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Abstract

A group is called R-sequenceable if its nonidentity elements can be listed
as ap, as, ..., Ay,—1 such that al_lag, a;1a3, s a;f_zam,l, a;nl_lal are all dis-
tinct. It is called R*-sequenceable if, further, a; = a;_1a;41 = a;110; 1
for some . In this paper, we prove that (1) the direct product of a cyclic
group of order p, where p is a prime, with a cyclic group of order m, where
m is any odd integer greater than 3, is R-sequenceable, and (2) the direct
product of an R*-sequenceable group G with an R*-sequenceable group
H of odd order is R*-sequenceable, with the possible exception of the
case when G is of odd order and the order of H is divisible by 3.

1 Introduction

Sequences in finite groups have been used for many combinatorial designs. R-
sequenceability of groups was introduced by Paige [7] in 1951 when he observed
that the R-sequenceability of a group is a sufficient condition for the group having a
complete mapping. Ringel [8] came across the same concept in 1974 in his process
of solving the Heawood map coloring problem. Friedlander et al. [3] studied the R-
sequenceability of abelian groups in great depth and introduced following definition
motivated by sequences used by Ringel.

Definition 1.1 A sequence ay,as, ..., a,_; containing all non-identity elements of a
finite group G of order m is called an R-sequencing of G if aj ‘as, ay'as, ..., a;{Zam_l,
a, " a; are all distinct. A finite group G is called R-sequenceable if it has an R-
sequencing.

An equivalent definition motivated by sequences used by Paige can be found in [6].
From now on, we are going to use additive notation when we discuss abelian groups.
It was proved in [3] that the following types of abelian group are R-sequenceable:
cyclic groups of order relatively prime to 6; abelian groups of odd order whose Sylow
3-sugroup is cyclic; elementary abelian p-groups except Zs; abelian groups of type
G = Zy @ Zu; abelian groups whose Sylow 2-subgroup is mZ, where m # 3 and
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m > 1; abelian groups whose Sylow 2-subgroup S is Zy @ Zywhere k is odd or
E >11is even and G/S has a direct cyclic summand of order congruent 2 modulo 3.
Headley [4] proved that non-cyclic abelian 2-groups are R-sequenceable. The com-
plete determination of R-sequenceable abelian groups is still an open question. For
nonabelian groups, it was proved that dihedral groups of order 4n are R-sequenceable
[5], dicyclic groups of order 8n are R-sequenceable for n > 2 , and the nonabelian
groups of order pg, where p < ¢ are primes, are R-sequenceable [9]. We refer to [6]
for a survey on this topic.

As a variation of R-sequenceability, Beals et al. [1] introduced the following:

Definition 1.2. A group G of order m is called harmonious if its elements can be
listed as ay,as9,...,am,_1,a;, such that ajas,asas, ..., amn_10,, ana; are all elements
of G. The sequence ay,as,...,0n_1,a, is called a harmonious sequence.

Let G* = G — {e}, where e is the identity of G. Beals et al. [1] also discussed

harmonious sequences in G*. It is convenient to call a harmonious sequence in G¥ a
f-harmonious sequence of G, so we introduce the following:
Definition 1.3 A group G of order m is called f-harmonious if all nonidentity
elements of G can be listed as ay,as,...,a,_1 such that elements aias,asas, ...,
Am—9@m_1,Am_1a1 are all nonidentity elements of G. The sequence ay, as, - .., ap_11S
called a f-harmonious sequence.

It was proved in [1] that an abelian group G having either a non-cyclic or trivial
Sylow 2-subgroup is f-harmonious unless G = Z, .

2 The direct product of Z, with Z,,

Lemma 2.1 There is an R-sequencing ay,as, ..., @m_1 0f Zy for odd integers m > 7
such that a; — 2a,,—1 = 2.

Proof. In [3], Theorem 4, it was proved that Zs..; has an R-sequencing ay, as, . . .,
@m—1 which is given by the formula

o — (i4+1)/2 if ¢ is odd
Tl k+1—4/2 if iis even

Qpyi = Qp—jp1 + K

fori=1,2,... k.

Case 1. m = 12t + 1. In this case, ag;_1 = 10t and ag; = 20t + 2. We rewrite the
R-sequencing as agg, Gggi1y vy Gm—1, 01, G2, « -« -, Ag¢—1-

Case 2. m = 12t + 3. In this case, aq;_; = 2t and a4y = 4t + 2. We rewrite the
R-sequencing as aag, Qagr1y - Qm1, A1, G2y . .y Qgg—1-

Case 3. m = 12t + 5. In this case, agy2 = 4t + 2 and aqe3 = 2t + 2. We rewrite
the R-sequencing as —agsyo, —Qapa1y -« ) =02, —Q1, =1, — Q2 -+ y —Qg—1-

Case 4. m = 12t 4+ 7. In this case, aq43 = 2t + 2 and agyrq4 = 4t + 2. We rewrite
the R-sequencing as —aagya, —Qagi5y -« —Qm—1, —A1, —Q2, . . . y —A4g43-



MORE R-SEQUENCEABLE GROUPS 217

Case 5. m = 12t + 9. In this case, ag;o7 = 10t + 8 and agi s = 20t + 14. We

rewrite the R-sequencing as —agys, —Ast49,- - -y —Am—1, —A1, —A2, . . . , —Agt47-
Case 6. m = 12t +11. In this case, ay4 = 4t +4 and ag45 = 2t + 3. We rewrite
the R-sequencing as —agsyq, — a3, -+, =2, —Q1, =1, — G2y - -y —Q4g45- O

By Lemma 2.1, we see that Z,, also has an R-sequencing ay,as,...,a,—1 such
that a; — 2am,1 = —2.

Lemma 2.2. There is a §-harmonious sequence by, b, ...,bm_1 0f Zp such that for
every b; # £2,£(2k — 1) when m = 4k + 1, and for every b; # £2,£(2k + 1) when
m =4k + 3, we have b; — b;_1 = 2 or b;_; — b; = 2.

Proof. (Beals et al. [1]) The #-harmonious sequence of Z,, from [1] defined by

b =2k +2i, fori=1,2,... .,k
bk+i:2i,f01‘i:1727...7k
bops =2k —2i+ 1, fori=1,2,...,k
by =4k — 20+ 1, fori=1,2,...,k

if m —1=4k, and as

by =2k +2i, fori=1,2,... . k+1
bk+1+i:2i, fOI‘iZ].,Q,...,k
b2k+1+i:2k—2i+3,f01‘i:1727...7k+1
bgk+2+i:4k—2i+3, fOfizl,Q,...7k

if m — 1 =4k + 2, has the property described in the lemma. a
Lemma 2.3. For any odd integer m > 3, Z,, has an R-sequencing ay,as,. .., am_1
and an #-harmonious sequence by, by, ..., by,_1 such that by = ap_1 and by, =
a1 — Am—1

Proof. When m > 7, by Lemma 2.1, we may construct an R-sequencing ay, as, ...,
am—1 such that the difference between a; and 2a,,_; is 2.

Case 1. m = 12t + 1. By the proof of Lemma 1, we may assume a,, ; = 10t and
a; — Qm-1 = 10t + 2.

Case 2. m = 12t + 3. We may assume a,,_1 = 2t and a; — @1 = 2t + 2

Case 3. m = 12t + 5. We may assume a,,_; = 10t + 3 and a; — a,,—1 = 10t
Case 4. m = 12t + 7. We may assume a,, ; = 10t + 5 and a; — a1 = 10t + 7.
Case 5. m = 12t + 9. We may assume a,,—; = 2t + 1 and ay — a,,—1 = 2t + 3.
Case 6. m = 12t + 11. We may assume a,,_; = 10t +8 and a; — a,,—; = 10t 4+ 10.

In each case, we see that ap_; # £2,%+(2k — 1) when m = 4k + 1, and a1 #
+2,+(2k + 1) when m = 4k + 3. Hence, ap_; and a; — a1 are two adjacent
terms in the f-harmonious sequence given in Lemma 2.2. Hence we may rewrite the
#-harmonious sequence beginning at a,,—; and ending with a; — a,,_;1.

If m =5, we have an R-sequencing 4,2,1,3 and f-harmonious sequence 3,4,2,1.
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If m = 7, we have an R-sequencing 6,4,1,3,2,5 and f-harmonious sequence
5,4,6,2,3,1. O

Now we are going to present the main result in this section.

Theorem 2.4 The direct sum Z, ® Zp, is R-sequenceable for any odd prime p and
any odd integer m > 3.

Proof. By Cohen and Mullen [2], for any prime p > 3, there are two primitive roots
oy and s of p such that a; +ay = 1. If we write § = 1/a;,then 1/ay =1/(1—ay) =
B/(B — 1). Therefore both 5 and 8/(8 — 1) are primitive roots of p. For p = 3, we
can take § = 2.

Let aj,as,...,an,_1 be an R-sequencing of Z,, and let by,bs,...,0,_1 be an f-
harmonious sequence of Z,, such that b, = a,,_; and b,,_1 = a; — a,,—;. We claim
that the following sequence is an R-sequencing of Z, @ Zp,:

(0,a1), (0, a2), -, (0, am-1), (1,b1), (5772, =b1), (577, bu),
(87, =b1),. .., (6%, b1), (B, =by), (1,b2),

(8772, =b2), (8772, bs), (8774, =ba), .., (5%, 02), (B, =bs),
(1,b3), ..., (B"72, =bm_s), (B2, bmesa), (B, =bmes), . ..,
(B%,bm—2); (8; =bm—2), (L, bm—1), (6772, =bm—1), (B>, b)),
(B, =bm=1), -, (8%, bme1), (B, —bm-1),

ﬁ2 53 61::—2
(,3 — 1)70)((6_ 1)270)7"'7(W70)7((6_ 1)70)

. . o 2
Since 8/(8 —1) is a primitive root of p, so (ﬁ T G |
nonzero elements in Z, except 1. Hence, (5 1) (Bﬁl)“"" @ pl)p T (B 1)P 2,6 are all

-1
nonzero elements in Z,. Note that (ﬂ 1)P —— = 3—1. Observing that 8, 32,...,8° ! =
1 are all nonzero elements in Z, and the elements b; for « = 1,2,...,m — 1 are

all nonzero elements in Z,,, we conclude the above sequence contains all nonzero
elements of Z, P Z,,.

The differences zp — x,_; between each element x; and its predecessor in the
above sequence are:

(6,0),(

(BBPI)P 5 con51sts of all

(]. —ﬁ,al), (0702 - a1)7 ey (O,Clm_l - am_2)7 (1,0)7

(8772 = 1,=2by), (8% = 8772, 2b0), ..., (8 — 6%, —2b),
(1= 8,02+ 1), (8772 = 1,=2by), (677 — P72, 205),..., (B — B%, —2b),
(L =B, by +b2), oo (8777 = 1, =byn2), (B77° = 772, 2bia), - .-,
(/6 - 62, _Qbm—2)a (1 — By + bm72)7 (BP_Z -1, _mefl)’
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(,81373 _ ,81372, 2bm—1)7 ey (/8 — /82, _2bm—1)7 (07 bm—l)7

62 53 62 ﬁp72 61:173
(,3—]. _670)7(M_B_170)7"'7 ((B_ 1)p_3 - (B_l)p_470)7((6_1)_
By
G-

. Bi+1 Bi o 51’ Bi+1 51’ .
Since G-~ GeD=T T o SO0 o~ enenl = 1,2,...,p— 2, are all

nonzero elements in Z,, except 1. We conclude that all nonzero elements of Z, @ Z,,
are contained in these differences by observing that

(1) ay = b1 + by and bp,_y = @y — App_y;

(2) bi,i=1,...,m —11is a f-harmonious sequence of Z,, ;
(3) ai,i=1,...,m —11is an R-sequencing of Z,, ;
(4) 2b;,i=1,2,...,m — 1 are all nonzero elements of Z,,

d

This theorem gives infinitely many abelian R-sequenceable groups with order of a
multiple of three which are not included in the abelian R-sequenceable groups found
in [3].

Example. For p =7 and m = 9, we have § = 3 and % = ) are two primitive roots
of 7. In Zy we have an R-sequencing 4,8,5,7,6,2,3,1 and a f-harmonious sequence
1,7,5,6,8,2,4,3 with a,, 1 = by =1 and b,, ; =3 =4 —1 = a; — ag. Hence, by
the construction in the proof of the theorem we have an R-sequencing of Z; @ Zy as
follows.

(0,4),(0,8),(0,5),(0,7),(0,6), (0,2),(0,3),(0,1)
(1,1),(5,8),(4,1),(6,8),(2,1),(3,8),
(1,7),(5,2),(4,7),(6,2),(2,7),(3,2),
(1,5),(5,4),(4,5),(6,4),(2,5), (3,4),
(1,6),(5,3),(4,6),(6,3),(2,6), (3,3),
(1,8),(5,1),(4,8),(6,1),(2,8),(3,1),
(1,2),(5,7),(4,2),(6,7),(2,2),(3,7),

(1,4),(5,5), (4,4),(6,5),(2,4), (3,5),

(1,3),(5,6), (4,3),(6,6),(2,3), (3,6),

(3,0),(1,0),(5,0), (4,0),(6,0), (2,0).
3 A product theorem
Definition 3.1. An R-sequencing ai,as,...,a,_1 of a group G is called an R*-
sequencing if a; = a;_1a;41 = a;410;_1 for some i¢. A group possessing an R*-

sequencing is called R*-sequenceable.

This concept was introduced in [3] for abelian groups in order to establish a direct
product theorem. In [10] the R*-sequenceability of nonabelian groups was introduced
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and discussed. In this section, we are going to consider the direct product of two
R*-sequenceable groups.

First we point out that the R-sequencing given in Lemma 2.1 is R*-sequencing
when m = 12t + 1, 12¢t + 3, 12t + 7, 12t + 9. Suppose that the R-sequencing
a1,as,...,0a,_1 in the proof of Theorem 1.4 is the R-sequencing given in Lemma 1.
Then when m = 12t+1, we have three consecutive terms (0, 2t), (0,4t +1), (0,2¢t+1).
When m = 12t+3, there are three consecutive terms (0, 10¢+3), (0, 8t+2), (0, 10¢+2).
When m = 12t + 7 there are three consecutive terms (0, 2t +1), (0,4t +3), (0, 2¢+1).
When m = 12¢+9, there are three consecutive terms (0, 10¢+8), (0, 8¢+6), (0, 10t+7).
Hence the R-sequencings of Z, @@ Z,, that we obtained in the proof of Theorem 2.4
are R*-sequencings when m = 12¢t 4+ 1, 12t + 3, 12t + 7, 12t + 9.

R*-sequenceability is stronger than R-sequenceability. For example, R-sequence-
able groups Zs, Zs @ Z5 are not R*-sequenceable and the quaternion group is R-
sequenceable but not R*-sequenceable. Technically, we may regard Z3 as being R*-
sequenceable, because there are only two non-zero elements in Z3 so the condition
of R*-sequencing cannot apply to it. Since neither Z3 nor Z5 has R*-sequencing, we
shall assume from now on that any reference to an R*-sequenceable group of odd
order is to a group of order greater than 5.

Theorem 3.2 The direct product of an R*-sequenceable group G of order m with
an R*-sequenceable groups H of odd order 2k +1 is R*-sequenceable with the possible
exception of the case when m is odd and 2k + 1 is divisible by 3.

Proof. Assume that a;,as,...,a,_1 is an R*-sequencing of G with a; = asa,,_1 =
Am—1a2. We write a m x (2k+ 1) matrix A as follows where 2k + 1 is the order of H.

- ay ai PN ai e e PN e

ay ay ay . ay e e . e

A= a9 asg a9 . a9 a9 Qas . Qasg
Am-1 Am-1 Am-1 ... Am-1 Apm-1 GAp-1 ... Gp-1

Assume that by,bs,...,by is an R*-sequencing of H with b; = bybyy, = boyby. If
m is even, we write a matrix B as follows.

- b3 b5 e b2k71 b1 b2 b4 e b2k72 bgk
€ b2 by ... bag—a by by by ... bap—z bop—1
€ b3 b5 PN b2k71 b1 bg b4 e bgk,Q bgk
e byt byt oo byl byt obyt bt oL by, by
B = (& bg b5 . bZk—l bl b2 b4 - bZk—Z bZk
e byt bzt ookt b7t byt obrt oo bty by
€ b3 b5 PN b2k71 b1 bg b4 e bgk,Q bgk

b2 b4 he . bZk bl bg b5 - bZk—l e
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If m is odd, we just insert an extra row e,b3,b2,...,b3, |, b3, b3, 6%, ... b3, ,, b3 and
let
- b3 b5 b2k71 b1 b2 b4 b2k72 bgk
e by by ... bop2 bop by by ... bop—3 bop
€ b3 b5 b2k71 b1 bg b4 bgk,Q bgk
e byt obgtoobyl, byt byt obt o by, by
e BB B, BB BB, b
B = (& bg b5 bZk—l bl b2 b4 bZk—Z bZk
e byt bzt o byl bt byt obpt oL byl byt
€ b3 b5 b2k71 b1 bg b4 bgk,Q bgk
b2 b4 he bZk bl bg b5 bZk—l e

We claim that the sequence (z;,y;), where z; and y; are obtained by reading
down the successive columns of matrices A and B respectively, is an R*-sequencing
of G x H. Observe that (1) every row of B contains distinct elements of H, (2) every
element of H appear exactly once among the entries of columns 1 to k41 of the first
two rows of B and these entries correspond to the entry a; in the matrix A, (3) every
non-identity element of H appears exactly once among the entries from the (k+2)th
column to the last column of the first two rows of B and these entries correspond to
the entry e in the matrix A. Hence, when we look also at entries in the remaining
rows of B, we see that the pairs (z;,y;) include all non-identity elements of G x H.

Now we construct matrices A’ and B’ by assigning a;’!, ;a; (we use a;; to denote
the (,7) entry of A) as the (i,7) entry of A" and b, .b;; as the (i, ) entry of B'.

=1,
Therefore,

—1 -1 —1 -1
1— Ay 1 Apy 10 Ay Ay
Q101 e e e e
- —-1 —1
A, ay 1(12 aq 1(12 y 1(12 012 Cl12
Ay Q3 a9 " Qa3 Ay Q3 A9 "3 a9 " A3
-1 -1 -1 -1 -1
am72am,1 am72am,1 am72am,1 am72am,1 am72am,1

-1
m—1"

When m is odd, the first row of B’ is (with the first entry empty)

Notice that a;' ja; = ay and ajtas = a

by bs, by hs, .o by bogo1, by by, b b, b3 by, L byt o

Since by, by, ..., by is R*-sequencing of H, so this row contains all nonidentity ele-
ments of H.

The second row of B’ is
€,03 02, 05 ba, .o byt boga, b7 bog, b5 b1, b7 s, by bok—g, by bak— 1

Since bay, bor_1,...,b; is an R*-sequencing of H, so the second row of B’ contains
all elements of H. The third row is the same as the first row except that its
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first entry is e. Notice that corresponding to a,' a; in A’ the entries in B’ are
all distinct, and corresponding to aj'a, in A’ the entries in B’ are all distinct.

The fourth row of B is e,b3%,b5%, ... by 1,072,632, 677, ... by |, by This row
contains all elements of H, because H is of odd order. The fifth row of B’ is
e, b3, b3, ... b3, b3, 63,03, ... b3, _,,b3,, which contains all elements of H, because
when m is odd we assume the order of H is not divisible by 3.
The sixth row of B' is e, b3, b5, ..., b5t 1,074, 030, 07t ... byt 1, b3 Then from
the seventh row, every row of odd order except the last row is
—2 ;-2 —2 —2 -2 7-2 —2 —2
e by by, by, by 05,07, by, by
and every row of even order is e, b3,b%,..., b3, _,,b%, b2 b2, ... b3, b2,

The last row of B’ is bZ, 65164, bglbg, e ,b;kl_lbyh e, b;lbg, 621657 ey b;kl_262k_1, b;kl
Since by = b;klbl and b;kl = bfle, the last row contains all elements of H.

When m is even, the first three rows and the last row are the same as in
the previous case. From the fourth row, every row of even order except the last
row is e, 893_27 b5_2, .. .,b;k?_l, bl_27 b2_2,b22, .. .,b;k?_l,b;k? and every row of odd order is
e, b3, b2, ... b, b3, b3, b5, . bR, b5,

The sequence (2}, y;), where 2} and y; are obtained by reading down the successive
columns of matrices A'and B’ respectively, contains all nonidentity elements of G x H.
Therefore (z;,¥;) is an R-sequencing. Notice that (ap_1¢), (a1,€), (as,€) are three
consecutive elements in the sequence, so (z;,y;) is an R*-sequencing.

The above theorem is parallel to a result in [11]. A group H of odd order 2k + 1
is called symmetric harmonious if it has a harmonious sequence e,a as, ..., ag, @g+1,
..., ay such that a]' = apy, for i = 1,2, ..., k. It was proved in [11] that the direct
product of an R*-sequenceable group G with a symmetric harmonious group H of
odd order is R*-sequenceable with the possible exception of the case when the order
of G is odd and the order of H is divisible by 3.

4 Remarks

The case when G is of odd order and the order of H is divisible by 3 is not covered by
the above construction. In this case if we further assume that H is R»-sequenceable
(as defined below), then we show next that we may claim the same conclusion.

The following concept was introduced by Keedwell [5].

Definition 4.1. Suppose G is a group of order m. A sequence aj,as, ..., Gy,_1 Of
all nonidentity elements of G is called an Rj-sequencing if a;'a;y; , where i =
1,2,...,m — 1, are distinct for any 1 < j < h (index arithmetic is modulo m —1). A
group possessing Rj-sequencing is called Rj-sequenceable.

It was shown in [5] that the elementary abelian group of order p” is Rj-sequence-
ablefor h = 1,2, ..., p" 2. Except for this result, little is known on Rj-sequenceability
for h > 1.
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Now, with the same assumptions as for Theorem 3.2, we further assume by, bs, . . .,
byr is an Ry-sequencing. We keep the matrix A the same as in the proof of Theorem
3.2 and let:

- bg b5 e bZk—l bl bZ b4 e bgk_g bgk
e by by ... by_o by by b3 ... b3z b1
e b3 b5 N b2k71 b1 bg b4 PN b2k—2 bzk
e b1 b3 ... boypz byp1 bap by ... Dap_g byp o
e by by ... by_o by by b3 ... bz Dbap_1
B = e bg b5 - bZk—l bl bZ b4 . bgk_g bgk
by ba ... bag—2 by b1 b3 ... by-z oy
e b3 b5 N b2k71 b1 bg b4 PN b2k—2 bzk
by bs he ... by b by by ... by_i e

From the fifth row, every row of odd order except the last row is the same as
the second row and every row of even order is the same as the third row. We still
assign ;') by to be the (i,) entry of B'. Then the first three rows and the last
row are the same as in the proof of Theorem 3.2. The fourth row of B’ becomes
e,b3 by, b5 bs, oy byt bag 3, b7 tbog 1, by Mbag, b7 Hba, oy bt ybok—4, b bag—o. This row
contains all elements of H because we assume by, by, ..., by is also an Rs-sequencing.
The fifth row of B’ becomes e, bflbz, bglb4, s b;kl_sbz;c_z, b;kl_lbz;c,

byt b, by tbs, oy byt ybag 3, byt obay—1, which contains all elements of H. From the
sixth row, every row of even order is the same as the third row and every row of
odd order except the last row is the same as the second row. We can verify that
the sequence (z},y}), where z} and y; are obtained by reading down the successive
columns of matrices A’ and B’ respectively, contains all nonidentity elements of
G x H. Hence we may state the following

Theorem 4.2. Suppose that G is R*-sequenceable of odd order and H of order
2k + 1 has an R*-sequencing by, bo, .., by, which is also an Ry-sequencing, then G x H
is R*-sequenceable.

However, to find an Rs-sequencing is very difficult. According to [5], Zg is not
Rs-sequenceable while Z;5 and Z,; are.
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