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Abstract

The existence of (n,7,6) near resolvable BIBDs has been established for
all v =1 (mod 7) apart from five possible cases: 183, 246, 267, 274, 295.
In this paper we remove these last 5 possible exceptions. We also obtain
two new resolvable (v, k, \) BIBDs for (v, k, ) = (90,5,4) and (225, 5,1).

1 Introduction

A design is a pair (X, B) where X denotes a set of points of finite cardinality, v, and
B is a family of subsets of X. The cardinalities of the subsets are called the block
sizes.

A (K, \) group divisible design (or GDD) is a design in which X is partitioned
into groups with cardinalities in G. The block sizes have cardinalities in K. The
design also satisfies the condition that every pair of points from distinct groups is
contained in A blocks, whilst no block contains a pair of points from the same group.
Such a GDD is said to have group type g;*gs? - -+ g% if it has u; of a groups of size
gi for 1 <i<s.

A pairwise balanced design (or (v, K,\)-PBD) is a GDD on v points with all
groups of size 1 and all block sizes in the set K. If K = {k}, such a design is called
a (v, k, \) balanced incomplete block design (or BIBD).

A parallel class in a design is a set of blocks containing each point once, and a
partial parallel class is a set of blocks containing each point at most once. A design
is called resolvable if its blocks can be partitioned into parallel classes, and near
resolvable if they can be partitioned into partial parallel classes each missing just
a single point. Also, a GDD is called a frame if its blocks can be partitioned into
partial parallel classes each missing just the points of a single group.

A necessary condition for a (v,k,k — 1) near resolvable BIBD to exist is that
v =1 (mod k). For k =7, it was shown in [3] and [7], that this condition is sufficient
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except possibly for five cases, v = 183, 246, 267, 274, 295. In this paper, we provide
direct constructions for these five unknown (v, 7, 6) near resolvable BIBDs and for two
new resolvable BIBDs with & = 5, namely for (v,k,\) = (225,5,1) and (90,5,4).
For most of our designs with k& = 7, we construct a (7,6) frame using difference
methods and then use the following fill in theorem from [7] to obtain the required
near resolvable BIBD. This construction is not given in its most general form but is
quite sufficient for what we require in this paper.

Lemma 1.1. If there exists a (k, \) frame of type (91, g2, - - -, gn) and a near resolvabdle
(9:+1,k,\) BIBD fori=1,2,...,n, then there exists a near resolvable (v, k, \) BIBD

forv=(T1yg) + 1.

There is also a similar fill in construction to obtain a resolvable BIBD from a
frame:

Lemma 1.2. Suppose there exist (1) a (k,\) frame of type (91,92,---,92) (2) a
resolvable (g; + k, k, \) BIBD with one block repeated A times fori=1,2,...,n—1,
and a resolvable (g, + k,k,\) BIBD. Then there exists a resolvable (v, k,\) BIBD

forv= (319 +k.

2  (v,7,6) Near resolvable BIBDs

Our first new near resolvable BIBD is a cyclic one:

Lemma 2.1. There exists a near resolvable (183,7,6) BIBD.

Proof. Take the point set as Z;g3. Multiply each block below by 58 for 0 < i < 4
(except the first block which remains invariant under this multiplication). These 26
blocks form a near parallel class missing the point 0; develop them all (mod 183).

(61,122,1,58,70,34,142),  (4,8,15,32,54,121,167), (7,22,31,41,42,73,148),
(17,37,45,77,96,114,164), (18,43,53,158,171,172,176), (51, 60,62, 69,123,127,140).

Lemma 2.2. There exist near resolvable (v,7,6) BIBDs for v = 246,267, 274,295.

Proof. For v = 246, 274, we construct (7,6) frames of types 7728 for p = 31 and
35; the required near resolvable BIBDs can then be obtained by Lemma 1.1, noting
that (v,7,6) near resolvable BIBDs exist for v = 8,29 [7].

For frames of types 7728 (p = 31, 35), we take the point set as Z,U{001, 009, . ..,
0098 }. Ome hole consists of the infinite points and the others are of the form {y,y +
p,y +2p,...,y +6p} for 0 <y < p— 1. The initial base blocks (which, together
with their multiples, should be developed (mod 7p)) are of three types. Multiply
those of types 1 and 2 by 1 and —1 (mod 7p) only. All points in any base block
of type 1 are distinct (mod 7), therefore, adding z,2 + 7,2+ 14,...7p+ 2z — 7 for
any z (0 < 2z < 6) produces a partial parallel class missing the infinite points. The
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base blocks of type 3 should be multiplied by +1,+w, and +w? (where w = 25 for
p = 31 and 116 for p = 35). The base blocks of types 2 and 3 (plus their multiples)
form a partial parallel class missing the group {0, p, 2p, ..., 6p}; the 7 partial parallel
classes missing this group are obtained by adding 0,p,2p,...,6p to them. Finally
when multiplying any base block by any value, each infinite point should be replaced
by another not already used.

For v = 295, the construction is essentially the same except that here, we con-
struct a frame of type 14928 over Zyes U {001, 009, . ..,0098}, and groups on the
non-infinite points are {y,y + 19,y +38,...,y + 247} for 0 < y < 18. Here the type
1 and type 2 blocks should be multiplied by 1, 113 and the type 3 blocks should be
multiplied by w’ and 113w’ for w =11 and 0 < i < 2.

For v = 267, the construction is also similar; here we construct a frame of type
28°14! over (GF(4,2% = x+1) X Zg3) U {001,004, ...,0014}. Here one group consists
of the infinite points and the others are GF(4) x {y,y +9,y + 18,...,y + 54} for
0 < y < 8. This time, before developing blocks mod (22,63), the type 1 and type
2 blocks should be multiplied by (1,1), and (1,8) (mod (22,63)), while the type 3
blocks should be multiplied by (z¢,4%) and (2,8 - 4°) for 0 < i < 2. As before, any
block which is a multiple of a type 1 block generates 7 partial parallel classes missing
the infinite points, while the blocks of types 2 and 3 (together with their multiples)
form a partial parallel class missing the group GF(4) x {0,9,18,...,54}.

731281 . Type 1. (0,1,25,191,33,174, 10), (0,18,16,183,45, 40, 132),
Type 2:  (001,4,100,113,53,23, 141), (003,11,58,148, 111,171, 152),
Type 3:  (73,77,107,118,184,196,198), (o0, 37,63,79,85,137,182),
(c011,9,48, 75,81, 96,190), (0017, 32,70, 87,143,158, 165),
(0023, 25,34,67,95,120,131).
735281 ;. Type 1: (0,1,116,226,17,12,167), (0,92,137,212,66,61,216),
Type 2: (49,16, 141,186, 68,48, 178), (98, 2,232,207, 34,24, 89),
(001,4,219,169, 106, 46,191), (003,11,51,36,8,193,93),
Type 3: (42,56, 66,73, 75,95,142), (005,94, 101, 143, 145, 195, 227),
(0011, 6,81,87,127, 154, 228), (0017, 20,74,77,79,113,235),
(0093,25,43,116,134,212,222).
1419281 ;. Type 1:  (0,2,22,242,178,96,258), (0,6,66,194, 151, 65, 183),
Type 2:  (001,23,253,123,48,262,222),  (003,25,9,99,41,185,173),
Type 3:  (72,73,89,121,125, 142, 166), (22,35, 44,94,108,197,238),
(005,16, 17,37,60,134,194), (0011, 29,43, 50,63, 189, 264),
(0017,26,88,135,193,208,241), (0093, 13,54, 69, 182, 252, 265).
28°141:  Type 1:  ((0,0),(0,2),(0,8),(0,32),(1,10), (x,40), (z + 1, 34)),
Type 2: (o001, (1,25),(1,50), (z,37), (z,11), (z + 1,22), (z + 1, 44)),
((0,21),(1,17),(1,61), (x,5), (x,55), (z + 1,20), (z + 1,31)),
Type 3:  ((0,3),(0,35),(1,1),(1,7),(1,32),(1,42), (z + 1,38)),
((0,38),(0,55), (1,14), (1,30), (1, 44), (x, 33), (z,43)),
((0,40), (1,39), (1,52), (=, 8), (x,59), (z,60), (z + 1, 10)),
((00s,(0,1),(1,33),(1,43),(1,48), (z + 1,5), (¢ + 1,26)),
((o0g, (0,37),(0,53), (0,60), (x,14), (z,47), (z + 1,43)).
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Combining the results of this section with those from [3] and [7] we can now
update the status of (v, 7,6) near resolvable BIBDs as follows:

Theorem 2.3. The necessary conditions for existence of a (v,7,6) near resolvable
BIBD, i.e. v>7 and v =1 (mod 7) are sufficient.

3 Some Resolvable BIBDs with £k =5

In this section we update the status of (v,5,A) RBIBDs. First, we have two new
direct constructions:

Lemma 3.1. There exist a resolvable (225,5,1) BIBD.

Proof. We first construct a (5, 1) frame of type 20!, Its point set is X = Zyy, and
groups are of the form {y, y+ 11, y+22, ..., y+209} for 0 < y < 10. Now develop
the following 10 blocks (mod 220):

(1,68,113,126,6),  (4,183,96,130,32),
(3,127,9,26,18), (1,131,156, 192, 52),
(9,7,27,23,175), (3,96,193,59,13),
(5,32,147,168,8),  (9,79,40,210,72),
(4,118,177,42,189),  (5,6,54,80,183).

Note that the pair of base blocks in each row contains the 10 nonzero residues (mod
11) once; as a result, each pair generates 11 partial parallel classes, one missing each
size 20 group of the frame. Filling in the groups of this frame using 5 extra points,
a (25,5, 1) resolvable BIBD and Lemma 1.2 gives a resolvable (225,5,1) BIBD. O

Our next construction is similar to the one in [2] for v = 70 (which was obtained
from a resolvable (5,4)-GDD of type 5):

Lemma 3.2. There ezists a resolvable (90, 5,4) BIBD.

Proof. We construct a (5,4)-RGDD of type 5'® over Zgs U{o0; : i =1,2,...,5}. The
first 17 groups are of the form {z,x + 17,2 + 34,z + 51,2 + 68} for 0 < z < 16, and
the 18th group consists of the infinite points. Develop (mod 85) the following base
blocks which form a parallel class. Finally, form a (5,5,4) BIBD on each group.

(0,36,56,57,63),  (20,22,44,53,62), (15,38,40,51,52),  (1,16,19,28,55),
(14,64,73,79,83), (11,31,70,71,84),  (5,30,33,43,76),  (42,46,49,67,72),
(9,17,25,29,75),  (24,32,39,69,80),  (8,27,48,58,74),  (2,4,7,37,81),
(21,35,77,78,82), (3,13,34,66,001), (23,45,47,60,00;), (10,26,54,59,003),
(6,50,61,68,004), (12,18,41,65,005).

O

There are a couple of other recent updates. Kaski and Ostergard [8] showed
no (15,5,4) resolvable BIBD exists, and Abel, Bennett and Ge [2] constructed a
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(70,5,4) RBIBD (as a resolvable (70,5,1) perfect Mendelsohn design). Using these
results, we can now update the existence results in Theorem 6.1 of [4] for resolvable
(v,5,\) BIBDs with A € {1,2,4} as follows:

Theorem 3.3. Necessary conditions for existence of a (v,5,\) RBIBD are A(v—1) =
0 (mod 4) and v = 0 (mod 5). For A =1,2,4 these conditions are sufficient except
for (v, \) € {(10,4), (15,2), (15,4)} and possibly for the following cases:

1. X=1, and v € {45,345,465,645};
2. A=2, and v € {45,115,135,195,215, 235,295, 315, 335, 345,395} ;
3. A=4, and v € {135,160, 190,195}.

For other indices, if m = gcd(4,A) then we can construct the design in most
cases by simply taking A\/m copies of a (v, k,m) RBIBD. This will fail for designs
in our exception lists in Theorem 3.3, but some further results are known here for
v € {10,15,45}. First, we note that no (10,5, 4c) resolvable BIBD exists for ¢ odd
by the following theorem:

Theorem 3.4. 1. If a(2k,k,k—1) BIBD euists, then a (2k, k,t(k—1)) resolvable
BIBD exists for any even value of t.

2. If k and t are both odd, then no (2k,k,t(k — 1)) resolvable BIBD exists.

Proof. For (1), since a block and its complement form a parallel class, taking ¢/2
copies of the BIBD and its complement yields the resolvable BIBD.

For (2), suppose a (2k,k,t(k — 1)) resolvable BIBD exists, and suppose that
three points, x, y, z occur as a triple in exactly s blocks. Then z occurs with y
and not z in another ¢(k — 1) — s blocks, and x occurs with z and not y in another
t(k — 1) — s blocks, and finally  occurs with neither y nor z in ¢ + s blocks. Now
considering these blocks and their complements, we see that y and z appear together
ins+040+ (t+s) blocks, so 2s +t = t(k — 1), and so t(k — 2) must be even,
contradicting our assumption that both ¢,k are odd. Put another way, each triple
appears in s = t(k — 2)/2 blocks, i.e., any (2k, k,t(k — 1)) resolvable RBIBD is also
a 3-design. a

We stated and proved Theorem 3.4 for completeness. Both parts are well-known,
and there are several non-existence proofs: we presented the rather nice proof given
by Mathon and Rosa [5].

In our final theorem, we mention a few more known results for (v, 5, A) resolvable
BIBDs with v € {10, 15,45}:

Theorem 3.5. There exist (v,5,\) RBIBDs in each of the following cases:
1. v =10 and A = 0 (mod 8). (This follows from the previous theorem, since

a (10,5,4) BIBD can be obtained by developing (0,1,2,4,8) and {c0,0,1,4,6)
(mod 9).)
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2.0v=15,A=0 (mod2) and A\ > 6 [1, 6];
3. v=45and A > 3 [/].
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