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Abstract

It has been recently shown (Abel and Buratti, J. Combin. Theory A 106
(2004), 59-75) that the product of certain unitary trinomials, yielding a
further unitary trinomial, is a basic ingredient for constructing a partic-
ular class of optical orthogonal codes in Z, with p prime. Every code
of this class is generated by an initial base block of size 4 whose set of
differences is expressible as £{1,z,2?%,...,2°%} for some x € Z,. In this
paper we first generalise the construction of such codes by introducing
the notion of nice list of differences. In order to generate nice lists we
exhibit further unitary trinomials arising as a product of unitary trino-
mials. To the same end we also find common zeros of some prescribed
pairs of trinomials, over all fields Z, with p > 17. Suitable combina-
torial structures, namely quasipairings, are introduced. The further we
proceed, the more quasipairings are shown to have notable connections
to unitary polynomials obtainable as ratios of unitary trinomials.

1 Introduction

In keeping with the standard terminology (see e.g. [3]), if S is a finite subset of an
additive group then by AS—the list of differences from S—we denote the multiset
{s—5": s, €5, s# s}, while £5 stands for {s, —s: s € S}. The following property
of subsets of a given finite field Z, will be the main object of study in the present
paper.

Definition 1.1. Let p be a prime number. A k-subset A C Z,, with k& > 3, is said
to have a nice list of differencesif AA = £{1,z,4?,..., " ~+=2/2} for some = € Z,.
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Because the nice list property is not altered by subtracting any fixed a € A from
each element of the set, we can also assume that 0 € A. As a consequence, by
possibly changing the sign of all elements, we can eventually assume that

_ i i ke
A=1{0,1,s12", 592, . .., s 2z},

where s, € {—1,1} for all w and 41, ..., ix_y are distinct positive numbers not greater
than (k* — k —2)/2.

Using some classical results from number theory, the existence problem for nice
lists of differences with k& = 3 can be settled in a purely number-theoretical way, as
explained in the Appendix. In the less known case k = 4, nice lists of differences
have been recently employed by Abel and Buratti [2] to construct some new classes
of optical orthogonal codes (OOC for short).! The employment of nice lists in [2] led
the authors to prove the following result, which provides the very starting point of
the present work (we recall that a primitive square z € Z, is an element z which has a
square root and whose order is the largest admissible, namely (p—1)/2. Furthermore,
a base block is termed initial if all the other base blocks are multiples of this block;
see e.g. [5, 8]).

Theorem 1.2. ([2], Theorem 2.2) Let p > 13 be a prime such that there exists
x € Z, satisfying the identity 2® + x% — 1 = 0. Assume, also, that a® is a primitive
square in Z,. Then there exists an optimal (p,4,1)-00C with initial base block equal
to {0,1,z,2%}.

The main ingredient of the proof of this theorem is that z satisfies also the identity

2% 42 — 1 = 0, which is obtained from the identity appearing in the claim. We have
in fact that

Pr—-1=@*+22 -1 -z +1). (1)

As pointed out in Lemma 2.1 of [2], these two identities imply that
A0, 1,2, 2%} = £{1,z, 2%, ... 2"} (2)

Consequently, using the primitive square hypothesis, the authors establish the men-
tioned result using the collection {z% - {0,1,z,2°}: 0 < j < [(p — 1)/12]}, which is
easily seen to be an OOC.

The first question we address in the present paper is whether there exist identities
similar to (1) —involving unitary trinomials® again — which may yield a modified
version of Lemma 2.1 and, consequently, of the cited Theorem 2.2. Our request
amounts therefore to detecting some other nice lists of differences by means of a
product of suitable trinomials, similar to that appearing in (1). The above question

1A so-termed (v,k,1)-OOC can be defined as a set of k-subsets of Z,—the base blocks—
{C1,Ca, ... } whose list of differences AC; U ACy U ... does not have repeated elements. An OOC
is optimal if the set of base blocks has the largest size allowed, namely |(v — 1)/(k(k — 1))]. If
(v—1)/(k(k—1)) € N an optimal OOC is clearly equivalent to a (v, k, 1)-difference family (see e.g.
[1, 3] for basic notions about difference families; see [4, 6, 7, 9] for basics on OOC’s).

2We recall that a polynomial is unitary if its coefficients belong to {—1,1}.
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has an affirmative answer, which will arise as a particular case (n = 1) of Corollary
2.3:

Let f(x), g(x) be monic unitary trinomials with deg(f) < deg(g) and such that
fg is a unitary trinomial of degree at most 5. Then the ordered triple (f, g, fg) has
precisely one of the three following forms:

(2* —ex+ 1,28 dex® —e, 2 +x—¢), (2*—ex+1,2° —z—¢,2° —eax* —¢),

(2 —ex+1,2% +ex+ 1,z + 22 + 1),
with £ € {~1,1}.

(Notice that, unlike in the other cases, in the last case the two choices of € produce
the same factors.) By the above result, the trinomial 23 + z® — 1 appearing in the
quoted Lemma 2.1 can be replaced with any of the other three trinomials of degree
3, whence three new identities similar to (1) are obtained (instead, the trinomials of
degree 2 cannot be exploited, because the identity (z2+cx+1)-(x—¢) = 23— would
imply that 2® = ¢, thus clashing with the nice list postulate that forbids repetitions).
However, among the three available trinomials we find out that 23 — 2% 4 1 produces
the already known list, whereas a unique, new list is produced by 2® — z — ¢ for both
choices of €. The relevant construction of nice lists is subsequently carried out in the
same fashion as in [2] (Theorem 2.4).

Corollary 2.3 will be established with the help of the combinatorial structures
defined as follows.

Definition 1.3. A quasipairing consists of two sets of natural numbers P = {0, p,
p}, L={0,01,...,l;} (where the indexings preserve <) with the following property:

There exists a pair (p,1) € PxL—{(0,0), (p2,1,)} such that for any (i,j) € PxL—

{(0,0), (p2,1,), (p,1)} there exists a unique (i', ') € PxL—{(0,0), (p2.1,), (p, 1), (2,7)}
such thati+j =14 +j'.

If p+1 # i+ for every pair (¢,7) # (p, 1), then (p,1) is termed singular. Otherwise,
the three elements giving rise to the same sum p + [ are said to form a singular line.
Pairs (of pairs) like (7, 7), (¢, j") are termed opposite.

(Notice that the above definition forces ¢ to be even.) For example, the sets P =
{0,1,2}, L = {0,1,3} form a quasipairing whose singular pair is (1,3), while P =
{0,1,2}, L = {0, 1,2} form a quasipairing whose singular line is {(0, 2), (1,1),(2,0)}.
Quasipairings will be represented as in Figure 1.

In Section 2, as a preparatory tool for establishing Proposition 2.2 and hence
Corollary 2.3, we associate a given quasipairing (P, L) to a system S(p ), the solv-
ability of which is equivalent — except in one case — to the existence of a unitary
trinomial expressible as a product of a trinomial and a polynomial, both unitary,
and whose coeflicients are encoded by P and L. Therefore, quasipairing may some-
times provide a combinatorial obstruction to the existence of certain products of
polynomials, or be a tool for generating unitary trinomials in a particular fashion.
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Figure 1: Quasipairings

Leaving aside quasipairings, a natural question is to recognise all those fields Z,,
p > 13, in which the four trinomial equations of Theorem 2.4 are solvable. A different
question is finding all solutions to (2) in some fixed field Z,, without passing through
divisibility properties of trinomials. We tackle both these questions in Section 3.
The relevant results are condensed in Theorem 3.2. According to its claim, four
“sporadic” solutions to (2) in Zj; are exhibited, while all the other solutions—for
any Z,—turn out to depend on whether or not x solves one of the four trinomial
equations previously found. Thus, such equations do actually play a major role.
Theorem 3.2 is proved in a quite algorithmic fashion.

In Section 4 we come back to quasipairings and study a more general condition
than (1), namely by looking for unitary trinomials that arise as a product of two
unitary polynomials, only one of which is a trinomial. Although the initial motivation
of such study was to obtain existential results on nice lists with £ > 5, a computer
search soon showed that S¢p 1) is unsatisfiable for any P = {0,p1,p.} with p, # 2p;
and |L| > 5, over all the analysed cases. This noticeable fact led us to conjecture
that no satisfiable system exists if |L| > 5 and ps # 2p;. As we remark at the end of
this work, the truth of such a conjecture might be a basic ingredient for proving the
further conjecture that any polynomial ratio of two unitary trinomials is unitary as
well.

2 Unitary trinomials and quasipairings

The basic result of this section is the classification of all products of two unitary
trinomials yielding a further unitary trinomial. Such classification will, at the end
of the section, allow the construction of a new nice lists of differences in the case
k = 4, using a product of trinomials similar to (1). We will also show that if & = 4
no further nice list can arise by resorting to the present technique on products of
unitary trinomials.

For our purposes, quasipairings will play a basic role. Let us then start by



NICE LISTS OF DIFFERENCES 175

associating a given quasipairing (P, L) to a system S(p ) in 3|L| variables, whose
values are assumed to belong to {—1,1}. Having denoted such variables by {x;;: i €
P,j € L}, we define the system via two schemes of equations, as follows.

g . TijTyrjr = Ty jTsj for all i,i’ eP, j,j’ €L,
(PL): Tij = —Tij for all opposite pairs (i,7), (¢, j').

Note that the first scheme of equations is equivalent to the condition that the triples
(@05 Tp1js Tpaj)s (Zoj, Tpyjrs Tpejr) are proportional for any choice of j,j' € L, because
they form a 2 x 3 matrix of rank 1. Similarly, another equivalent condition is the
proportionality of the two |L|-tuples corresponding to any two fixed elements of P.
It is then clear that many equations in the first scheme are superfluous. As an
example, if P ={0,1,2} and L = {0,1, 3} we obtain the system (with no redundant
equations)

LooT11 = To1T10

ZTooTal = To1 T T = ~%n
00%21 = To1L20 o
Sy _ and Ty = -y , Ty €{-1,1}Vij
T01T13 = T03T11 oy — —1
21 = —To3

L1223 = To3T21

Every solution to S¢p,ry will be also called a correct labelling. As we point out in
the following claim, the existence of a correct labelling is equivalent to the existence of
a trinomial—unitary in almost all cases—-arising as a product of a unitary trinomial
and a unitary polynomial whose coefficients are strictly related to P and L.

Lemma 2.1. Let (P = {0,p1,p2}, L= {0 =1lo,l1,15,....1;}) be a quasipairing. The
system S¢p ) admits the solution {x;; = a;;}, with ap, o = 1, if and only if

q
l l l
(7 + apy o™ + a00) = D Ayt = a1, 171+ K7+ ag,
s=0

where K = ay; if there exists a singular pair (p,1), otherwise K = ag; + apy—p, +
Qpyi—pys these summands being the labels of the singular line.

(Notice that the condition on a,, ¢ can be postulated without losing generality.)
Proof. From the first scheme of S(p 1) we deduce that
(72 + apy ot + 00) * App g, 1 = apy 1, 7+ @y, 1, 1+ agy 1

for every s ranging from 0 to ¢. By summing all the left-hand terms we obtain the
product in the claim. Now the second scheme of equations enables us to eliminate
all pairs of monomials related to opposite pairs, in the right-hand summation, so as
to obtain the required polynomial. a

As a consequence of this lemma, for some fixed unitary trinomial f(¢) = 2 +
bt + ¢ we have that each solvable system S0 p; p2},{0,11,2,...1,})> With the quasipairing
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containing a singular line, corresponds to a unitary trinomial g(t) = atP*Tla4BtPH 4y
such that g/f is a unitary polynomial. Conversely, and slightly more generally, if
some unitary polynomial A is such that fh is a unitary trinomial, then a solvable sys-
tem S({0,p1.p2}.{0,01,l2....0y}) €Xists which may even contain a singular line (what counts
is indeed that |K| = 1).

We head to the main results of this section by focusing on the case |L| = 3. In
this case, all solvable systems arising from quasipairings can be easily described:

Proposition 2.2. Let (P = {0,p1,p2}, L = {0,11,12}) be a quasipairing. The system
S(p,L) 15 solvable if and only if one of the following five parametric cases arises.

P={0,n,3n},L={0,n,2n}; P=1{0,2n,3n},L ={0,n,2n};
P={0,n,2n},L={0,n,3n}; P={0,n,2n},L=1{0,2n,3n};
P=L={0,n,2n},

where n 1is any positive integer.

(Notice that the two families in the second line are obtained from the upper two by
interchanging P and L; for, if |L| = 3, S(p, 1) is solvable if and only if S(z p) is.)

Proof. Let us first assume that there exists a singular pair of the form (0,). After
a few experiments the reader will realise that the left diagram at the top of Figure
2 displays the only possible configuration. In order to find all correct labellings of
these diagram, we can assume that z3,o = 1. Let us then define z9,9 = . Using
some suitable equations in S(p ) it is possible to recursively evaluate all the other
variables. In the end we have two solutions, depending on the choice of z € {—1,1}.
Similarly, if the singular pair is of the form (ps,) one could easily show that the only
possible configuration is the middle one at the top of the figure. Also in this case
we obtain two solutions, up to changing the sign of x3,0 (35, has been set equal to
x). The three lower configurations are instead the only ones to have a singular pair
of the form (p;,!). The two at the extremes can be managed in a fashion similar to
the above, while the middle diagram does not admit any correct labelling. In fact,
any of the four choices of the variables z,y produces a contradiction (see the arrow).
Finally, the right upper configuration refers to the singular line case, and admits four
solutions due to the two free variables. (Notice in passing that, as contemplated in
Lemma 2.1, setting y = —1 results in a product which is not unitary—due to K = 3).

a

The above result, reinforced by the analysis in Figure 2 itself and by Lemma 2.1,
yields the

Corollary 2.3. Let f(z), g(x) be monic unitary trinomials with deg(f) < deg(g).
The polynomial fg is a unitary trinomial if and only if the ordered triple (f, g, fg) is
equal either to (22" —ex™ + 1,23 + ex® — g, 2% + 2" —¢) or to (2" —ex" +1,2%" —
" — g, 2% —ext™ —¢), or to (2" — ea™ + 1, 2™ + ea™ + 1,2 + 22 + 1), for some
e € {-1,1} and some n € Nt (in the last case, both choices of € clearly yield the
same factorization).
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Figure 2: Configurations in the case |L| =3

In the case n = 1, the above corollary settles the question of extending (1) to any
identity fg = h where f, g, h are monic unitary trinomials and deg(f) < deg(g) <5
(see the Introduction). The relevant claim can be now exploited to generalise the
result of Abel and Buratti in [2].

Theorem 2.4. Let p be a prime greater than 11, and t € Z,, be such that t*+t*~1=0
(mod p). Then each of the sets {0,1,¢,t3}, {0,1,—1/t,—1/t*} has a nice list of
differences, obtained using powers of t and of 1/t respectively. As a consequence, if
in addition t* is a primitive square, there exist two distinct optimal (p,4,1)-00C’s,
whose base blocks are equal to

{t9A4:0<j<[(p-1)/12]}

and the block A is one of the above two blocks. No further OOC can be obtained
by finding a nice list of differences via a product of unitary trinomials of degree not
exceeding b, yielding a further unitary trinomial.

Proof. The reader can check with little difficulty that the root ¢ in the claim has
order greater than 10 (use also the associated equation, namely ¢* + ¢ — 1 = 0).
Furthermore, each of the pairwise distinct numbers ¢, —¢,1/t, —1/¢ easily turns out
to solve one, and only one, of the four available trinomial equations in Corollary 2.3
(e.g. 1/t is a root of #* — z — 1). Now a similar argument as in [2] yields a nice list
for each case, according to the following scheme.

2422 —-1=0 2 —224+1=0 2 —z—-1=0 2 —z+1=0
{x5+x71:0 {x5+x+1:0 {x57;r471:0 {x5+x4+1:0
13 13 { 13
(x=1t) (z = —t) (z =1/t) (z =-=1/t)
{0,1,z,2%} {0,1, -z, -z} {0,1, -z, —z} {0,1, 2, -z}

{0,1,“t,t3} {0,1,“t,t3} {0,1,—1/“7:,—1/#} {0,1,—1/“7:,—1/#}
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A quick glance is enough to see that precisely two distinct lists are obtained.
Accordingly, two OOC’s can be constructed using the method described in [2], pro-
vided t? (or, equivalently, (1/¢)?) is a primitive square. It is also clear that finding a
solution to some trinomial equation different from the one in the claim is equivalent
to finding a solution to that equation itself (by performing the sign change, or the
inversion, or both). Finally, as noticed in the Introduction, the trinomial equations
of degree 2 cannot be used in place of the equations of degree 3 for generating nice
lists (in a nice list, repeated elements are not allowed). a

3 Describing all nice lists with k£ =4

Though one might conceivably object that the above technique is too selective when
seeking nice lists with k£ = 4, the lists previously obtained turn out to cover almost all
possible cases. To show this, in the present section we analyse all nice lists of blocks
{0,1,u,v} in an arbitrary field Z,. Quasipairings will be, for the moment, dismissed.
We can also assume that p > 17, because every 4-subset A C Z;3 having a nice list of
differences is simply a difference set with no further property (by choosing a primitive
element, say ¢ = 2, we have indeed that Z,3 — {0} = £{1,2,4,8,3 = 21,6 = 2°}).

The following theorem (see e.g. [12] for a proof) will contribute to establish the
subsequent result.

Theorem 3.1. (Konig-Rados Theorem) Let f(t) = ag + art + -+ + az_2t72 be a
polynomial in F,[t]. The number of nonzero roots of f in ¥y is equal to g —1 —r,
where r is the rank of the circulant matrix

ag ay ... Qg—3 Qg—2
ay Ay ... Qg—2 ao
Ag—2 Qo ... Qg—4 Qg3
In the sequel we will denote such a matrix by C,—i(ag, a1, ...,a,-2). We now

proceed with the main result of the section.

Theorem 3.2. Let p be a prime greater than 13. A 4-subset {0,1,u,v} C Z, has a
nice list of differences £{1,t,t%,...,t°}, for some t, if and only if one of the following
two cases arises.
(I) p =17 and {u,v} € {{5,7},{5,8},{10,13},{11,13}}. In each of these
cases, t2 is a primitive square.
(II)  The equation t3 + t* — 1 = 0 is solvable in Z,. Equivalently, p divides
det(C,-1(1,1,0,-1,0,0,...,0)).

None of the former four cases is comprised in the latter class.
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Proof. Let us assume that, for some t € Z,,
A{0, 1, u, v} = H{1,t,5,...,t°} . (3)

Then, necessarily, u, v are of the form s,t1, 55t for some suitable numbers s1, sy, i1,
ia. It follows that for certain si,ss,s3,sa € {—1,1} and distinct i1,1s,13,74 €
{1,2,3,4,5}, the number ¢ satisfies the system

S ¢ st sttt +1=0 A sot2 454t +1=0, (4)

where we can assume, without loss of generality, that ¢; > i3, iy > i4 and 7y > 5. Let
us now consider the resultant® of the trinomials on the left sides. By examining all
the possible systems it could be seen that the resultants equal to zero are precisely
those related to all pairs (f, fg) and (g, fg) of the trinomials described in Corollary
2.3 with n = 1 (not counting the last parametric case, for which the monomial of
degree 2 occurs in both trinomials). All other possible solutions to (4) must therefore
be related to a nonzero resultant that vanishes only (mod p) for some prime p. The
following elementary algorithm can be used to detect any of these latter common
roots (mod p), with p > 17:

Among all non-vanishing resultants, select those divisible for p = 17. For each
selected resultant try to solve the corresponding system, in Zi;. If some solution
to the system is also a solution to (3), keep track of that solution together with the
prime 17. Proceed similarly, until all selected resultants are checked. Then choose
the prime just larger than p and repeat the whole procedure, until p is large enough
(say, more than the largest absolute value of a resultant).

The above algorithm has been implemented using MATLAB, thus obtaining the
only four solutions in the part (I) of the theorem. The corresponding values of ¢ are
6, 3, 3, 6 (mod 17) respectively; since 3 and 6 are primitive elements in Z;7, the list
of differences has no repetitions, while the primitive square property is also satisfied.

Now applying the Kénig-Rados Theorem to the equation in (II) yields the equiva-
lent assertion in brackets. Finally, again using MATLAB, we have obtained
det(C16(1,1,0,-1,0,0,...,0)) = 85 = 5 17. However, the unique root of 3 + > — 1
in Zy7is 7, and 7* = 3 (mod 17), whence the resulting pair {3,7} is different from
any of the above 4 pairs. O

As aresult of the above result we obtain some OOC’s (this discovery is admittedly
not so crucial, because the existence of such OOC’s could be proved directly, without
invoking nice lists).

Corollary 3.3. There exist four optimal (17,4,1)-0O0C’s with base block equal to
{0,1,5,7},{0,1,5,8},{0,1,10,13},{0,1,11, 13} respectively.

3The resultant of two polynomials of degree m and n is, loosely speaking, the determinant of an
(m + n) X (m + n) matrix obtained by positioning, in a prescribed way, the coefficients of the two
polynomials. For details about resultants, see e.g. [11]. We recall that two polynomials f,g € K[t],
K being a field, have some nontrivial common factor if and only if their resultant vanishes. Thus,
in particular, having a common root forces the resultant to vanish.
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When proving Theorem 3.2 it has been shown that the resultant vanishes in the
only cases described in Corollary 2.3, not counting the last. Therefore, if we regard
each trinomial as belonging to C[t], we can well say that the trinomials appearing
in those cases are the only ones to have some common root among all pairs, as S
varies. Although the complex case is not strictly related to nice lists of differences,
we deem it worth being highlighted.

Theorem 3.4. If P and P’ are monic unitary trinomials in C[t] such that deg(P) <
deg(P') <5 and no term t* with i > 0 occurs in both trinomials, then MCD(P, P') =
1 unless the pair (P, P') is equal to either (f, fg) or (g, fg), where the triple (f, g, fg)
has one of the first two forms appearing in Corollary 2.3 with n = 1. It follows
that there exist t € C, s1,s2 € {—1,1} and distinct 11,1y € {1,2,3,4,5} such that
A{0,1, 81t sot2} = £{1,¢,t2, ..., 15}, with no repeated elements, if and only if t is
a root of one of the trinomials x® + 2% — 1, 2% — 22 +1, 2> —ox — 1, 2% — 2z + 1.

4 Quasipairings of larger size

At this stage it is clear that quasipairings having |L| arbitrarily large are related
to all those trinomials obtainable as a product of a trinomial and a polynomial,
both unitary. The solvability question for S p z) with no restriction on L might turn
out to be related to nice lists with £ > 5, by considering more general systems
than (4). To say it better, one should succeed in extract some valuable informa-
tion from the polynomial under examination, so as to obtain identities of the form
51t + syt + 1 = 0, as already done in the case |L| = 3. Also, one might wonder if
more than 2 unitary equations are satisfiable, provided the bound on the degree is
increased. Leaving aside these good reasons for studying general quasipairings, we
admit that such combinatorial structures seem to us interesting enough in their own
right. Let us therefore devote the present section to analysing general quasipairings
which yield solvable systems S(p 1), also casting a glance at connections with divis-
ibility properties of unitary polynomials. In accordance with the above formalism,
some particular cases of unsolvability can be swiftly detected, as for example the one
depicted in Figure 3 (we assume, without loosing generality, that a;4 = 1).

Figure 3: A contradiction in S({O,l,4},{0,1,2,4,6,7,10})

The reader will observe that this quasipairing—as well as the middle one at the
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bottom of Figure 2—enjoys the following property.
For some index i, {l; +p1,li+p2} C L. (P)

In our example such property is satisfied if either ¢+ = 0 or ¢ = 4. Diagrams of
quasipairings for which (P) holds can be easily recognised, as they are characterised
by containing two pairs of opposite points whose connecting edges are the bases of an
isosceles trapeze. The following claim will now relate (P) to the solvability question.

Proposition 4.1. If (P, L) satisfies (P), then Sip 1) is not solvable.

Proof. We generalise the proof illustrated in the above figure. If some index ¢ makes
(P) hold, then the assignments

Loi+pr =Y 3 Loli+ps — Ly Lpylitps — 1

force the further assignments

Tpie = —Y 5 Tpyly = —T , Tpylobpy = —1 .

Hence, z,, 1,45, should be equal to both zy and —xy, which is a contradiction.  [I

Remarkably, a computer search performed over all quasipairings with ¢ < 8, py <
20, I, < 35 has shown that quasipairings not satisfying (P), and with |L| > 3, are
all of the form ({0, p,2p},L). We were consequently led to the

Conjecture 4.2. Let (P, L) be a quasipairing which does not satisfy (P), and assume
that P = {0, p1,pa} with py # 2p;. Then |L| = 3.

Proposition 4.1 along with Proposition 2.2 and the above conjecture, if true,
would provide an affirmative answer to the

Conjecture 4.3. If P = {0,p1,p2} with py # 2p:1, the system Sip 1y is unsolvable
unless |L| = 3 and one of the following two cases arises:

P2 = 3p1, l1 = p1, Iy = 2py; p1 = 2ly, pp = 31y, Iy = 215

Equivalently, let o(z), B(x) be monic unitary trinomials such that deg(a) < deg(f),
with o not of the form x® + az™ +b. Then B/a is a unitary polynomial in Clz]
if and only if the triple (B/a, «, B) has one of the forms appearing in Corollary 2.3
(except the last form).

Let us finally concentrate on the remaining cases, namely those where p, = 2p;.

Theorem 4.4. The pair ({0,p, 2p}, L) is a quasipairing if and only if there exist two
multiples of 3p, say M and 2, such that 0 < Q < M, M > 3p, and

L={0,p,2p,...,.M}
—{z <Q—=p:2x=2p (mod 3p)}U{z >Q+p: 2z =F (mod 3p)}),

where E € {0,p}. The singular line case occurs precisely when Q@ < M and E = 0.
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(For example, if |L| = 3 we find again the three admissible configurations in
Figure 2, with (M,Q, E) equal to (3n,0,0),(3n,0,n),(3n,3n, E); notice that, in
general, E has no effect if Q = M.)

Proof. Let us first assume that the quasipairing contains a singular point of the form
(p,1). Then, by direct construction it could be easily seen that [ is a multiple of 3p
and that the elements of L smaller than [ (if any of these exists) are precisely all
multiples of p not congruent to 2p (mod 3p). Similarly, the elements of L that are
greater than [ (if any exists) are characterised by being multiples of p not congruent
to p (mod 3p), and the largest of them is a multiple of 3p. It could be also seen with
few difficulties that no configuration can have the first component of the singular pair
different from p. Finally, a singular line occurs if and only if 9 points are arranged
in a square. Again by direct construction, one sees that the corresponding elements
of L must be consecutive and of the form 3hp,3hp + p,3hp + 2p with h > 0, while
all preceding [all following] numbers are precisely the multiples of p not congruent
to 2p [to 0] (mod p), the largest number being congruent to 2p (mod p). By defining
Q as either [ or 3hp, and M as either the largest element of L or the largest plus
p, respectively in the singular pair and singular line case, we obtain the claimed
assertion. O

The above characterisation is useful to get some insight about a special class of
unitary trinomials:

Proposition 4.5. Let ¢ be chosen in {—1,1}, n be a positive natural number, and
define S(«) as the remainder of the Buclidean division of the natural number a by 2.
The unitary trinomials in Cx], arising as a product of x*" +ca™+ 1 times a unitary
polynomial f(x) # 1 such that f(0) = 1, are precisely those of the form

£SO (MF2)n | 1-5(@)p(@+1)n 4 1

where M, Q are multiples of 3 such that 0 < Q < M, and those of the form

LSO (M1 | S(@)p(@+2)n | 1

where M, 0 are multiples of 3 such that 0 < Q) < M. Instead, no unitary trinomial
can be likewise obtained as a multiple of —2*" + ez + 1.

We omit the relevant proof, which is essentially based on the same heuristic
argument as in the proof of Proposition 2.2. One in fact realises that in the present
case the 3 points in the first row must be labelled respectively by 1,¢,1, while all
other rows turn out to be univocally labelled, without ever reaching a contradiction.
An equivalent result can be likewise established in terms of monic polynomials.

5 Concluding remarks

Quasipairings can be generalised by allowing the singular pairs to be as many as any
fixed natural number (possibly zero):
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Definition 5.1. Let d be a non-negative integer. A d-quasipairing consists of two
sets of natural numbers P = {0,p;,pa}, L = {0,04,...,1;} (where the indexings
preserve <) with the property that there exist d pairs (py, 1), .-, (Pa,ls) € P x L —
{(0,0), (p2,1,)} such that

V(i,j) € P x L —{(0,0),(p2, 1), (P1,11)s -, (Parla)}
AN, 7)€ Px L—{(0,0),(p2,1g), B, 11), - - -, (Basla), (3,§)}: i+ 5 =14 +J.

For example, ({0,1,2},{0,1,3,4,6,7}) is a O-quasiparing, whereas ({0, 1, 3}, {0, 3,
4,5}) is a 2-quasiparing. Without going into details, we limit ourselves to say that
an adequate understanding of d-quasipairings with 0 < d < 2 (including both the
affirmative answer to Conjecture 4.2 and some results on solvability in the same vein
as in Proposition 2.2) might be in our opinion crucial for giving an affirmative answer
to the

Conjecture 5.2. If g(t), h(t) are unitary trinomials such that h/g is a polynomial
in Clt], then h/g is unitary.

Notice that the above conjecture does not hold in the case of ratios of unitary
quadrinomials. For example, we have that (2 +#2+t+1)(#? =2t +1) = > -t — ¢+ 1.

To conclude the present study, we want to stress the fact that quasipairings
theory does not take into account most algebraic properties of finite fields. Quite
conceivably, the detection of polynomial ratios of unitary trinomials with coefficients
in a finite field can be carried out with far more tools. For example, the claim of
Exercise 3.95 of [12] provides an interesting suggestion for producing new unitary
trinomials as multiples of a fixed unitary trinomial, in some prescribed finite field:

Property 5.3. (Exercise 3.95, [12]) Let f(z) = 2"+ azk +b € F [z], withn > k > 1,
and let m € N be a multiple of ord(f) (namely, the least positive integer e such that
f divides x¢ — 1). Then f divides the trinomial x™* + b~ tz" =% + ab™L.

Examples like this, however, do not prevent us from feeling that quasipairings
still conceal some fascinating and exploitable arithmetical properties.

Appendix

As mentioned in the Introduction, nice lists with & = 3 can be completely charac-
terised, using some tools from classical number theory.

Proposition 5.4. Let p be a prime number greater than 5. There exists a 3-subset
of Z,, with a nice list of differences if and only if either p = 1 (mod 6) or p = £1
(mod 10).

Proof. Under the requirement that A{0, 1, sz'} = £{1, z, 2%} for some z € Z,, with
s € {—1,1} and 7 € {1,2}, 4 cases arise.
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(1) s =i = 1. In this case, either z2 +z -1 =0or 2> —z+ 1 = 0 (mod p).
In the first subcase, using the well-known formula for quadratic equations we find
that the existence of a solution is equivalent to the existence of a square root of 5
in that field. Now the quadratic reciprocity law* implies that the last condition is
equivalent to p = 1 (mod 10). Instead, in the second subcase any solution z is such
that 23 4 1 = 0, whence = has order 6. Now according to Fermat’s Little Theorem,
P~ =1 (mod p). Therefore, we have that p =1 (mod 6). On the other hand, if we
consider a primitive element § € Z,, (thus, the order of 6 is p — 1) with p = 1 (mod
6), then §»~1)/6 golves the equation 2 — z + 1 = 0.

(2) s = —1,i=1. In this case either 2> + v +1 =0 or 2 —z — 1 = 0 holds. In
the first subcase we obtain, similarly as above, p = 1 (mod 3), which is equivalent
to p =1 (mod 6). In the other case we require again that v/5 € Z,, and we proceed
as above.

The remaining cases (3) and (4), which we do not mention, can be managed in
a similar fashion. a
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