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Abstract

In this paper, it has been proved that the necessary conditions for the
existence of Cs-decomposition of K, x K, are sufficient, where x de-
notes the tensor product of graphs. Using these necessary and sufficient
conditions, it can be shown that every even regular complete multipartite
graph G can be decomposed into 5-cycles if the number of edges of G is
divisible by 5.

1 Introduction

All graphs considered here are simple and finite. Let C,, denote a cycle of length n.
If the edge set of GG can be partitioned into cycles C,,,, Cp,, ..., C,,, then we say that
Cryy Chyy - -+, Cp,. decompose G. If ny = ny = ... = n, = k, then we say that G has a
C-decomposition and in this case we write Cj, | G. If G has a 2-factorization and each
2-factor of it has only cycles of length k, then we say that G has a Cj-factorization,
in notation Cy, || G. We write G = Hy & Hy® ... ® Hy, if Hy, Hs, ..., Hy are edge-
disjoint subgraphs of G and E(G) = E(H;)U E(H,)U...U E(Hy). The complete
graph on m vertices is denoted by K, and its complement is denoted by K,,. For a
positive integer k and the graph H, the graph kH denotes k vertex disjoint copies of
H. For a graph G, G(\) denotes the graph obtained from G by replacing each of its
edges by A\ edges. A cycle of length £ is called a k-cycle and it is denoted by C. A
path on k vertices is denoted by P.

For two graphs G and H, their wreath product G * H has vertex set V(G) x V(H)
in which (g1, h1) and (gs, hy) are adjacent whenever ¢g1g5 € E(G) or g1 = g9 and
hihe € E(H). Similarly, G x H, the tensor product of the graphs G and H has vertex
set V(G) x V(H) in which two vertices (g1, h1) and (g2, hs) are adjacent whenever
9192 € E(G) and hihy € E(H). Clearly, the tensor product is commutative and
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distributive over edge-disjoint union of graphs, that is, if G = Hy ® Hy & ... & Hy,
then GXx H=(Hi xH)® (Hyx H)®...®(Hyx H). For he V(H), V(G) x h=
{(v, h)|v € V(G)} is called the column of vertices of G x H corresponding to h.
Further, for z € V(G), e xV(H) = {(z, v) |v € V(H)} is called the layer of vertices
of G x H corresponding to x. Similarly, we can define column and layer for the wreath
product of graphs also. It is easy to observe that K,, * K, is isomorphic to the
complete m-partite graph in which each partite set has exactly n vertices. It is easy
to see that K, x K, is a subgraph of K, * K ,; in fact, K, x K, = (Kn*K,)—nkK,,.

A latin square of order n is an n X n array, each cell of which contains exactly one
of the symbols in {1, 2, ..., n}, such that each row and each column of the array
contains each of the symbols in {1, 2, ..., n} exactly once. A latin square is said to
be idempotent if the cell (i, 7) contains the symbol i, 1 <i < n.

Let G be a bipartite graph with bipartition (X, Y), where X = {z1, 2o, ..., 5},
Y = {y1,y2, ..., yn}. If G contains the set of edges F;(X,Y) = {zjyis; | 1 <
j < n}, 0 < i< n—1, where addition in the subscript is taken modulo n with
residues 1, 2, ..., n, then we say that G has the 1-factor of distance i from X to
Y. Note that Fy(Y, X) = F, (X, Y), 0 < i < n— 1. Clearly, if G = K, ,, then
E(G) = U;:ol F;(X,Y). In a bipartite graph with bipartition (X, Y) with |X| = |Y,
if z;y; is an edge, then z;y; is called an edge of distance j—i it i < j, or n — (i — j),
it i > j, from X to Y. (The same edge is said to be of distance i — j if i > j or
n—(j—1),ifi<j, fromY to X.)

Recently, it has been proved that if n is odd and m | (}) or niseven and m | ((3)—2),
then C), | K, or Cp, | K, — I, where I is a 1-factor of K, [1, 16]. A similar problem
is also considered for regular complete multipartite graphs; Cavenagh and Billing-
ton [8] and Mahmoodian and Mirzakhani [12] have considered Cs-decompositions
of complete tripartite graphs, see also [6]. Moreover, Billington [3] has studied the
decompositions of complete tripartite graphs into cycles of length 3 and 4. Further,
Cavenagh and Billington [7] have studied the 4-cycle, 6-cycle and 8-cycle decom-
positions of complete multipartite graphs. Billington et al. [5] have solved the
problem of decomposing (K, * K,)()\) into 5-cycles. The present authors also have
proved [13, 14] that the necessary conditions for the existence of C)-decompositions
of K, ¥ K,, and K,, x K, are also sufficient, where p > 7 is a prime. A detailed ac-
count of cycle decompositions of complete graphs and complete multipartite graphs
can be seen in [9] and [4], respectively. Also a complete solution to Cy-factorization
of even regular complete multipartite graphs can be seen in [11].

In this paper, we prove that the obvious necessary conditions for K, X K,,, m, n > 3,
to have a C5-decomposition are also sufficient. Among other results, here we prove
the following main result.

Theorem 1.1 Form,n >3, C5 | K, x K, if and only if (1) 5| nm(m—1)(n—1)
and (2) either m orn is odd.

Using Theorem 1.1, we can prove the following theorem, which is also proved in [5].
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Theorem 1.2 [5] Form >3, Cs | K,, * K, if and only if (1) n(m—1) is even and
(2) 5] m(m — 1)n2. ]

2 (s-Decomposition of C3x K,

Lemma 2.1 C5|C3%x K.

Proof. Let the partite sets (layers) of the tripartite graph C3 x Ko be U =
{ui, ug, ..., uo}, V.={v1, va, ..., vio} and W = {ws, wa, ..., wip}; we assume
that the vertices of U, V and W having same subscripts are the ‘corresponding ver-
tices’ of the partite sets. By the definition of the tensor product, {u;, v;, w;}, 1 <
1 < 10, are independent sets and the subgraph induced by each of the subsets of
vertices U UV, VUW and W U U is isomorphic to Kjg19 — Fo, where Fjy is the
1-factor of distance zero in K 10-

We obtain a new graph from C5x Ko as follows: for each i, 1 < i < 5, identify
the subsets of vertices {uz; 1, u2;}, {vei_1, vy} and {wsy; 1, we;} into new vertices
u!, v and w?, respectively, and two of these vertices are adjacent if and only if the
corresponding subsets of vertices in Cs x Ky induce a K. The resulting graph is

isomorphic to Cyx K5 with partite sets U’ = {u!, v?, ..., v*}, V' = {v!, v?, ..., 0%}
and W’ = {w!, w?, ..., w®}; note that {u’, v, w'}, 1 < i < 5, are independent sets
of CgXK5.

Now C3x K5 = U3 X (Cs @ C5) = (C3xC5) @ (C3x Cs). The graph C3x C5 can be
decomposed into 5-cycles, see Figure 1.

C_; X C5
A 5-cycle decomposition of Cs x Cs

Figure 1

By “lifting back” these 5-cycles of C3x K5 to C3x Ko, we get edge-disjoint subgraphs
isomorphic to CsxK 5. But Cs*JK  can be decomposed into cycles of length 5, see [15].
Thus the subgraphs of C3x Ko obtained by “lifting back” the 5-cycles of C3x K5 can
be decomposed into cycles of length 5. The edges of C3x Ko which are not covered
by these 5-cycles are shown in Figure 2.
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Figure 2

To complete the proof, we fuse some of the 5-cycles obtained above with the graph of
Figure 2 and decomposing the resulting graph into cycles of length 5. Let H' be the
graph obtained by the union of the graph of Figure 2 and the subgraph of C5x K
which is obtained by “lifting back” a 5-cycle of Cyx Kj, namely, (u!, v2, w3, u?, v®)
shown in Figure 1. The subgraph H' of C3x Ky is shown in Figure 3. A 5-cycle
decomposition of H' is given below.

(ula Vg, W1, U2, v3)7 (ula Wz, V1, Uz, 1)4)7 (1)3, Wy, U3, V4, w5)7 (1)37 Uy, W3, Vg, w6)7
(w57 Vg, U5, We, U7)7 (w5, Ug, Us, We, U8)7 (U77 wg, U7, Us, Ug), (U7, Ug, W7, Us, 1)10)7

(Ug, U10, Wy, V10, Ul), (1)97 W10, Uy, V10, Uz)- u

N — l’ Aik\
-—*.'!l_lfe". \

Figure 3

Lemma 2.2 C5|C3 % Kg.

Proof. Let the partite sets (layers) of the tripartite graph C3 x Kg be {uy, ua, ...,
ug}, {v1, v2, ..., ve} and {w, wa, ..., wg}. We assume that the vertices having the
same subscript are the corresponding vertices of the partite sets. A 5-cycle decom-
position of C3 x K is given below:
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(U1, Wy, Ug, U3, wz) (U1, Vg, U2, Ws, Us), (U67 V2, Wy, Vs, w5), (U37 U1, Ws, Ug, w2)
(u Vg, W2, U1, w6)7 (u47 Us, We, Us, Ul)a (u37 Ve, W3, Us, w4)7 (u Vs, W4, U3, wl)
(u U3, Us, Vg, w1)7 (ula Us, W3, V2, w6)a (ula Wy, V2, Us, w3)7 (uh V4, Ws, U3, U2)
(u Wy, V1, Ug, wl) (UQ, U1, W3, V4, wﬁ)a (u2a Vg, U3, We, 1]3)7 (u27 Vs, W2, Ue, U}3)
(us, vg, w1, V4, wo) and (us, vs, Ug, Vs, Wy). [

Thegrem 2.3 [2]. Lett be an odd integer and p be a prime so that 3 <t < p. Then
Cy* Kp, has a 2-factorization so that each 2-factor is composed of t cycles of length p.
|

Theorem 2.4 [1]. Ifn = 1ort(mod 2t), where t > 3 is an odd integer, then Cy| K,.
| |

Remark 2.5 Let the partite sets (layers) of the complete tripartite graph Cs * Ko,
m > 1, be {ug, uay ..., U}, {v1, V2, ..., U} and {wy, wa, ..., wy}. Consider a
latin square L of order m. We associate a triangle (3-cycle) of Cs x K, with each
entry of L as follows: if k is the (i,j)th entry of L, then the triangle of Cs % K,
corresponding to k is (u;, v;, wg). Clearly, the triangles corresponding to the entries
of L decompose Cs x K ,; see e.g. [3]. [ |

Theorem 2.6 Cs5|Cyx K.y, if and only if m =0 or 1 (mod 5).
Proof. The necessity is obvious. We prove the sufficiency in two cases.

Case 1. m =1 (mod 5).
Let m =5k + 1.

Subcase 1.1. £k # 2.
Let the partite sets (layers) of the tripartite graph C3 x K, be

U={uo}U((J{ul,ub,...oui}), V ={vo} U (| J{vl, vi, ..., vi})

i=1 i=1

k
and W = {we}U( U{wi, wh, ..., wi});
i=1
we assume that the vertices of U, V and W having the same subscript and superscript
are the corresponding vertices of the partite sets. By the definition of the tensor
product, {ug, vy, we} and {u , wh } 1<j<5,1<i<k,are independent sets
and the subgraph induced by each of the sets UUV, VUW and W UU is isomorphic
to Ky, m — Fo,where Fp is the 1-factor of distance zero in K, .

We obtain a new graph from H = (C3x K,,) — {uo, vo, wo} >~ (O3 x Ky, as follows:
for each 4, 1 <1 <k, identify the sets of vertices {u17 ub, oo ub}, {ol kL vt}
and {w?, wi, .. w5} with new vertices u*, v* and w* respectlvely, two new vertlces
are adjacent if and only if the correspondmg sets of vertices in H induce a complete
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bipartite subgraph Kjs 5 or K5 5 — F, where F' is a 1-factor of K55. This defines the
graph isomorphic to Cs * K, with partite sets {u!, u?, ..., u*}, {v*, v?, ..., v*} and
{w!, w?, ..., w*}. Consider an idempotent latin square £ of order k, k # 2 (which
exists; see [10]). To complete the proof of this subcase, we associate with entries
of £ edge-disjoint subgraphs of Cs * K, which are decomposable by Cs. The ith
diagonal entry of £ corresponds to the triangle (uf, v', w?), 1 <i <k, of Cs % K i see
Remark 2.5. The subgraph of H corresponding to the triangle of C3x K, is isomorphic
to C3 x Ks. For each triangle (u’, v', w?), 1 < i < k, of C3 * K} corresponding to
the 7th diagonal entry of L, associate the subgraph of C3 x K, induced by vertices
{ug, ut, ub, ..., udIU{vg, vi, vi, ..., vi}U{wy, wi, wi, ..., wi}; since this subgraph
is isomorphic to C'3 X Kg, it can be decomposed into cycles of length 5, by Lemma 2.2.
Again, if we consider the subgraph of H corresponding to the triangle of Cs % K}
which corresponds to a non-diagonal entry of £, then it is isomorphic to Cs * K.
By Theorem 2.3, C3 * K5 can be decomposed into cycles of length 5. Thus we have
decomposed C3 x K, into cycles of length 5 when k # 2.

Subcase 1.2. k = 2.

By Theorem 2.4, C5 | K1; and hence we write C3x K13 = (C3x C5) @ (C3x C5) @
... ® (C3xC5). Now C3xCs can be decomposed into cycles of length 5, see Figure 1.
This proves that Cs|C3yx K.

Case 2. m =0 (mod 5).

Let m = bk. If £ = 2, then the result follows from Lemma 2.1. Hence we may
assume that k& # 2. Let the partite sets of the tripartite graph C3 x K,,, be U =
Uf:l{uli7 Ué, R u15}7 V= Uf:l{UL Uév s U%} and W = Uf:l{wli’ w;’ SRR wé}
We assume that the vertices of U, V and W having the same subscript and super-
script are the corresponding vertices of the partite sets. As in the proof of Sub-
case 1.1, from O3 x K,, = C5x Kj; we obtain the graph Cs* K with partite sets
{ut, w?, .o uby, {ot 0?0 0F) and {w!, w? L wh

Consider an idempotent latin square £ of order k, k # 2. The diagonal entries of
L correspond to the triangles (u’, v*, w'), 1 < i < k, of C3% K. If we consider
the subgraph of O x K, corresponding to a triangle of Cs* K}, which corresponds
to a diagonal entry of £, then it is isomorphic to C3 x K5. Clearly, C3 x K5 =
(C3 x C5) @ (C3 x C5). Now Cj | C3 x C5, see Figure 1. Again, as in the previous
case, the triangle of C5% K, corresponding to a non-diagonal entry of £, corresponds
to a subgraph of C5x K,, isomorphic to C3* K 5; by Theorem 2.3, Cs |Cs * K. [ ]

Lemma 2.7 If CQk_1|CQk_1 XKm, k > 2, then 02k+1 |02k+1 XKm.

Proof. Let the partite sets of the (2k — 1)-partite graph Cyy_; X Ky, be {u?, ub, ...,
ul}, 1< < 2k—1. We assume that the vertices having the same subscript are the
corresponding vertices of the partite sets. Let the partite sets of the (2k + 1)-partite
graph Copy xEK,, be {vi, v, ... vl }, 1 <i < 2k+1. Let C be a Cy_-decomposition
of Cyp_1 X K,,. Now we obtain a Cyjyi-decomposition C' of Coppy X K, as follows:

1 1 2 2k—2 2k—1 2k 2k+1 1 2 2k—2 2k—1
C'= {(U]i’ Ujas o+ s Vg > Vjoge_10 Vo szk—l) | (uh’ Ugys oo Uy o> ujzk—l) EC}

Clearly, C' is a Cypy1-decomposition of Cyyy1 X Kp. This completes the proof. [ ]
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Lemma 2.8 Form > 3, C3|C3x Kp,.

Proof. The triangles corresponding to the non-diagonal entries of an idempotent
latin square £ decompose C3 X K,,, see Remark 2.5. An idempotent latin squares of
order m, m # 2, exists [10] and hence C3|Cyx Kp,, m > 3. ]

Lemma 2.9 For k> 1 and m > 3, Cops1|Copy1 X K.

Proof. Proof follows from Lemma 2.8 and successive application of Lemma 2.7. m

3 (s-Decomposition of K,, x K,

The following theorem can be found in [10].

Theorem 3.1 Let m be an odd integer and m > 3.

(1) If m =1 or 3 (mod 6), then Cs| Kp,.

(2) If m =5 (mod 6), then K,, can be decomposed into (m(m — 1) —20)/6 3-cycles
and two 5-cycles. [ |

Proof of Theorem 1.1. The proof of the necessity is obvious and we prove the
sufficiency in two cases. Since the tensor product is commutative, we may assume
that m is odd and so m = 1,3 or 5 (mod 6).

Case 1. n=0or 1 (mod 5).

Subcase 1.1. m =1 or 3 (mod 6).
By Theorem 3.1, C3| K, and hence K,;,xK,, = (C3xK,,)® (CsxK,)®...®(C3xK,).
By Theorem 2.6, C5|C3x K, and hence C5 | K, X K.
Subcase 1.2. m =5 (mod 6).
By Theorem 3.1, K, = C3 ® C3 @ ... © C3&(C5 @ Cs).

(m(m—l)—%)/ﬁ— times
Now Kpnx Ky, = ((ngKn) D (CyxKp) B ... (ngKn)) ® ((C5><Kn) @ (C5><Kn)).
Since C5|C3x K, by Theorem 2.6, and C5|C5s X K,,, by Lemma 2.9, Cs| K, X K,,.
Case 2. n #0 (mod 5) and n # 1 (mod 5).
Since n(n — 1) # 0 (mod 5), condition (1) implies that m = 0 or 1 (mod 5). As m
is odd we have m =1 or 5 (mod 10). Because C5 | K,,, by Theorem 2.4, K,, x K, =
(CsxK,) @ (CsxK,) ... (Csx K,). Now Cj | C5x K, by Lemma 2.9, and so
Cs| Ky, x K, This completes the proof. [ |

We do not supply the proof of Theorem 1.2 since it is similar to the proof of the
following Theorem 3.2 given in [14]. Further, Billington et al. [5] have obtained
a stronger result than this, namely, the necessary conditions for the existence of a
Cs-decomposition of(K,, * K,)()\) are also sufficient.

Theorem 3.2 [14]. For a prime p > 11 and m > 3, C,, | K,, * K,, if and only if
(1) n(m — 1) is even and (2) p | m(m — 1)n% |
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Although the proof of Theorem 1.1 has independent interest, the proof of Theorem 1.2
(similar to the proof of Theorem 3.2 of [14]) explains the effectiveness of Theorem 1.1
in completing the proof of Theorem 1.2. From this paper and [13] and [14], we
conclude that the Cy-cycle decomposition problem of K, x K, may shed some light
on Cy-cycle decomposition problem of K, * K.
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