2,\infty_1,1) \quad (\infty_1,2,0) \\ (0,2,\infty_2) \quad (1,\infty_2,2) \quad (\infty_2,0,1).$$

Then it is easy to check that \mathcal{B}_1 and \mathcal{B}_2 together generate the required six DPTs mod 3.

Lemma 3.3 There exist an HLMPT(v, 5) and an HLDPT(v, 5) for v = 11 and v = 17.

Proof: From [6, 9], there exist an LR(9) and an LR(15). By Lemma 2.5, we get the required results.

4 Proof of Theorem 1.1

In this section we prove the main result stated in Theorem 1.1.

Proof of Theorem 1.1: For k = 0, 1, 2, there exists an LMPT(6k + 5) and an LDPT(6k + 5) by Lemmas 3.1, 3.2 and 3.3. For $k \geq 3$, the result follows from Lemmas 2.1–2.4 and Lemmas 3.2 and 3.3.

Acknowledgments

The author would like to thank Dr. L. Ji for many helpful suggestions and the referees for many helpful comments on this topic.

References

- [1] J. C. Bermond and V. Faber, Decomposition of the complete directed graph into k-circuits, J. Combin. Theory Ser. B 21 (1976), 146-155.
- [2] F. E. Bennett and J. Yin, Packing and coverings of the complete directed multigraph with 3- and 4-circuits, *Discrete Math.* **162** (1996), 23–29.
- [3] H. Cao, L. Ji and L. Zhu, Large sets of disjoint packings on 6k + 5 points, J. Combin. Theory Ser. A 108 (2004), 169–183.

- [4] S.H.Y. Hung and N.S. Mendelsohn, Directed triple systems, J. Combin. Theory Ser. A 14 (1973), 310-318.
- [5] L. Ji, Partition of triples of order 6k + 5 into 6k + 3 optimal packings and one packing of size 8k + 4, Graphs and Combinatorics, to appear.
- [6] L. Ji and J. Lei, Further results on large sets of Kirkman triple systems, preprint.
- [7] Q. Kang and Y. Chang, A completion of the spectrum for large sets of disjoint transitive triple systems, J. Combin. Theory Ser. A 60 (1992), 287–294.
- [8] Q. Kang and J. Lei, A completion of the spectrum for large sets of disjoint Mendelsohn triple systems, *Bull. ICA.* **9** (1993), 14-26.
- [9] Jianguo Lei, On large sets of Kirkman triple systems, Discrete Math. 257 (2002), 63-81.
- [10] N.S. Mendelsohn, A natural generalization of Steiner triple systems, Comput. Number Theory (Academic Press, New York) (1971), 323-338.
- [11] D. B. Skillicorn, Directed packing and coverings with computer applications, *Ph.D. Thesis, University of Manitoba*, (1981).
- [12] L. Teirlinck, A completion of Lu's determination of the spectrum of large sets of disjoint Steiner triple systems, J. Combin. Theory Ser. A 57 (1991), 302–305.

(Received 8 July 2005; revised 20 Feb 2006)