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Abstract

In this paper, we are studying vertex-magic total labelings of simple
graphs. We introduce a procedure called mutation which transforms one
labeling into another by swapping sets of edges among vertices. The
result of a mutation may be a different labeling of the same graph or a
labeling of a different graph. Mutation proves to be a remarkably fruitful
process — for example we are able to generate labelings for all the order
10 cubic graphs from a single initial labeling of the 5-prism. We describe
all possible mutations of a labeling of the path and the cycle.

1 Introduction

A vertex-magic total labeling (VMTL) on a graph with v vertices and e edges is a
one-to-one mapping from the vertices and edges onto the integers 1,2,...,v 4+ e so
that the sum of the label on a vertex and the labels of its incident edges is constant,
independent of the choice of vertex. The question of determining precisely which
graphs possess vertex-magic total labelings seems very difficult. So far the effort
of most authors has been devoted to finding constructions of labelings for easily
describable families of graphs, many of which are regular or possess some other
highly restrictive feature. A serious attack on the question requires us to look for
methods which do not depend of the detailed structure of the graph. The first effort
along these lines is due to Dan McQuillan [5] who showed how to label any cubic
graph which contains a perfect matching, without relying on its precise structure.
McQuillan’s approach has been extended dramatically in [1] and [2].

For a long time the authors of this paper have hoped for an approach which
might use a labeling from one of these known families of graphs to create labelings
for other graphs of the same order and size. In this paper we describe a process
we call mutation which does this. It is a straightforward procedure, swapping edges
between vertices in ways that are magic-preserving. Yet we will show that mutation
is a remarkably fruitful operation where through repeated application a single initial
labeling for one graph can generate large numbers of labelings for many different
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graphs. As an example, we begin with a labeling of one order 10 cubic graph and
generate labelings for all the connected cubic graphs of order 10.

Readers are referred to [4] and [7] for general background and basic constructions
regarding VMTLs.

2 The basic principle of mutation

A vertex magic labeling of the path Ps is shown in Figure 1. In that labeling, the
edges labelled 1 and 3 (which total to 4) are incident with vertex 7 and the edge
labelled 4 is incident with vertex 5. The idea of mutation is simply to interchange
the adjacencies of these edges between the 2 vertices, so that edges labelled 1 and 3
are made incident with vertex 5 and the edge labelled 4 is made incident with vertex
7. The resulting graph is shown in Figure 1 and retains the same vertex sums, hence
is vertex-magic.

Figure 1: An example of a mutation

We bring some precision to this concept in the following theorem:

Theorem 2.1 (Mutation Theorem). Consider a graph G with a VMTL. Let uy and
wyg be distinct vertices such that U = {uy,...,un} is the neighbourhood of uy and
W =A{ws,...,w,} the neighbourhood of wy, and the following properties hold:

(1) 2200 Muows) = D2 Mwow;)

(ii) If y is adjacent to uy andy ¢ U theny ¢ W
(i) If y is adjacent to wy and y ¢ W theny ¢ U
(iv) uo ¢ W and wy ¢ U.

If we delete the edges ugu; and wow; and add new edges wou; with labels N*(wou;) =
Augu;) and edges ugw; with labels \*(uow;) = Awow;), we obtain either a new VMTL
of G or a VMTL of a different graph G*.
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Proof. After deleting the old edges and adding the new ones, the vertex sums for ug
and wg will become:

k— i AMuou;) + z”: N (uow;) = k— i AMuou;) + z”: AMwow;) =k
i=1 =1 i=1 =1

k— Zn:/\(wowi) +Zm:/\*(woui) = k- i/\(wowi) +Zm:>\(UoUi) =k
=1 =1 =1 =1

i.e. the vertex-sums are preserved. The second and third conditions ensure that the
new graph does not contain any multiple edges, and the fourth condition ensures
that the new graph contains no loops. O

We will refer to such a swapping of edges and their associated labels between two
vertices as an (n, m)-mutation.

If n = m then the new graph G* will have the same degree sequence as the parent
graph, and G* may be:

o G itself

e a new graph isomorphic to G

e a new graph not isomorphic to G.

In particular, if G is regular then so is G*. In some cases there are many possible
pairs that can be swapped, resulting in a large number of distinct labelings of the
same graph.

If n # m then G* may be a graph with a different degree sequence but possessing
a VMTL with the same set of edge labels and same set of vertex labels, and conse-
quently the same magic constant. Note that it is possible to start with a labeling
of a disconnected graph and obtain a labeling for a connected graph and vice-versa.
For example, it is easy to show that a (2,2)-mutation of any labeling of 2K, can
only result either in a new labeling for 2K, or a labeling of one particular connected
graph.

The mutation process can often be repeated for successive generations to ob-
tain a sequence of labelled graphs each one closely related to but different from its
predecessor; hence we chose the term mutation by analogy with genetic mutation in
biological organisms. An example of mutations of cubic graphs of order 8 is discussed
in Section 5.1 in which (2, 2)-mutations repeated over several generations generate
labelings from the cube for all of the cubic graphs of order 8, both connected and
disconnected.

Starting from a graph with few edges obviously provides less opportunity for
mutation, so we may hope to enumerate all the possible offspring of such a graph. In
Section 3, we examine the (workably small) set of graphs that can be derived from
paths by one or two mutations of a single initial labeling, and in Section 4 we do the
same for cycles.

Finally, it is intuitively clear that mutation can be extended to the case where
edges are swapped among 3 or more vertices. Describing this algebraically is compli-
cated because of the necessity of ensuring that there are no loops or multiple edges
in the resulting graph. This is touched upon briefly in Section 4.4.
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3 Mutations of paths

Any graph can be represented as an edge-disjoint union of paths, cycles or both. Such
a representation is generally not unique. For the purpose of describing the mutations
discussed in this and the following section, we will represent a path or a cycle by
a list of vertices and edges, with edges and vertices alternating and beginning and
ending with a vertex. The only place at which a vertex may occur twice in a list will
be at the beginning and end of that list to indicate that the path is closed (i.e. is a
cycle). Note that only vertices of degree d > 2 in a graph will belong to more than
one list.

Figure 2: A list representation of a (5, 2)-kite

For example, we may represent the graph in Figure 2 as a set of lists by

(017617021€2aU3,€37U47€4,U5,€5701) (U57€61U61677U7)

where v; begins and ends the cycle, while v5 links the path and the cycle. The
representation is certainly not unique. For example, we could have begun and ended
the cycle at any vertex, say:

(1)576571}17617”276271}37637@476471}5) (U57€67U67667U7)~

In this section we explore the labelings that result from mutating the standard
caterpillar labeling of the path P, (described in Theorem 3.2). This is the most
simply structured of all VMTLs of the path, and therefore the easiest to work with.
Quite possibly, some similar results could be proved if one began with some other
labeling. We begin with the first generation of mutations and in the next subsection
examine what can happen in the second generation.

3.1 Generalized stars

One application of the Mutation Theorem in a systematic way will yield constructions
for labelings of two families of graphs which have not previously been known—the
kites and generalized stars. For completeness, their definitions are included here.

Definition 1. A generalized star is a tree homeomorphic to K, for somen > 2.
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Thus the generalized star has a central vertex which is the end vertex of each of n
paths that are otherwise disjoint. If the n paths have respectively a1, as, . . ., a, edges,
we will denote this tree by Sq, as....a,- Thus Sg, a,,..q, has 1+ Z?:l a; vertices and
>or, a; edges. Generalized stars are also known as ‘star-like trees’ or ‘generalized
comets’ and by various other names in the literature. Those considered in this section
are all homeomorphic to K 3.

Definition 2. An (n,t)-kite consists of a cycle of order n one of whose vertices is
the end vertex of a t-edge path which is otherwise disjoint from the cycle.

Before proceeding with the specific constructions, we first look at the general
constraint which applies to a first generation mutation of any VMTL of any path.
We have

Theorem 3.1. For any VMTL of a path, a first-generation mutation is always a
labeling of a 3-branch generalized star or the union of a path and a kite.

Proof. By definition, all vertices of a graph must have distinct labels under any
VMTL. This implies that the edges incident to one vertex do not have the same
sum as the edges incident to any other vertex, and thus that we cannot swap all
of the edges incident to two vertices. Since the end vertices of the path have
only one incident edge, it follows that we can only swap edges incident to in-
ternal vertices. Since this must involve a 2-for-1 swap, the degree of one vertex
must increase to 3, while the other must reduce to 1. Suppose we have a path
P, = (v1,€1,...,€i-1,04,€,...,€j_1,0;,€j,...,0,) where v; and v; are the internal
vertices of interest. Without loss of generality we will assume that the labels of the
two edges incident to v; sum to either A(e;j_1) or A(e;).

If they sum to A(e;_1) then after the swap we have:

(Ujaeia .. .,6]'_1,112‘)(1}]'761'_17 v 7617U1)(Uj76j7 v 7Um)

i.e. a 3-branch star Sj_;;_1,m—;-

If they sum to A(e;) then after the swap we have a path (v;,e;,...,v,) and a
(] — Z,Z — 1)—k1t6 (’Uj7 €iy. oy €51, ’Uj)(U]', €i1,---5€1, ’Ul).

Since these are the only two possibilities, and since we made no assumptions
about the specific labeling, the result follows. O

Choosing a specific labeling of the path to mutate, we can describe some of its
offspring.

Theorem 3.2. For n > 2, the generalized star S;;11,n—2i—1 has a VMTL for all
i1=1,...,n—1.

Proof. The proof is by construction. We start with the standard caterpillar labeling
of a path of order 2n + 1 defined as:

l . f .
Mes) = {i(2n+1+z) or ¢ odd (1)
2

) for ¢ even
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where i = 1,...,2n. The edge labels range from 1 to n for i even and from n+1 to 2n
for ¢ odd. The vertex labels will be A(v;) = 4n+1— j where j ranges from 1, ..., 2n,
with A(vgn41) = 4n + 1. We note that A(e;) + A(eip1) = 5(2i +2n 4 2) = Aezip)-

Starting with:

(Uu €155 €35 Vi1, €415 - -+ 5 €2i41, V2442, €2i42, - - -, €2p,y U2n+1)
after swapping the edges we have:

(U17 €1,...,6, U2z‘+2)

(U21'+27 €it1y -5 €241, Ui+1)

(U21'+27 €2i42,- .-, €2n, U2n+1)

i.e. three paths sharing the common vertex vg; .

The first path is of length 4, the second of length i + 1, and the third path is of
length 2n — 2i — 1, so the result is the generalized star S; ;11.92,—2i—1 as required. To
make sense we must have 2n — 2 — 1 > 1, which means we require ¢ < n. The result
follows. O

Example. From Py, i.e. for n = 10, we can construct:

Siar Y2315 3413 Sasir s
Serr  Ss78  Sszge  Sigio

Hence from a path of length 2n + 1 we can always obtain VMTLs of at least n —1
non-isomorphic generalized stars. (It is possible that other initial labelings of the
path would yield still other stars.) This simple example demonstrates the fertility
of mutation. When n is large a mutation may leave a long branch within which the
edges can still be swapped, so that we can repeat this process to obtain VMTL’s for
a variety of trees other than generalized stars.

3.2 Second-generation mutations of paths

Starting with the construction from the previous section, we examine what further
generalized stars we can obtain by mutating the first-generation stars.

The vertex vg; 4o is incident with three edges: e;, €;41 and eg; 9. This gives us
two cases to consider. Since swapping e; and e;;1 with eg; 11 will simply give us the
path we started with, we examine the other two cases:

1. )\(62) + )\(e2i+2) = )‘(€3i+2) with 3¢ + 2 < 2n
2. )\(€i+1) + >\(62i+2) = )‘(€3i+3) with 37 + 3 S 2n
In both cases, the edge involved in the swap which is not incident to vg; o is on

the branch linked to vy, 1o by eg;yo.
In case (1), we start with:

(U17 €1y, 64 U21’+2)

(U2i+27 €itls -5 €241, Ui+1)

(U2i+27 €2i42, - -+, U3i4+2, €342, U3i+3; - - -, €2n, U2n+1)
and after the mutation we have:

(U3i+37 €iy Vi, €i—1,Vi—1, - - ., €1, Ul)

(U3i+37 €2i42; -+ U3i42, €3i42, V2i42, €41, - - -, €241, Ui+1)
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(U3i+37 e Con, U2n+1)
a generalized star S; 2,42 2n—(3i+2), 50 long as i < %(n —1). Since ¢ > 1, this mutation
is only feasible if n > 3.

In case (2), we start with:

(U17 €1,...,6, U21’+2)

(V2i425 €ig1s - - -5 €2i41, Vig1)

(U2i+27 €2i+2; « -+ U3i+2, €3i+2, U3i+3; €3i+3, U3i+4, - - -, €2n, U2n+1)
and after the mutation we have:

(1131'+47 Citly -5 €241, Ui+1)

(Vsi4d, €242, - - - > U3it3, €3i43, V2i42, €1 Vis €11, Vi1, - - - , €1, V1)

(V3144 €344, - - > €2, V2nt1)

a generalized star Sii12i42,2n—(3i4+3), With 7 < %(Qn — 3). Note that since ¢ > 1, this
mutation is only feasible if n > 3.

Returning to the example of n = 10 above, these two cases give us the following
generalized stars:

Siais Saei2 Ssso*  Sieio Sisi2
Soa1a S3611 Siss  Sss10 Szei2k

where an asterisk indicates a second labeling for the generalized star that had ap-
peared in the first generation. Together the first and second generation mutations
give us VMTLs of 17 non-isomorphic generalized stars, just over half of the 33 gen-
eralized stars of order 21.

4 Mutations of cycles

4.1 Constructing kites from cycles
We first establish two results which apply regardless of the labeling.

Theorem 4.1. A first-generation mutation of a cycle Cy, is always an (n—m, m)-kite
with m > 2

Proof. As with the path, each vertex must have a unique label. This implies that
the edges incident to one vertex do not sum to the same total as the edges incident
to any other vertex and thus that we cannot swap all of the edges incident to two
vertices. So any swap from this initial configuration must therefore involve swapping
two edges for one.

Suppose we have the cycle (vi,e1,...,€1,0;,€iy...,Un, €n,v1) Where, without
loss of generality, we let A(e;_1) + A(e;) = A(e1). After swapping these edges we have:

(vluei—h s 761,1)2‘)(1)1761'7 s 7?}”76”,7)1)

which is an (n—(i—1),i—1)-kite. It remains to show that m > 2. If m = 1 then i = 2
and so the two vertices involved in the mutation are adjacent. As stated in Section
2, the edge between adjacent vertices can play no active role in the mutation. Since
each of the vertices has only one other incident edge this rules out any mutation.
The result follows. O
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Theorem 4.2. A first-generation mutation of C,, U C,, involving both components
is either an (n,m)-kite or an (m,n)-kite

Proof. We begin with the two cycles

C, = (Ul,hel,h---7vl,n761,nuvl,1)

Cn = (02,17 €215+, U2m; €2m, 112,1)-

and suppose without loss of generality that es1 + e, = €11. Swapping the edges

will result in (vo1,e11,v12,...,011)(V11,€21, ..., Vom, €2.m,V11) 1.€. an (m,n)-kite.
By the same argument, if two edges from C,, sum to an edge from C,, the result will
be an (n,m)-kite. O

Which kites can be derived by a single mutation from a cycle? It depends of
course on the initial labeling. We answer the question in the case of the standard
labeling of the odd cycle. If we index the edges e; of an odd cycle C,, withi=1,....n
then edges are labeled as follows:

i+1) for i odd
Me) =47 : 2)
5(i+n+1) forieven

This yields:
)\(62) + >\(€i+1) = %(22 +n+ 3) = >\(62i+2)
Aer) +Men) = 5(n+3) = Ae2)
We need 2i +2 < n — 1, since n is odd. It follows that i < %(n —3).
For e;, e;11, we let ug = v;11 and wy = v9;13. We mutate the cycle from:

(1)17 €1,V2; -+ U5 €45 Vi1, €15 - -+ 5 U2442,€2i42,V2i43; - - -, Un, En; Ul)
to
(Uh €1,0V2,...,VU;, €, V243, €2i43, ..., Un, En, U1)
(U2i+37 €itly .- 7U2i+2,€2i+2,vi+1)

which is an (n — i — 2, i+ 2)-kite when 1 <4 < 1(n — 3), in other words, the kites of
order n from the (n — 3,3)-kite down to the (3(n — 1), 3(n + 1))-kite.
Alternatively, we let ug = v;41 and wy = v9;,2 and mutate the cycle from:

(1)17 €153 Vi €4, Vg1, €415+ -+ €2i41, V2442, €2i42, V2443, - - -, Un, En—1, Ul)
to:
(U2i+27 €it1, Vit2, €42, - -5 €241, U2i+2)
(Ui+21 €2i+2, V2i+3; - - - , Un, €n, V1, €1, -..., Uy, €, U2z‘+2)

which is an (i+1,n — (i +1))-kite for i = 2,..., $(n—3). In other words,we have all
the kites of order n from the (3,n — 3)-kite up to the (3(n — 1), 2(n + 1))-kite. We
cannot have i = 1 since this would result in v3 and v, sharing two edges: ey and es.
Finally, we let uo = v; and wy = v3, where A(e,) + A(er) = A(e2), and mutate the
cycle from:
(v1, 1,02, €9,03,€3, ..., Un, En, V1)
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to
(3, €3, .., €n_1,Un, En, v3)(V3, €1, Va, €2, V1)
which is a (n — 2, 2)-kite.

This gives us all of the order n kites from the (3,n — 3)-kite to the (n — 2,2)-
kite, leaving only the (n — 1, 1)-kite without a labeling (i.e. all the kites with tails of
lengths 2, ..., 3(n 4 1) plus of course the original cycle with a tail of length 0).

This construction establishes the following theorem:

Theorem 4.3. For odd n, the (m,n — m)-kites have strong VMTLs form =3,...,
n—2.

4.2 Second-generation mutations of cycles

Although second-generation mutations of cycles can produce many new graphs, such
as 'kites’ with 2 tails, in this section we will focus on the one remaining kite for which
was not obtained by the first generation mutation, the (n — 1, 1)-kite. We will find
a 2nd generation mutation of a cycle which produces a VMTL for this kite.

We return to the original labeling of a cycle of odd order, and consider the sum
of A(e;) + A(ec—i), where ¢ is an odd constant greater than i.

If 7 is odd then ¢ — i is even and we have:

Ae) + Mee) =2+ 1) + 2 c+n+1—i)=Lc+n+2)
If ¢ is even then ¢ — i is odd and we have:
Mei) + Meemi) = 3(c—i+1)+3(n+14i) =3(c+n+2)
Hence by appropriate choices for ¢, j with ¢ # j we can obtain
Aei) + Alec—i) = Aej) + Alec—j) = 2(c+n+2)

We proceed to use this equality to derive a labeling of the (n — 1, 1)-kite by mutating
the labeling of the (n — 3, 3)-kite.
Starting with the cycle, for ey, es, we let uy = vo and wy = v5. We mutate the
cycle from:
(v1, €1,v2,€9,U3, ..., 04, €4, V5, €5, ..., Upn, En, V1)

to the (n — 3, 3)-kite:
(vh €1,V5,€5,...,Un, En, Ul)(v57 €2, V3, €3, U4, €4, UQ)

Note that e; and e are incident to vs and es3 and e4 are incident to vy. Looking at
the indices of these edges, we note that 2+5 = 344 = 7, so we have A(e2) + A(es) =
Aes) + Aes) = 3(n+9), so we can swap these pairs of edges to give:

(Ul, €n,Up...,€5,04,€2,0V3,€3, Vs, 6171)1)(/057647”2)

which is the (n — 1, 1)-kite required.
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As an example, for n = 5 we obtain:

(’L}17e571}47627’[}37 637U57617U1)(U57 647U2)

and
Aw1) + Aes) + A(er) = 104+3+1 = 14
Awvg) + Aes) = 9+5 = 14
Aws) + Ae2) + Aes) = 8+2+4 = 14
Ava) + Ales) + A(ea) = T+3+4 = 14
Avs) + Ales) + A(er) + A(ey) = 6+24+1+4+5 = 14

so the vertex-sums are all equal as required.
Thus, starting with a VMTL of a cycle of odd order, in 2 generations we were
able to mutate the cycle to obtain VMTLs for all kites of that order.

4.3 Adjoining 2-factors to strong VMTLs

A VMTL is strong if it assigns the largest labels to the vertices. If we begin our
mutation from a graph with a strong VMTL, we produce (sometimes large numbers
of non-isomorphic) graphs with VMTLs that are also strong. This is important in
the light of the construction described in [1] and exploited further in [2]. Starting
from a graph with a strong VMTL, Theorem 1 of [1] shows how to add an arbitrary
2-factor to the graph to produce a graph of the same order but larger size which also
has a VMTL.

For example, if we start with the labeling of Cj; shown in Figure 3(i), we can
mutate it to the (5, 6)-kite in Figure 3(ii) and then add a 2-factor as indicated to
create a new graph with a strong VMTL as that shown in Figure 3(iii).

Figure 3: Mutating C1; to a (5, 6)-kite then adding a 2-factor
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Because the VMTL produced by this procedure is also strong, we can repeat the
construction by adjoining more 2-factors as long as there is room for the edges. While
the emphasis in [1] and [2] was on regular graphs, the procedure applies equally well
to non-regular graphs. Thus the mutations described in Sections 3 and 4 provide us
with large numbers of starter graphs from which to build many graphs of the same
order but larger size all having VMTLs.

Note that while a mutation is generally reversible, if we add a 2-factor to a
mutated graph which reconnects 2 vertices that were connected prior to the mutation,
then the mutation will not be reversible in the resulting graph.

4.4 Mutations of cycles involving more than 2 vertices

The Mutation Principle can be extended to include edges incident with 3 or more
vertices. Consider a cycle with a VMTL such that the labels on the edges incident to
three of the vertices are {)\1717 )\172},{)\2’17 )\272} and {)\1’1 +)\1’2 —)\2717 )\2’1 +)\2’2 —)\171}.
Pairing the labels differently we obtain:

(Ao1+ Ao —A) + A = (Ao + Ao2)
A1+ A2—A1)+F A1 = (A1 + M)
M2+ A22) = o+ A2 — A1)+ A+ A2 — o)

hence we can swap the relevant edges among the three vertices in a way that preserves
the vertex sums.

For example, the standard VMTL of Cy has the sequence of edge labels (1, 6,2, 7,
3,8,4,9,5,1). If we take the label pairs (1,6),(7,3) and (9,4), we can swap the edges
to obtain equivalent weights as follows: (3,4),(1,9) and (7,6), giving us the new
sequence of edge-labels (3,4,8,3)(1,9,5,1)(7,6,2,7) which is a labeling of 3Cs.

Similarly, the standard VMTL of Cy; has the sequence of edge-labels (1,7,2,8, 3,
9,4,10,5,11,6,1) and by swapping edges from (1,7), (3,9) and (5,11) to (3,5),
(1,11) and (7,9), we obtain (3,5,10,4,9,7,2,8)(1,11,6), a labeling of C3 U Cs. By
generalizing these cases, we obtain labelings for the infinite families described in the
following theorem:

Theorem 4.4. Cy, 1 U Cyyyq and 3C, for n odd, each possess a strong VMTL.

Proof. For Cy, 11U Cyyya, we start with the standard labeling for an odd cycle Cpg, 5
and mutate it by taking the edges labeled (1, 3u+4),(u+2, 4u+5) and (2u+3, 5u+6)
and reassigning them so that they are paired as (u + 2,2u + 3), (1,5u + 6) and
(3u + 4,4u + 5) giving a cycle of order Cy, 41 and a cycle of order Cly, 4.

For 3C,,, we start with the standard labeling of the odd cycle Cs,, where n = 2u+1
and mutate it by taking the edges labeled (1, 3u+3),(u+2, 4u+3) and (2u+2, 5u+4)
and reassigning them so that they are paired as (u + 2,2u + 2), (1,5u + 4) and
(3u + 3,4u + 3). This produces the 3 cycles of length n. O

The above result on 3C,, is not new, since it has already been shown by another
method [7] that mC,, for both m and n odd is vertex magic.
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A more exotic example is given by swapping among 5 pairs of edges of C9. Begin-
ning with the standard labeling 1,11,2,12,3,13,...,10, we swap the equally spaced
pairs (1,11), (3,13), (5,15), (7,17), (9,19) for the pairs (3,9), (1,15), (7,13), (5,19),
(11,17). The result is the graph Cs U C1;. This example can also be generalized to
give
Theorem 4.5. Cy, U Cg,_1 possesses a strong VMTL for all v > 2.

Proof. Begin with the standard labeling of Cig,_1 with u > 1. Mutate by reassigning
the edge pairs labeled (1,5u + 1), (u+1,6u+ 1), 2u+1,7u+ 1), (Bu+1,8u+ 1),
(4u+1,9u+ 1) which have sums respectively bu+ 1, 7u+ 2, 9u+ 2, 11u + 2, 13u + 2,
so that they are paired as (u+1,4u+1), (1, 7Tu+1), Bu+1,6u+1), 2u+1,9%u+1),
(5u 4+ 1,8u + 1), which clearly have the same sums. This gives the disjoint cycles of
lengths 4u and 6u — 1 as required. a

Applying these multiple mutations to cycles seems a very fruitful process. As a
last example we mutate the standard labeling of C'; by reassigning the 4 pairs labeled
(1,10), (11, 3), (13, 5), (6,15) and pairing the edges as (5,6), (1,13),(3,15), (10,11).
The surprising result is the 3-component graph C3UC3UC, 1, showing that in principal
it may be possible to generate strong labelings for many of the 2-regular graphs this
way. Strong VMTLs of 2-regular graphs are important because they are the starting
points for the constructions described in [1] for producing labelings of odd order
d-regular graphs for d > 2. The paper [2] treats this problem in detail.

5 Mutations of Cubic Graphs of Small Order

5.1 Cubic graphs of order 8

In this section we describe the results of a systematic computer search for strong
labelings of all the cubic graphs of order 8 via (2, 2)-mutations of a single labeling of
one graph. We choose the 3-cube to begin with, and as the seed labeling we choose
the particularly pretty one illustrated at the top of Fig 4. It is a strong labeling.

For a (2, 2)-mutation of one graph into another, derived by reassigning the edges
e1, e to vertex u and edges fi, fo to the vertex v, we can indicate which edges have
been reassigned by the notation:

A() : (Aen); Ale2)) = Au) = (A(f1), A(f2))

(Clearly, this notation can be extended to the case of more than two vertices with a
variable number of edges being swapped.)

There are six non-isomorphic cubic graphs of order 8, five connected and one
disconnected; and strong labelings of all of them can be obtained within three gener-
ations of (2,2)-mutations. The mutations are shown in Figure 4 where the notation
described above has been used. Although the mutated graphs as drawn appear quite
different, it is easy to verify that only the indicated edges have been reassigned and
that all of the remaining vertices have edges with the same labels after the mutation
as they had before.
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Table 1 shows how many different strong labelings of these cubic graphs can
be obtained in relatively few generations. One thing that is notable is the wide
range in the number of labelings for different graphs, which may suggest that there
are properties of regular graphs that we have not yet identified which influence the
number of possible labelings without necessarily influencing the ezistence of at least
one labeling. Alternatively, it may well just be an artefact of our choice of seed graph
and its labeling. Note that in Table 1, the bold column headings are not cycles but
are references to the cubic graphs by their identification number in Read & Wilson’s
An Atlas of Graphs [6].

Gen C4| C5| C6| C7| C8|2C1 | Total
0 0 0 0 0 1 0 1
1 2 0 0 0 8 0 10
2 11 0 5 2 18 0 36
3 42 9 13 0 40 2 106
4 153 36 55 13 70 0 327
5 471 106 | 121 71 129 4 902
6 1262 | 352 | 348 | 229 | 191 1] 2383
7 3113 | 860 | 803 | 646 | 387 7| 5816
¥ | 23360 | 8094 | 5399 | 6515 | 3042 34 | 46444

Table 1: Strong VMTLSs of order 8 cubics obtained from the 3-cube

We note again that each of these labelings for each of these graphs is suitable to
use as a starter for the process of adjoining 2-factors, as described in Section 4.3.
This underlines how important mutation is.

The number of labelings for the graph C4 is quite remarkable, especially when
one realizes that these are only the strong labelings and that one would normally
expect there to be many more labelings that are not strong. We would like to know
what feature of this graph allows it to have so many more labelings than any of the
other cubic graphs?

5.2 Cubic graphs of order 10

As a second illustration of how prolific the mutation process is, we will begin with
a single labeling of the quasi-prism of order 10, produced by McQuillan’s method as
described in [1, 5]. The seed labeling will be as described in Table 2. This labeling
is not strong.
By mutating this labeling through five generations, we obtain labelings for all con-
nected cubic graphs of order 10. In Figure 5, each new graph is shown in the earliest
generation at which one of its labelings occur.

Note that in Fig. 5, the vertex labels are given as reference points and that only
the edges and their labels incident with these vertices are swapped. In order to
obtain the labeling for any graph in the diagram, it is necessary to start with the
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Vertex label | Labels of incident edges
11 8,10,18
12 6,9,20
13 7,10,17
14 6,8,19
15 7,9,16
21 3,5,18
22 1,4,20
23 2,5,17
24 1,3,19
25 2,4,16

Table 2: The seed labeling of the 5-prism

earliest mutation on the path which connects that graph to the seed graph C23 and
then work forward, following through the sequence of mutations in turn.

It is noteworthy that multiple labelings of some graphs (i.e. C23, C11 and C19)
were required to obtain labelings for all of the connected order 10 cubic graphs in the
minimum number of generations. We expect that labelings for the two disconnected
order 10 cubic graphs will emerge eventually.

We would expect to find many more labelings by mutating an order 10 graph
than we found for the order 8 graphs, and that new mutations might continue to
appear for more generations. We hope to implement exhaustive searches on this and
other related questions in future research. The computational results of Section 5
are summarized in the following theorem:

Theorem 5.1. All connected cubic graphs of order 8 and 10 possess VMTLs.

6 Remarks

Mutations of strong labelings are important for several reasons. Initially, we were
simply interested in finding a process to generate VMTLs for as many new graphs as
possible. We have obviously been successful at this, but have really very little idea
of precisely how successful. If the cubic graphs are any indication, it is a remarkably
powerful tool. Is there some way we can predict theoretically that, for example, all
r-regular graphs have labelings that are mutations of one properly chosen starter?

As illustrated in Section 4.3, the construction method in Theorem 2.1 of [1] begins
with a strong VMTL of any graph and adds the edges of any 2-factor to produce a
graph of the same order but larger size and which also has a strong VMTL. Mutation
thus provides us with a large number of graphs to use as the starters for this process.
The combination of these two constructions is remarkably fruitful.

It is worth remarking that after adding more edges according to Theorem 2.1,
we generally increase the potential number of possible edge pairings that will enable
mutation to occur. Superficially at least, this seems to provide graphs which have
potential for many more mutations. We hope to explore this in future work.
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We are especially interested in regular graphs because of the conjecture of the
second author [3, 2] that for r > 1, all r-regular graphs other than 2C5 are vertex-
magic. Given the requirement for strong labelings in the construction of [1] noted
above, our hope is that there might be some way to show that mutation will generate
strong labelings for all regular graphs of degree d from a single seed labeling of one
graph. We have no idea how to do this yet. Further computational evidence might
be helpful in this regard.

The paper [2] shows the importance of strong labelings of 2-regular graphs as the
starters for building VMTLs of even-regular graphs. While we have touched on this
in this paper, it would be useful if we could derive such labelings in a structured way
via mutation. This suggests the following:

Problem 1. Is there a strong VMTL for a cycle of odd order from which a fized
sequence of mutations will predictably produce 2-reqular graphs with strong VMTLs?

Of course, this is a special case of the much harder general question:

Problem 2. If we start with any strong VMTL of an r-regular graph and mutate
it through successive generations do we eventually obtain strong VMTLs for every
r-reqular graph of the same order, both connected and disconnected? If not, what are
the equivalence classes of labelings that are created?

The results in [2] applied to regular graphs of odd order, and we began there with
odd order 2-regular graphs. We know much less about VMTLs for the regular graphs
of even order. Cubic graphs of even order n can possess strong VMTLs only when
n = 4t, so these are the ones suitable for use as the potential starters for building
regular graphs of higher degree. This is one of the reasons we were interested in
studying them in detail.

Not all VMTLs are suitable for mutation. For the cycles, for example, no muta-
tion at all is possible if we assign either the largest integers or the odd integers to
the edges of a cycle. For cycles, it seems intuitively obvious that a strong VMTL
will maximize the number of possible first generation mutations, since in a strong
VMTL of a cycle we are guaranteed labels of consecutive edges which sum to the
edge labels %(n + 3),...,n. However it is possible that this does not produce the
greatest variety of non-isomorphic graphs.

Problem 3. Which labelings yield, through mutation, VMTLs of the greatest variety
of non-isomorphic graphs in the smallest number of generations?

Although mutation can be used to obtain labelings not obtainable by existing
formal constructions, it has limitations. At present, mutating labelings is computer-
intensive and it may be necessary to generate many labelings of intermediate graphs
in order to obtain a labeling for one desired graph. We have no knowledge of how to
predict what a particular labeling for a particular graph will generate. Apart from
exhaustive computation, we are only able to apply mutation to graphs with a simple
predictable labeling. This is the process used earlier for generalized stars and for
kites, and so far is our most effective use of the method.

There is much more to be investigated. For example, we have not studied (3, 3)-
mutations or (2,3)-mutations at all. The potential is exciting.
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