C_5 -decompositions of the tensor product of complete graphs

R.S. Manikandan P. Paulraja

Department of Mathematics Annamalai University Annamalainagar 608 002 India

Abstract

In this paper, it has been proved that the necessary conditions for the existence of C_5 -decomposition of $K_m \times K_n$ are sufficient, where \times denotes the tensor product of graphs. Using these necessary and sufficient conditions, it can be shown that every even regular complete multipartite graph G can be decomposed into 5-cycles if the number of edges of G is divisible by 5.

1 Introduction

All graphs considered here are simple and finite. Let C_n denote a cycle of length n. If the edge set of G can be partitioned into cycles $C_{n_1}, C_{n_2}, \ldots, C_{n_r}$, then we say that $C_{n_1}, C_{n_2}, \ldots, C_{n_r}$ decompose G. If $n_1 = n_2 = \ldots = n_r = k$, then we say that G has a C_k -decomposition and in this case we write $C_k \mid G$. If G has a 2-factorization and each 2-factor of it has only cycles of length k, then we say that G has a C_k -factorization, in notation $C_k \mid G$. We write $G = H_1 \oplus H_2 \oplus \ldots \oplus H_k$, if H_1, H_2, \ldots, H_k are edge-disjoint subgraphs of G and $E(G) = E(H_1) \cup E(H_2) \cup \ldots \cup E(H_k)$. The complete graph on m vertices is denoted by K_m and its complement is denoted by \overline{K}_m . For a positive integer k and the graph k denotes k vertex disjoint copies of k. For a graph k denotes the graph obtained from k by replacing each of its edges by k edges. A cycle of length k is called a k-cycle and it is denoted by k apath on k vertices is denoted by k.

For two graphs G and H, their wreath product G*H has vertex set $V(G) \times V(H)$ in which (g_1, h_1) and (g_2, h_2) are adjacent whenever $g_1g_2 \in E(G)$ or $g_1 = g_2$ and $h_1h_2 \in E(H)$. Similarly, $G \times H$, the tensor product of the graphs G and H has vertex set $V(G) \times V(H)$ in which two vertices (g_1, h_1) and (g_2, h_2) are adjacent whenever $g_1g_2 \in E(G)$ and $h_1h_2 \in E(H)$. Clearly, the tensor product is commutative and

distributive over edge-disjoint union of graphs, that is, if $G = H_1 \oplus H_2 \oplus \ldots \oplus H_k$, then $G \times H = (H_1 \times H) \oplus (H_2 \times H) \oplus \ldots \oplus (H_k \times H)$. For $h \in V(H)$, $V(G) \times h = \{(v,h) \mid v \in V(G)\}$ is called the *column* of vertices of $G \times H$ corresponding to h. Further, for $x \in V(G)$, $x \times V(H) = \{(x,v) \mid v \in V(H)\}$ is called the *layer* of vertices of $G \times H$ corresponding to x. Similarly, we can define column and layer for the wreath product of graphs also. It is easy to observe that $K_m * \overline{K}_n$ is isomorphic to the complete m-partite graph in which each partite set has exactly n vertices. It is easy to see that $K_m \times K_n$ is a subgraph of $K_m * \overline{K}_n$; in fact, $K_m \times K_n = (K_m * \overline{K}_n) - nK_m$.

A latin square of order n is an $n \times n$ array, each cell of which contains exactly one of the symbols in $\{1, 2, \ldots, n\}$, such that each row and each column of the array contains each of the symbols in $\{1, 2, \ldots, n\}$ exactly once. A latin square is said to be idempotent if the cell (i, i) contains the symbol $i, 1 \le i \le n$.

Let G be a bipartite graph with bipartition (X, Y), where $X = \{x_1, x_2, \ldots, x_n\}$, $Y = \{y_1, y_2, \ldots, y_n\}$. If G contains the set of edges $F_i(X, Y) = \{x_j y_{i+j} \mid 1 \leq j \leq n\}$, $0 \leq i \leq n-1$, where addition in the subscript is taken modulo n with residues $1, 2, \ldots, n$, then we say that G has the 1-factor of distance i from X to Y. Note that $F_i(Y, X) = F_{n-i}(X, Y)$, $0 \leq i \leq n-1$. Clearly, if $G = K_{n,n}$, then $E(G) = \bigcup_{i=0}^{n-1} F_i(X, Y)$. In a bipartite graph with bipartition (X, Y) with |X| = |Y|, if $x_i y_j$ is an edge, then $x_i y_j$ is called an edge of distance j - i if $i \leq j$, or n - (i - j), if i > j, from X to Y. (The same edge is said to be of distance i - j if $i \geq j$ or n - (j - i), if i < j, from Y to X.)

Recently, it has been proved that if n is odd and $m \mid \binom{n}{2}$ or n is even and $m \mid \binom{n}{2} - \frac{n}{2}$, then $C_m \mid K_n$ or $C_m \mid K_n - I$, where I is a 1-factor of K_n [1, 16]. A similar problem is also considered for regular complete multipartite graphs; Cavenagh and Billington [8] and Mahmoodian and Mirzakhani [12] have considered C_5 -decompositions of complete tripartite graphs, see also [6]. Moreover, Billington [3] has studied the decompositions of complete tripartite graphs into cycles of length 3 and 4. Further, Cavenagh and Billington [7] have studied the 4-cycle, 6-cycle and 8-cycle decompositions of complete multipartite graphs. Billington et al. [5] have solved the problem of decomposing $(K_m * \overline{K}_n)(\lambda)$ into 5-cycles. The present authors also have proved [13, 14] that the necessary conditions for the existence of C_p -decompositions of $K_m * \overline{K}_n$ and $K_m \times K_n$ are also sufficient, where $p \geq 7$ is a prime. A detailed account of cycle decompositions of complete graphs and complete multipartite graphs can be seen in [9] and [4], respectively. Also a complete solution to C_k -factorization of even regular complete multipartite graphs can be seen in [11].

In this paper, we prove that the obvious necessary conditions for $K_m \times K_n$, $m, n \geq 3$, to have a C_5 -decomposition are also sufficient. Among other results, here we prove the following main result.

Theorem 1.1 For $m, n \geq 3$, $C_5 \mid K_m \times K_n$ if and only if (1) $5 \mid nm(m-1)(n-1)$ and (2) either m or n is odd.

Using Theorem 1.1, we can prove the following theorem, which is also proved in [5].

Theorem 1.2 [5] For $m \geq 3$, $C_5 \mid K_m * \overline{K}_n$ if and only if (1) n(m-1) is even and (2) $5 \mid m(m-1)n^2$.

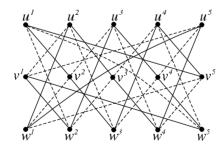
2 C_5 -Decomposition of $C_3 \times K_m$

Lemma 2.1 $C_5 \mid C_3 \times K_{10}$.

Proof. Let the partite sets (layers) of the tripartite graph $C_3 \times K_{10}$ be $U = \{u_1, u_2, \ldots, u_{10}\}$, $V = \{v_1, v_2, \ldots, v_{10}\}$ and $W = \{w_1, w_2, \ldots, w_{10}\}$; we assume that the vertices of U, V and W having same subscripts are the 'corresponding vertices' of the partite sets. By the definition of the tensor product, $\{u_i, v_i, w_i\}$, $1 \le i \le 10$, are independent sets and the subgraph induced by each of the subsets of vertices $U \cup V$, $V \cup W$ and $W \cup U$ is isomorphic to $K_{10,10} - F_0$, where F_0 is the 1-factor of distance zero in $K_{10,10}$.

We obtain a new graph from $C_3 \times K_{10}$ as follows: for each $i, 1 \leq i \leq 5$, identify the subsets of vertices $\{u_{2i-1}, u_{2i}\}$, $\{v_{2i-1}, v_{2i}\}$ and $\{w_{2i-1}, w_{2i}\}$ into new vertices u^i, v^i and w^i , respectively, and two of these vertices are adjacent if and only if the corresponding subsets of vertices in $C_3 \times K_{10}$ induce a $K_{2,2}$. The resulting graph is isomorphic to $C_3 \times K_5$ with partite sets $U' = \{u^1, u^2, \ldots, u^5\}, V' = \{v^1, v^2, \ldots, v^5\}$ and $W' = \{w^1, w^2, \ldots, w^5\}$; note that $\{u^i, v^i, w^i\}, 1 \leq i \leq 5$, are independent sets of $C_3 \times K_5$.

Now $C_3 \times K_5 = C_3 \times (C_5 \oplus C_5) = (C_3 \times C_5) \oplus (C_3 \times C_5)$. The graph $C_3 \times C_5$ can be decomposed into 5-cycles, see Figure 1.



 $C_3 \times C_5$

A 5-cycle decomposition of $C_3 \times C_5$

Figure 1

By "lifting back" these 5-cycles of $C_3 \times K_5$ to $C_3 \times K_{10}$, we get edge-disjoint subgraphs isomorphic to $C_5 * \overline{K_2}$. But $C_5 * \overline{K_2}$ can be decomposed into cycles of length 5, see [15]. Thus the subgraphs of $C_3 \times K_{10}$ obtained by "lifting back" the 5-cycles of $C_3 \times K_5$ can be decomposed into cycles of length 5. The edges of $C_3 \times K_{10}$ which are not covered by these 5-cycles are shown in Figure 2.

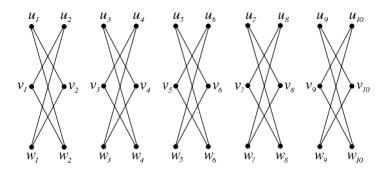


Figure 2

To complete the proof, we fuse some of the 5-cycles obtained above with the graph of Figure 2 and decomposing the resulting graph into cycles of length 5. Let H' be the graph obtained by the union of the graph of Figure 2 and the subgraph of $C_3 \times K_{10}$ which is obtained by "lifting back" a 5-cycle of $C_3 \times K_5$, namely, $(u^1, v^2, w^3, u^4, v^5)$ shown in Figure 1. The subgraph H' of $C_3 \times K_{10}$ is shown in Figure 3. A 5-cycle decomposition of H' is given below.

$$(u_1, v_2, w_1, u_2, v_3), (u_1, w_2, v_1, u_2, v_4), (v_3, w_4, u_3, v_4, w_5), (v_3, u_4, w_3, v_4, w_6),$$

$$(w_5, v_6, u_5, w_6, u_7), (w_5, u_6, v_5, w_6, u_8), (u_7, w_8, v_7, u_8, v_9), (u_7, v_8, w_7, u_8, v_{10}),$$

$$(v_9, u_{10}, w_9, v_{10}, u_1), (v_9, w_{10}, u_9, v_{10}, u_2).$$

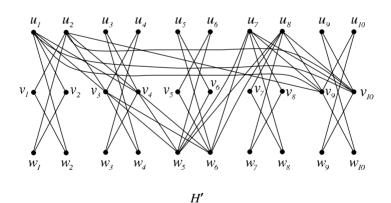


Figure 3

Lemma 2.2 $C_5 \mid C_3 \times K_6$.

Proof. Let the partite sets (layers) of the tripartite graph $C_3 \times K_6$ be $\{u_1, u_2, \ldots, u_6\}$, $\{v_1, v_2, \ldots, v_6\}$ and $\{w_1, w_2, \ldots, w_6\}$. We assume that the vertices having the same subscript are the corresponding vertices of the partite sets. A 5-cycle decomposition of $C_3 \times K_6$ is given below:

 $\begin{array}{l} (u_1,\ w_4,\ u_6,\ v_3,\ w_2),\ (u_1,\ v_6,\ u_2,\ w_5,\ v_3),\ (u_6,\ v_2,\ w_4,\ v_6,\ w_5),\ (u_3,\ v_1,\ w_5,\ u_4,\ w_2),\\ (u_4,\ v_6,\ w_2,\ v_1,\ w_6),\ (u_4,\ v_5,\ w_6,\ u_5,\ v_1),\ (u_3,\ v_6,\ w_3,\ u_5,\ w_4),\ (u_3,\ v_5,\ w_4,\ v_3,\ w_1),\\ (u_4,\ v_3,\ u_5,\ v_6,\ w_1),\ (u_1,\ v_5,\ w_3,\ v_2,\ w_6),\ (u_1,\ w_5,\ v_2,\ u_4,\ w_3),\ (u_1,\ v_4,\ w_5,\ u_3,\ v_2),\\ (u_2,\ w_4,\ v_1,\ u_6,\ w_1),\ (u_2,\ v_1,\ w_3,\ v_4,\ w_6),\ (u_2,\ v_4,\ u_3,\ w_6,\ v_3),\ (u_2,\ v_5,\ w_2,\ u_6,\ w_3),\\ (u_5,\ v_2,\ w_1,\ v_4,\ w_2)\ \ \text{and}\ \ (u_5,\ v_4,\ u_6,\ v_5,\ w_1). \end{array}$

Theorem 2.3 [2]. Let t be an odd integer and p be a prime so that $3 \le t \le p$. Then $C_t * \overline{K_p}$ has a 2-factorization so that each 2-factor is composed of t cycles of length p.

Theorem 2.4 [1]. If $n \equiv 1$ or $t \pmod{2t}$, where $t \geq 3$ is an odd integer, then $C_t \mid K_n$.

Remark 2.5 Let the partite sets (layers) of the complete tripartite graph $C_3 * \overline{K}_m$, $m \geq 1$, be $\{u_1, u_2, \ldots, u_m\}$, $\{v_1, v_2, \ldots, v_m\}$ and $\{w_1, w_2, \ldots, w_m\}$. Consider a latin square \mathcal{L} of order m. We associate a triangle (3-cycle) of $C_3 * \overline{K}_m$ with each entry of \mathcal{L} as follows: if k is the (i, j)th entry of \mathcal{L} , then the triangle of $C_3 * \overline{K}_m$ corresponding to k is (u_i, v_j, w_k) . Clearly, the triangles corresponding to the entries of \mathcal{L} decompose $C_3 * \overline{K}_m$; see e.g. [3].

Theorem 2.6 $C_5 \mid C_3 \times K_m$ if and only if $m \equiv 0$ or $1 \pmod{5}$.

Proof. The necessity is obvious. We prove the sufficiency in two cases.

Case 1. $m \equiv 1 \pmod{5}$. Let m = 5k + 1.

Subcase 1.1. $k \neq 2$.

Let the partite sets (layers) of the tripartite graph $C_3 \times K_m$ be

$$U = \{u_0\} \cup (\bigcup_{i=1}^k \{u_1^i, u_2^i, \dots, u_5^i\}), \quad V = \{v_0\} \cup (\bigcup_{i=1}^k \{v_1^i, v_2^i, \dots, v_5^i\})$$
and
$$W = \{w_0\} \cup (\bigcup_{i=1}^k \{w_1^i, w_2^i, \dots, w_5^i\});$$

we assume that the vertices of U, V and W having the same subscript and superscript are the corresponding vertices of the partite sets. By the definition of the tensor product, $\{u_0, v_0, w_0\}$ and $\{u_j^i, v_j^i, w_j^i\}$, $1 \le j \le 5$, $1 \le i \le k$, are independent sets and the subgraph induced by each of the sets $U \cup V, V \cup W$ and $W \cup U$ is isomorphic to $K_{m,m} - F_0$, where F_0 is the 1-factor of distance zero in $K_{m,m}$.

We obtain a new graph from $H = (C_3 \times K_m) - \{u_0, v_0, w_0\} \cong C_3 \times K_{5k}$ as follows: for each $i, 1 \leq i \leq k$, identify the sets of vertices $\{u_1^i, u_2^i, \ldots, u_5^i\}$, $\{v_1^i, v_2^i, \ldots, v_5^i\}$ and $\{w_1^i, w_2^i, \ldots, w_5^i\}$ with new vertices u^i, v^i and w^i , respectively; two new vertices are adjacent if and only if the corresponding sets of vertices in H induce a complete

bipartite subgraph $K_{5,5}$ or $K_{5,5} - F$, where F is a 1-factor of $K_{5,5}$. This defines the graph isomorphic to $C_3 * \overline{K}_k$ with partite sets $\{u^1, u^2, \ldots, u^k\}$, $\{v^1, v^2, \ldots, v^k\}$ and $\{w^1, w^2, \ldots, w^k\}$. Consider an idempotent latin square \mathcal{L} of order $k, k \neq 2$ (which exists; see [10]). To complete the proof of this subcase, we associate with entries of \mathcal{L} edge-disjoint subgraphs of $C_3 * \overline{K}_m$ which are decomposable by C_5 . The ith diagonal entry of \mathcal{L} corresponds to the triangle (u^i, v^i, w^i) , $1 \leq i \leq k$, of $C_3 * \overline{K}_k$; see Remark 2.5. The subgraph of H corresponding to the triangle of $C_3 * \overline{K}_k$ is isomorphic to $C_3 \times K_5$. For each triangle (u^i, v^i, w^i) , $1 \leq i \leq k$, of $C_3 * \overline{K}_k$ corresponding to the ith diagonal entry of \mathcal{L} , associate the subgraph of $C_3 \times K_m$ induced by vertices $\{u_0, u_1^i, u_2^i, \ldots, u_5^i\} \cup \{v_0, v_1^i, v_2^i, \ldots, v_5^i\} \cup \{w_0, w_1^i, w_2^i, \ldots, w_5^i\}$; since this subgraph is isomorphic to $C_3 \times K_6$, it can be decomposed into cycles of length 5, by Lemma 2.2. Again, if we consider the subgraph of H corresponding to the triangle of $C_3 * \overline{K}_k$ which corresponds to a non-diagonal entry of \mathcal{L} , then it is isomorphic to $C_3 * \overline{K}_5$. By Theorem 2.3, $C_3 * \overline{K}_5$ can be decomposed into cycles of length 5. Thus we have decomposed $C_3 \times K_m$ into cycles of length 5 when $k \neq 2$.

Subcase 1.2. k = 2.

By Theorem 2.4, $C_5 \mid K_{11}$ and hence we write $C_3 \times K_{11} = (C_3 \times C_5) \oplus (C_3 \times C_5) \oplus \ldots \oplus (C_3 \times C_5)$. Now $C_3 \times C_5$ can be decomposed into cycles of length 5, see Figure 1. This proves that $C_5 \mid C_3 \times K_{11}$.

Case 2. $m \equiv 0 \pmod{5}$.

Let m=5k. If k=2, then the result follows from Lemma 2.1. Hence we may assume that $k\neq 2$. Let the partite sets of the tripartite graph $C_3\times K_m$ be $U=\bigcup_{i=1}^k\{u_1^i,u_2^i,\ldots,u_5^i\}$, $V=\bigcup_{i=1}^k\{v_1^i,v_2^i,\ldots,v_5^i\}$ and $W=\bigcup_{i=1}^k\{w_1^i,w_2^i,\ldots,w_5^i\}$. We assume that the vertices of U,V and W having the same subscript and superscript are the corresponding vertices of the partite sets. As in the proof of Subcase 1.1, from $C_3\times K_m=C_3\times K_{5k}$ we obtain the graph $C_3*\overline{K_k}$ with partite sets $\{u^1,u^2,\ldots,u^k\}$, $\{v^1,v^2,\ldots,v^k\}$ and $\{w^1,w^2,\ldots,w^k\}$.

Consider an idempotent latin square \mathcal{L} of order $k, k \neq 2$. The diagonal entries of \mathcal{L} correspond to the triangles (u^i, v^i, w^i) , $1 \leq i \leq k$, of $C_3 * \overline{K}_k$. If we consider the subgraph of $C_3 \times K_m$ corresponding to a triangle of $C_3 \times \overline{K}_k$, which corresponds to a diagonal entry of \mathcal{L} , then it is isomorphic to $C_3 \times K_5$. Clearly, $C_3 \times K_5 = (C_3 \times C_5) \oplus (C_3 \times C_5)$. Now $C_5 \mid C_3 \times C_5$, see Figure 1. Again, as in the previous case, the triangle of $C_3 * \overline{K}_k$ corresponding to a non-diagonal entry of \mathcal{L} , corresponds to a subgraph of $C_3 \times K_m$ isomorphic to $C_3 * \overline{K}_5$; by Theorem 2.3, $C_5 \mid C_3 * \overline{K}_5$.

Lemma 2.7 If $C_{2k-1} | C_{2k-1} \times K_m$, $k \ge 2$, then $C_{2k+1} | C_{2k+1} \times K_m$.

Proof. Let the partite sets of the (2k-1)-partite graph $C_{2k-1} \times K_m$ be $\{u_1^i, u_2^i, \ldots, u_m^i\}$, $1 \leq i \leq 2k-1$. We assume that the vertices having the same subscript are the corresponding vertices of the partite sets. Let the partite sets of the (2k+1)-partite graph $C_{2k+1} \times K_m$ be $\{v_1^i, v_2^i, \ldots, v_m^i\}$, $1 \leq i \leq 2k+1$. Let \mathcal{C} be a C_{2k-1} -decomposition of $C_{2k-1} \times K_m$. Now we obtain a C_{2k+1} -decomposition \mathcal{C}' of $C_{2k+1} \times K_m$ as follows: $\mathcal{C}' = \left\{ (v_{j_1}^1, v_{j_2}^2, \ldots, v_{j_{2k-2}}^{2k-2}, v_{j_{2k-1}}^{2k-1}, v_{j_{2k-2}}^{2k}, v_{j_{2k-1}}^{2k+1}) \mid (u_{j_1}^1, u_{j_2}^2, \ldots, u_{j_{2k-2}}^{2k-2}, u_{j_{2k-1}}^{2k-1}) \in \mathcal{C} \right\}.$ Clearly, \mathcal{C}' is a C_{2k+1} -decomposition of $C_{2k+1} \times K_m$. This completes the proof.

Lemma 2.8 For $m \geq 3$, $C_3 \mid C_3 \times K_m$.

Proof. The triangles corresponding to the non-diagonal entries of an idempotent latin square \mathcal{L} decompose $C_3 \times K_m$, see Remark 2.5. An idempotent latin squares of order $m, m \neq 2$, exists [10] and hence $C_3 \mid C_3 \times K_m, m \geq 3$.

Lemma 2.9 For $k \ge 1$ and $m \ge 3$, $C_{2k+1} | C_{2k+1} \times K_m$.

Proof. Proof follows from Lemma 2.8 and successive application of Lemma 2.7.

3 C_5 -Decomposition of $K_m \times K_n$

The following theorem can be found in [10].

Theorem 3.1 Let m be an odd integer and $m \geq 3$.

- (1) If $m \equiv 1$ or $3 \pmod{6}$, then $C_3 \mid K_m$.
- (2) If $m \equiv 5 \pmod{6}$, then K_m can be decomposed into (m(m-1)-20)/6 3-cycles and two 5-cycles.

Proof of Theorem 1.1. The proof of the necessity is obvious and we prove the sufficiency in two cases. Since the tensor product is commutative, we may assume that m is odd and so $m \equiv 1, 3$ or $5 \pmod{6}$.

Case 1. $n \equiv 0 \text{ or } 1 \pmod{5}$.

Subcase 1.1. $m \equiv 1 \text{ or } 3 \pmod{6}$.

By Theorem 3.1, $C_3 \mid K_m$ and hence $K_m \times K_n = (C_3 \times K_n) \oplus (C_3 \times K_n) \oplus \ldots \oplus (C_3 \times K_n)$. By Theorem 2.6, $C_5 \mid C_3 \times K_n$ and hence $C_5 \mid K_m \times K_n$.

Subcase 1.2. $m \equiv 5 \pmod{6}$.

By Theorem 3.1, $K_m = \underbrace{C_3 \oplus C_3 \oplus \ldots \oplus C_3}_{(m(m-1)-20)/6-times} \oplus (C_5 \oplus C_5).$

Now $K_m \times K_n = ((C_3 \times K_n) \oplus (C_3 \times K_n) \oplus \ldots \oplus (C_3 \times K_n)) \oplus ((C_5 \times K_n) \oplus (C_5 \times K_n)).$ Since $C_5 \mid C_3 \times K_n$, by Theorem 2.6, and $C_5 \mid C_5 \times K_n$, by Lemma 2.9, $C_5 \mid K_m \times K_n$.

Case 2. $n \not\equiv 0 \pmod{5}$ and $n \not\equiv 1 \pmod{5}$.

Since $n(n-1) \not\equiv 0 \pmod{5}$, condition (1) implies that $m \equiv 0$ or 1 (mod 5). As m is odd we have $m \equiv 1$ or 5 (mod 10). Because $C_5 \mid K_m$, by Theorem 2.4, $K_m \times K_n = (C_5 \times K_n) \oplus (C_5 \times K_n) \oplus \ldots \oplus (C_5 \times K_n)$. Now $C_5 \mid C_5 \times K_n$, by Lemma 2.9, and so $C_5 \mid K_m \times K_n$. This completes the proof.

We do not supply the proof of Theorem 1.2 since it is similar to the proof of the following Theorem 3.2 given in [14]. Further, Billington et al. [5] have obtained a stronger result than this, namely, the necessary conditions for the existence of a C_5 -decomposition of $(K_m * \overline{K}_n)(\lambda)$ are also sufficient.

Theorem 3.2 [14]. For a prime $p \ge 11$ and $m \ge 3$, $C_p \mid K_m * \overline{K}_n$ if and only if (1) n(m-1) is even and (2) $p \mid m(m-1)n^2$.

Although the proof of Theorem 1.1 has independent interest, the proof of Theorem 1.2 (similar to the proof of Theorem 3.2 of [14]) explains the effectiveness of Theorem 1.1 in completing the proof of Theorem 1.2. From this paper and [13] and [14], we conclude that the C_k -cycle decomposition problem of $K_m \times K_n$ may shed some light on C_k -cycle decomposition problem of $K_m \times \overline{K_n}$.

Acknowledgements

The first author thanks the Department of Mathematics, Annamalai University for granting Professor Ganapathy Iyer Research Fellowship.

References

- [1] B. Alspach and H. Gavlas, Cycle decompositions of K_n and $K_n I$, J. Combin. Theory Ser. B 81 (2001), 77–99.
- [2] B.Alspach, P.J.Schellenberg, D.R.Stinson and D.Wagner, The Oberwolfach problem and factors of uniform odd length cycles, *J. Combin. Theory Ser. A* 52 (1989), 20–43.
- [3] E.J. Billington, Decomposing complete tripartite graphs into cycles of length 3 and 4, *Discrete Math.* 197/198 (1999), 123–135.
- [4] E.J. Billington, Multipartite graph decompositions: cycles and closed trails, *Le Matematiche* LIX (2004)—Fasc.I–II, 53–72.
- [5] E.J. Billington, D.G. Hoffman and B.M. Maenhaut, Group divisible pentagon systems, *Utilitas Math.* 55 (1999), 211–219.
- [6] N.J. Cavenagh, Decompositions of complete tripartite graphs into k-cycles, Australas. J. Combin. 18 (1998), 193–200.
- [7] N.J. Cavenagh and E.J. Billington, Decompositions of complete multipartite graphs into cycles of even length, *Graphs Combin.* 16 (2000), 49–65.
- [8] N.J. Cavenagh and E.J. Billington, On decomposing complete tripartite graphs into 5-cycles, Australas. J. Combin. 22 (2000), 41-62.
- [9] C.C. Lindner and C.A. Rodger, Decomposition into cycles II: Cycle systems, in: Contemporary design theory, A Collection of surveys, (Eds. J.H. Dinitz and D.R. Stinson), Wiley-Interscience, New York (1992), 325–369.
- [10] C.C. Lindner, C.A. Rodger, Design theory, CRC Press, New York (1997).
- [11] Jiuqiang Liu, The equipartite Oberwolfach problem with uniform tables, *J. Combin. Theory Ser. A* 101 (2003), 20–34.

- [12] E.S. Mahmoodian and M. Mirzakhani, Decomposition of complete tripartite graphs into 5-cycles, in *Combinatorics Advances* (Eds. C.J. Colbourn and E.S. Mahmoodian). (Tehran, 1994), 235–241, Math. Appl., 329, Kluwer Acad. Publ., Dordrecht, 1995.
- [13] R.S. Manikandan and P.Paulraja, C_7 -Decompositions of some regular graphs (Submitted).
- [14] R.S. Manikandan and P. Paulraja, C_p -Decompositions of some regular graphs, Discrete Math. 306 (2006), 429–451.
- [15] A. Muthusamy and P. Paulraja, Factorizations of product graphs into cycles of uniform length, *Graphs Combin.* 11 (1995), 69–90.
- [16] M. Šajna, Cycle decompositions III: Complete graphs and fixed length cycles, J. Combin. Designs 10 (2002), 27–78.

(Received 19 Mar 2006)