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Abstract

We use mobile guards on the vertices of a graph to defend it against
an infinite sequence of attacks on its edges. A guard on an incident
vertex moves across the attacked edge to defend it; other guards may
also move to neighboring vertices. We prove upper and lower bounds
on the minimum number of guards needed for this eternal vertex cover
problem and characterize the graphs for which the upper bound is sharp.

1 Introduction

Let G = (V, E) be a simple graph with n vertices. We use mobile guards to defend
G against a sequence of attacks. A number of recent papers have considered various
problems associated with defending the vertices of G against a sequence of attacks;
see for instance [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12]. One version of this problem is the
eternal domination problem (also known as the eternal security problem): at most
one guard is located at each vertex; a guard can protect the vertex where it is located
and can move to a neighboring vertex to defend an attack there. The sequence of
attacks is infinitely long and requires the configuration of guards induce a dominating
set before and after each attack has been defended.

∗ Supported by the Natural Sciences and Engineering Research Council of Canada.



236 W. F. KLOSTERMEYER AND C. M. MYNHARDT

In this paper we consider infinite sequences of attacks on edges rather than on
vertices. To repel an attack, a guard from an incident vertex moves across the
attacked edge. We call this the eternal vertex cover problem. A vertex cover of
G = (V, E) is a set C ⊆ V such that for each edge uv ∈ E at least one of u and
v is in C. Let α(G) be the vertex covering number of G, the minimum number of
vertices required to cover all edges of G.

The eternal protection problem has two variations, depending on whether one
guard or all guards are allowed to move to repel an attack. When edges are attacked,
the only model that appears interesting allows each guard to move (or not) across
an incident edge when an edge is attacked: one guard moves to repel the attack
and others may move to better configure themselves. As a simple example, consider
an even cycle C2n with vertices numbered 1 to 2n. We initially have guards on all
odd numbered vertices. When an edge is attacked, the guards rotate to all even
numbered vertices. To be consistent with [5], we call this the m-eternal vertex cover
problem.

The m-eternal vertex covering number, denoted α∞
m (G), is the minimum number

of guards required (at most one guard per vertex) to defend G against any sequence
of attacks on one edge at a time, by moving a guard along the attacked edge to
its other end-vertex; any number of guards may move (to a neighboring vertex) at
once. This strategy requires that the set X of vertices containing guards is a vertex
cover before and after each step. To repel an attack on the edge uv, where u, v ∈ X,
the guards on u and v both move along uv, crossing along the way. Since such an
attack can always be repelled without changing the configuration of guards, we only
consider attacks on edges with one unguarded vertex.

In Section 3 we determine α∞
m for paths and cycles, and a lower bound for α∞

m

for trees. In Section 4 we determine a number of general upper bounds for α∞
m ; it

follows from these bounds that the lower bound for trees established in Section 3 is
exact for all trees. The class of graphs with α∞

m = 2α is characterized in Section 5,
and graphs which satisfy α∞

m = α are discussed in Section 6. Several open problems
are also mentioned.

2 Terminology

In general we use the notation and terminology of [3]. Let β1(G) denote number of
edges in a maximum matching. A cyclic vertex of G is a vertex that lies on a cycle.
An end-block of a graph with at least two blocks is a block that contains exactly one
cut-vertex. An end-vertex of a tree is referred to as a leaf, while the vertex adjacent
to a leaf is a support vertex. We use L(T ), abbreviated L, to denote set of leaves of
the tree T . The vertices of T − L are sometimes referred to as the internal vertices
of T . A branch vertex of a tree is a vertex of degree at least three.

Denote the open and closed neighborhoods of X ⊆ V by N(X) and N [X], re-
spectively, and abbreviate N({x}) and N [{x}] to N(x) and N [x]. The external
private neighborhood epn(x, X) of x ∈ X relative to X is defined by epn(x, X) =
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N(x) − N [X − {x}]. Let 〈X〉 denote the subgraph of G induced by X ⊆ V .

If the vertex v is occupied by a guard, we denote this guard by g(v). Some guards
themselves will have labels; the vertex containing the guard t is then denoted g−1(t).

Obviously, α(G) ≤ α∞
m (G) for all graphs. For bipartite graphs, every vertex in a

minimum vertex cover is contained in a maximum matching, as guaranteed by the
following well-known theorem.

Theorem 1 [3, Theorem 9.13] If G is bipartite, then α(G) = β1(G).

3 Paths, cycles and trees

Proposition 2 (i) For any n ≥ 3, α∞
m (Cn) = α(Cn) =

⌈
n
2

⌉
.

(ii) For any n ≥ 1, α∞
m (Pn) = n − 1 =

{
2α(Pn) if n is odd
2α(Pn) − 1 if n is even.

Proof. (i) Let D be any minimum vertex cover of Cn and place a guard on each
vertex of D. To protect an edge e, move a guard on e along the edge and move all
other guards in the same direction along the cycle.

(ii) If n = 1, then no guard is required, and if n = 2, then the result is also trivial,
so assume n ≥ 3. The upper bound is obvious, so we only prove the lower bound.
Let Pn = v1, . . . , vn and suppose D is a minimum m-eternal vertex covering of Pn

with |D| ≤ n − 2. Note that when guards move to protect edges, at least one guard
remains on vn−1 or vn.

Either before or after an attack on the edge v1v2, there is a guard on v1. Let i be
the smallest index such that vi is unoccupied. To defend an attack on vivi+1, g(vi+1)
moves to vi, and perhaps some guards on other vertices move to their neighbors with
lower indices. Let j be the smallest index now such that vj is unoccupied and repeat
the process. But |D| ≤ n− 2, so eventually we reach a point where there is a guard
on vn−1 and no guard on vn−2 and vn. Thus g(vn−1) cannot move to vn−2 to protect
vn−2vn−1, and no other guard can protect this edge, a contradiction. �

We next prove a lower bound on the m-eternal covering number of trees. It will
be shown in Section 4 that this lower bound is always satisfied at equality for trees.

Proposition 3 For any nontrivial tree T , α∞
m (T ) ≥ |V − L| + 1.

Proof. By Proposition 2(ii) the result is true for paths, so assume T is a tree with
at least one branch vertex. Let D be any set of vertices of T of cardinality |V − L|
and place guards on all vertices in D.

Let � be any leaf of T and root T at �. Either before or after an attack on the
edge incident with �, � contains a guard. Let b0 be the branch vertex nearest to �
and let Q0 be the � − b0 path in T . If some vertex of Q0 is unoccupied, let u0 be
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the first such vertex, let v0 be an occupied child of u0 and defend an attack on u0v0

by moving g(v0) to u0. Other guards may move, but no guard on a predecessor of
u0 moves. Repeated attacks lead to a configuration of guards in which every vertex
of Q0 is occupied. Amongst the descendants of b0 there are |L| − 1 leaves and |L|
unoccupied vertices. Thus there is a child c1 of b0 such that the subtree T1 of T
induced by c1 and its descendants contains more unoccupied vertices than leaves.
Let b1 the branch vertex of T1 nearest to c1 (if it exists) and Q1 the c1 − b1 path in
T1. If some vertex on Q1 is unoccupied, repeat the above attack-defense sequence
until each vertex of Q1 is occupied; note that no guard in T − T1 can move to T1

during this sequence. As in the case of b0, b1 has a child c2 such that the subtree
T2 of T induced by c2 and its descendants contains more unoccupied vertices than
leaves. By repeating the process we eventually obtain a subtree Tk of T that contains
more unoccupied vertices than leaves, but no branch vertices, i.e., Tk is a path with
at least two unoccupied vertices. It follows as in the proof of Proposition 2(ii) that
the guards on Tk do not protect Tk. Since no guards on T − Tk can move to protect
an edge joining an unoccupied vertex of Tk to its child, D does not protect T . �

4 General bounds

In this section we show that no more than twice the vertex covering number of
guards is required to m-eternally cover G. We characterize the extremal graphs for
this bound in Section 5.

Theorem 4 Let G be a nontrivial, connected graph and let D be a vertex cover of
G such that 〈D〉 is connected. Then α∞

m (G) ≤ |D| + 1.

Proof. Let D satisfy the hypothesis of the theorem. If D = V , the result is trivial,
so assume V − D 	= ∅. Let d ∈ V − D be a vertex adjacent to some vertex in D
and place guards on each vertex in D ∪ {d}. Initially, the guard on d is called the
shadow guard. The shadow guard will be denoted by s throughout the proof. After
each defense another guard becomes the shadow guard and we write g(v) = s to
indicate that the guard on v is the shadow guard, and g−1(s) = v to indicate the
vertex occupied by s.

We repeat the following protection strategy for each attack. Suppose an edge
e = uv is attacked. Assume there is a guard on u and let P be a g−1(s) − u path
in 〈D ∪ {g−1(s)}〉. Move g(u) to v, and move all the guards on P along its edges in
the same direction. Let g(v) = s (i.e., the guard on v becomes the shadow guard).
In the resulting configuration of guards, each vertex in D contains a guard, and
〈D ∪ {g−1(s)}〉 is connected. It follows that we can defend all edges of G against any
sequence of attacks. �

The exactness of the lower bound for trees obtained in Proposition 3 now follows
from Theorem 4.

Corollary 5 For any tree T , α∞
m (T ) = |V − L| + 1.



EDGE PROTECTION IN GRAPHS 239

Proof. The subtree of T induced by its internal vertices is connected. Let D consist
of these vertices and any leaf of T and note that |D| = |V − L| + 1. �

The number of components of the subgraph of G induced by a vertex cover X
is related to the cardinality of a minimal superset of X that induces a connected
subgraph of G. Hence we have the following corollary.

Corollary 6 Let G be a nontrivial, connected graph and let X be a vertex cover of
G such that 〈X〉 has k components. Then α∞

m (G) ≤ |X| + k.

Proof. Since X is a vertex cover, V − X is independent. Since G is connected,
every component of 〈X〉 is at distance two from some other component, and can be
connected to this component by the addition of one vertex. Thus the components of
〈X〉 can be connected by the addition of at most k − 1 vertices. Hence there exists
a set D of at most |X| + k − 1 vertices that contains X and induces a connected
subgraph of G. The result now follows from Theorem 4. �

Finally, we bound α∞
m (G) in terms of the vertex covering number α(G).

Corollary 7 For any nontrivial, connected graph G, α(G) ≤ α∞
m (G) ≤ 2α(G).

Proof. The lower bound is trivial and the upper bound follows from Corollary 6
because a minimum vertex cover of G has at most α(G) components. �

5 Extremal graphs for the upper bound

It is clear from the upper bounds in Section 4 that the largest possible value of
α∞

m (G) is 2α(G). We now characterize the graphs that attain this bound. We begin
by describing a classes T , G and H of graphs with T ⊂ G ⊂ H; the class H will
prove to consist of all the nontrivial extremal graphs.

The class T : Let T ′ be any tree of order at least three. Subdivide each edge of T ′

exactly once and then delete all leaves to form the tree T . (For example, if T ′ is a
star, then T ∼= T ′, and if T ′ = Pn, then T = P2n−3.) Let T be the class of all trees
formed in this way. Then any T ∈ T has the following properties.

P1. All maximal paths in T have odd order ( and even length).

P2. Any two branch vertices of T are an even distance apart.

P3. Each branch vertex of T is an odd distance from any leaf.

Conversely, any tree that satisfies P1 – P3 is in T . The three conditions above
are equivalent to the statement that T has a unique minimum vertex cover A, which
is independent and obtained by considering the unique bipartition of T and choosing
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A to be the partite set of smaller cardinality. Note that A contains all branch vertices,
no leaves and thus all support vertices of T .

The class G: For any T ∈ T with minimum vertex cover A, and each pair of vertices
x, y ∈ A such that d(x, y) = 2, add any number (including zero) new vertices and
join each new vertex to both x and y to form the graph G. Then A is also the unique
minimum vertex cover of G. Let G be the class of all graphs thus constructed; note
that T ⊂ G.

The class H: Let G ∈ G with minimum vertex cover A and define Aε = {x ∈ A : x
is at distance two from exactly one yx ∈ A}. Each vertex in Aε is a support vertex
of G. For any x ∈ Aε such that deg x = r ≥ 3, join all leaf neighbors of x to yx. In
the resulting graph, 〈{x, yx} ∪ (N(x) ∩ N(yx))〉 is an end-block isomorphic to K2,r.
This process may be performed for any number of vertices in Aε, provided the new
graph H has δ(H) = 1; note that A is the unique minimum vertex cover of H. Let
H be the class of all graphs constructed in this way (including the graphs in G).

Theorem 8 α∞
m (G) = 2α(G) if and only if G ∈ H.

Proof. If G = K2, then obviously α∞
m (G) = 1 < 2α(G), so assume G has order at

least three.

We first show that α∞
m (G) = 2α(G) implies G ∈ H. Let X be a minimum vertex

cover of G such that 〈X〉 has as few components as possible. Then

X does not contain any end-vertices of G, (1)

because if v ∈ X is an end-vertex and u is its neighbor, then u /∈ X by the minimality
of X. Hence each neighbor of u is in X, and since deg u ≥ 2, 〈(X − {v}) ∪ {u}〉 has
fewer components than 〈X〉.

If some vertex in V − X is adjacent to at least three vertices in X, then there
exists a set D with at most 2α(G)− 2 vertices that contains X and such that 〈D〉 is
connected. By Theorem 4, α∞

m (G) ≤ 2α(G) − 1. If 〈X〉 contains at least one edge,
then 〈X〉 has at most α(G)−1 components, hence by Corollary 6, α∞

m (G) ≤ 2α(G)−1.

Assume henceforth that X = {x1, . . . , xα} is independent (thus G is bipartite)
and each vertex in V −X is adjacent to one or two vertices in X (thus 1 ≤ deg v ≤ 2
for each v ∈ V − X). For i = 1, . . . , α, let Vi = epn(xi, X) and for i, j = 1, . . . , α,
i 	= j, let Vij = N(xi) ∩ N(xj). By (1), each end-vertex of G is in a set Vi. Also,
each block B of G is a K2 or a K2,r, r ≥ 2, the cut-vertices of B (or the cut-vertex
x and the vertex of B at distance two from x) being in X.

Let G∗ be the graph obtained by deleting all vertices but one in each set Vi and
Vi,j . Then G∗ contains no 4-cycles. We consider three cases, depending on whether
G∗ is a tree or not, and when G∗ is a tree, on the structure of the end-blocks of G.

Case 1 G∗ has a cycle C. Then G /∈ H. We show that α∞
m (G) ≤ 2α(G) − 1. Since

G∗ has no 4-cycles, C ∼= C2k for some k ≥ 3. By Theorem 1, G∗ has a maximum
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matching that saturates each vertex in X. We may choose a matching M = {xiyi :
i = 1, . . . , α} such that at least one vertex w ∈ X ∩ V (C) is matched to another
vertex w′ of C (otherwise, if xi ∈ V (C), yi /∈ V (C), let y′

i be a neighbor of xi on C,
note that y′

i is M-unsaturated, and choose the matching (M − xiyi) ∪ xiy
′
i instead).

Let x1 be the vertex of X −{w} on C adjacent to w′ and define D = X ∪ (Y −{y1}).
Then |D| = 2α(G)− 1. Place a guard on each xi and a shadow guard for xi on each
yi, i 	= 1.

Our protection strategy in G will maintain guards on each vertex xi and a match-
ing from X to the occupied vertices in V (G) − X that saturates all but one vertex
of X. The shadow guard si for each g(xi) is determined by the matching. The
unsaturated vertex in X will not always be the same vertex, but will remain on
C and throughout the protection process its shadowless guard will be denoted u.
The guard u will remain adjacent to the shadow of another guard on a vertex in
X ∩V (C); this guard a is the anchor guard for u and its shadow is denoted s. Thus
we must ensure that u, s, a form a path in G at all times. Initially, g−1(u) = x1,
g−1(s) = w′, g−1(a) = w and g−1(si) = yi. Any configuration of guards that satisfies
the above-mentioned conditions will be called equivalent to D.

We describe our defense strategy against an attack on the edge xizi of G, where
zi ∈ V (G) − X, in two subcases.

Subcase 1.1 xi lies on some cycle of G∗. Consider G.

� If g(xi) /∈ {u, a}, move g(xi) and si to zi and xi, respectively; redefine si =
g(zi), i.e. the shadow guard for the (new) guard on xi is on zi and we are done.

� If g(xi) = a, move g(xi) and si to zi and xi (destroying the path u, s, a). Let
xj be the other vertex on C at distance two from g−1(u). Since C is not a
4-cycle, xj 	= xi.

� If sj is adjacent to u, then xj becomes the anchor, i.e., g(xj) = a and
sj = s.

� If sj is not adjacent to u, move g(xj) to a neighbor of u and the guard sj

to xj to become the anchor; after the move, g(xj) = a and sj = s.

� Now suppose g(xi) = u. Say g(xj) = a and xk is the other vertex of C at
distance two from xj ; since C is not a 4-cycle, xk 	= xi. Move u and s to zi and
xi, respectively.

� If zi is a common neighbour of xi and xj , we simply interchange the roles
of g(zi) and s.

� Otherwise, either zi is adjacent to the other vertex xm, m 	= j, of C at
distance two from xi, or zi /∈ V (C). Let g(zi) = si (so g(xi) obtains a
shadow) and g(xj) = u (the guard on xj becomes the shadowless guard
u).
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∗ If g−1(sk) is adjacent to xj , let sk = s and g(xk) = a.

∗ If g−1(sk) is not adjacent to xj , move g(xk) and sk to a neighbor of
xj and to xk, respectively. After the move, sk = s and g(xk) = a.

After all the guard movements above, each vertex in X contains a guard, each of
these guards has an adjacent shadow guard, except one vertex g−1(u) on C; for this
vertex there is an anchor a with g−1(a) ∈ X whose shadow s is adjacent to u. Thus
the configuration of guards is equivalent to D.

Subcase 1.2 xi does not lie on a cycle of G∗. Then si exists and also does not
lie on a cycle of G∗ because 1 ≤ deg g−1(si) ≤ 2. If some vertex z with NG(z) =
NG(zi) contains a guard, move g(xi) and g(z) to zi and xi, respectively, obtaining a
configuration of guards equivalent to D. Hence we assume this is not the case.

Let P be a path v, . . . , yi, xi, z, . . . , w in G∗, where NG(z) = NG(zi) (possibly
z = zi), NG(yi) = NG(g−1(si)), v and w are end-vertices or cyclic vertices of G∗ (not
necessarily both of the same type, and possibly v = yi or z = w) and no internal
vertices of P are cyclic vertices of G∗. All vertices of P at even distance from xi are
in X, and if v or w is a cyclic vertex of G∗, then it is in X (for then it has degree at
least three). By the choice of D, P initially contains at most one unoccupied vertex,

since at least
⌊
|V (P )|

2

⌋
vertices of P belong to X and each of these vertices contains

a guard that also has a shadow guard. But by assumption, z is unoccupied, so all
other vertices of P contain guards. Move g(xi) to zi and si to xi.

� If v is an end-vertex of G, move all guards on the v − g−1(si) subpath of P
one vertex closer to g−1(si). Then each shadow guard becomes a guard on a
vertex in X, and each guard previously on X becomes a shadow guard For the
resulting configuration of guards there again exists a path similar to P with
only one unoccupied vertex, namely v.

� If v is an end-vertex of G∗ but not of G, then v = xj for some j such that
Vj = ∅. Now each vertex in X on the v −xi subpath P ′ of P contains a guard
that also has a shadow guard on P ′, which begins and ends with a vertex in
X. Thus there exist vertices xk, xl ∈ V (P ′) such that sk and sl occupy vertices
in Vkl. Without loss of generality assume xk precedes xl on P . After moving
g(xi) to zi and si to xi, move all the guards on the sl − g−1(si) subpath of P
one vertex closer to g−1(si), move g(xk) to a vertex in Vkl and move sk to xk.
For the new configuration of guards there exists a path similar to P and with
all vertices containing guards.

� Finally, if v is not an end-vertex of G∗, then v is a cyclic vertex of G∗. Say v
lies on a cycle C ′. Let v′ be the vertex adjacent to v on P . Move all guards
on the v′ − g−1(si) subpath of P one vertex closer to g−1(si), and then move
guards on v and C ′ according to the strategies described in Subcase 1.1. Again
there now exists a path similar to P and with all vertices containing guards.
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Since each new configuration of guards is equivalent to D, this concludes the proof
of Subcase 1.2. It follows that if G∗ has at least one cycle, then α∞

m (G) ≤ 2α(G)− 1.

Case 2 G∗ is acyclic and δ(G) ≥ 2, or δ(G) = 1 and G has a 4-cycle as end-block.
We prove that α∞

m (G) < 2α(G). Since G∗ is acyclic, it has α(G)− 1 paths of length
two connecting vertices in X, i.e., Vij 	= ∅ for exactly α(G) − 1 pairs i, j. Place a
guard on each xi and a shadow guard sij on a vertex vij in each nonempty Vij .

� Assume firstly that δ(G) ≥ 2. Then Vi = ∅ for each i = 1, . . . , α. If a vertex z
is unoccupied, then z ∈ Vij for some i, j. To repel an attack on the edge xiz,
move g(xi) to z and move sij to xi. Hence G can be protected by 2α(G) − 1
guards. Note that G /∈ H because δ(G) ≥ 2.

� Now assume that δ(G) = 1 and G has a 4-cycle as end-block. Say B is such
a 4-cycle. The vertex of B at distance two from the cut-vertex is in X; say
this vertex is x1. While the leaves of G do not contain guards, the protecting
strategy for edges incident with vertices in the sets Vij is the same as above.

� To repel an attack on a pendant edge xk�, assume without loss of generality
that P = x1, v1,2, x2, . . . , vk−1,kxk, � is the x1 − � path in G∗. Then each
vertex of P contains a guard, with the shadow guard sij on vij. In G,
move the guards on all vertices of P except x1 one vertex closer to �. If
an edge x2z is attacked, with z ∈ V1,2, reverse this guard movement.

� While a leaf of G contains a guard, if there is an attack on an edge xmz,
where z ∈ Vmj for some j and there is a shadow guard on a vertex in Vmj ,
repel the attack as before.

� If there is an attack on a pendant edge xmz while some leaf (say � as
above) is occupied, note that for some j = 2, . . . , k, there is a z − xj path
Q′ in G∗. Let Q be the z − � path in G∗ consisting of Q′ followed by the
xj − � subpath of P . Move all guards on Q one vertex closer to z.

� Now assume the leaf �, with the path P as above, contains a guard and
there is an attack on an edge x1z. Move g(x1) to z, g(x2) to the other
vertex in V1,2 and reverse all the other guard movements made to protect
the edge xk�. This gives a new configuration of guards, but the protection
strategy from this configuration is virtually the same as from the initial
configuration: whenever one guard on V1,2 moves to x2, the other one
moves to x1.

In each case G can be protected by 2α(G)−1 guards and so α∞
m (G) ≤ 2α(G)−1.

Moreover, no graph G considered in this case is in H, because either G has no end-
vertices, or G has an end-block that is neither an edge (thus G /∈ G) nor isomorphic
to K2,m, m ≥ 3 (thus G /∈ H).

Case 3 G∗ is acyclic, δ(G) = 1 and no end-block of G is a 4-cycle. Again we have
two subcases, depending on whether G has a K2,r, r ≥ 3, as end-block or not. We
prove that G ∈ H in each case.
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Subcase 3.1 each end-block of G is a K2. Since X is independent, contains no
leaves of G or of G∗ and each internal vertex of G∗ not in X is adjacent to exactly
two vertices in X, G∗ has exactly 2α − 1 internal vertices. Moreover, G∗ satisfies
conditions P1 – P3 for trees in the class T and so G∗ ∈ T . Thus G can be
constructed from G∗ by joining |Vi|−1 new leaves to each vertex xi to obtain another
tree T ∈ T , and then by joining each pair of vertices xi, xj ∈ X with d(xi, xj) = 2
to |Vij | − 1 new vertices. Hence G ∈ G ⊆ H.

Subcase 3.2 G has a K2,r, r ≥ 3, as end-block. For each such end-block Bi, let
xi ∈ X be the vertex of G of degree r and xj ∈ X the (unique) vertex of G at
distance two from xi. Let z1, . . . , zk ∈ Vij for some 1 ≤ k < |Vij |, and delete the
edges z1xj, . . . , zkxj. Denote the resulting graph by G′. Define the sets V ′

i and V ′
ij ,

and the graph G′∗ as before. Then each end-block of G′ is a K2, and V ′
ij 	= ∅

whenever Vij 	= ∅. As in Subcase 3.1, G′∗ ∈ T and G′ ∈ G. By the construction of
the class H, G ∈ H.

This completes the proof that α∞
m (G) = 2α(G) implies G ∈ H.

Conversely, we prove that α∞
m (G) = 2α(G) for each G ∈ H. Consider any graph

G ∈ H with minimum vertex cover X = {x1, . . . , xα}, and with the sets Vi and Vij

defined as above. For any xi, xj ∈ X such that d(xi, xj) = 2, the subgraph of G
induced by {xi, xj}∪Vij is isomorphic to K2,r, where r = |Vij | ≥ 1, and the subgraph
induced by {xi} ∪ Vi is isomorphic to the star K1,r, r = |Vi|. When Vij , Vi 	= ∅, we
call the subgraphs 〈{xi, xj} ∪ Vij〉 and 〈{xi} ∪ Vi〉 the pieces of G. The vertices in
X are either cut-vertices of G, or vertices of degree r ≥ 3 that belong to a piece
K2,r. Since the graph G∗ (defined as before) is a tree, the pieces of G form a tree-like
structure. A vertex x ∈ X is called a branch vertex if it is contained in at least three
pieces. An end-piece is a piece that contains exactly one cut-vertex, i.e., a piece
isomorphic to K1,r, or to a K2,r that contains a vertex xi of degree r ≥ 3. Because of
the tree-like structure of G, we may root G at an end-vertex v by directing all edges
of G away from v. The levels of the rooted graph G correspond to the levels of the
tree G∗ rooted at v.

Let D be any set of 2α(G) − 1 vertices of G and place a guard on each vertex
in D. A piece has a fair allocation of guards if it is a star and has one guard, or
it is a K2,r and has three guards. A piece S has guard discrepancy k if k equals
the number of guards on S minus the number of guards in a fair allocation of S.
Note that k may be positive, negative or zero. We shall consider piece-subgraphs of
G consisting of pieces of G and of stars K1,r obtained by deleting one vertex of a
piece K2,r. A path of pieces is a connected piece-subgraph in which each cut-vertex is
contained in exactly two pieces. We say a piece-subgraph H is depleted (respectively
neutral or advantaged) if the sum of the guard discrepancies over the pieces of H
is negative (respectively zero or positive). If G is rooted and H is a depleted piece
(piece-subgraph consisting of one piece) in G, then one or more levels of H do not
contain guards. Such a level is then called a depleted level.
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Since G∗ has exactly α(G) − 1 vertices with two neighbors in X, and |X| = α,
2α(G)−1 guards can be placed on G∗, and hence on G, such that each piece has zero
guard discrepancy. Since guard movements do not change the total guard discrepancy
over G, we deduce that G is neutral after any guard movement.

With all these definitions in place, we show that 2α(G)−1 guards do not protect
G. Suppose to the contrary that D protects G. We follow the proof of Proposition
3. Since δ(G) = 1, G has an end-vertex �. Root G at �. Either before or after an
attack on the edge incident with �, � contains a guard. If G has branch vertices, let
b0 be the branch vertex nearest to �. Then b0 ∈ X. Let Q0 be the � − b0 path of
pieces in G.

If some piece of Q0 is depleted, let S0 be the depleted piece nearest to � and let
u0 be a vertex in a depleted level of S0; since D is a vertex cover, u0 has an occupied
child. Since all children of u0 are in the same orbit of the automorphism group of
G, let v0 be any occupied child of u0. The only way to repel an attack on u0v0 is by
moving g(v0) to u0. Other guards may move, but no guard on a predecessor of u0

moves to a lower level (i.e., further away from the root) than that of u0, and thus
only guards on descendants of u0 can protect an edge on a lower level than that of u0.
Repeated attacks lead to a configuration of guards in which no piece of Q0 is depleted
and the piece containing � is advantaged. Since G is neutral, there is a child c1 of
b0 such that the piece-subgraph G1 of G induced by the star containing c1, and by
the descendants of c1, is depleted. Let b1 the branch vertex of G1 nearest to c1 (if it
exists) and Q1 the c1− b1 path of pieces in G1. If some piece S1 of Q1 is depleted, let
u1 be a vertex in a depleted level of S1 and repeat the above attack-defense sequence
until no piece of Q1 is depleted; note that no guard on a vertex in G−G1 can move
to a lower level of G1 than that of u1 during this sequence. As in the case of b0, b1

has a child c2 such that the piece-subgraph G2 of G induced by the star containing
c2, and by the descendants of c2, is depleted.

By repeating the process we eventually obtain a depleted piece-subgraph Gk of G
that contains no branch vertices, i.e., Gk is a path of pieces. Assume without loss of
generality that the piece S of Gk that is depleted is the end-piece of G contained in
Gk; otherwise, we may defend edges in preceding pieces in the same way as before.
If S ∼= K1,r, then S contains no guards and so the pendant edge(s) are not covered
by a guard. If S ∼= K2,r, then r ≥ 3 and S contains at most two guards. Let x
and y be the vertices of degree r in S, where x also has degree r in G, i.e. x is the
vertex of Gk at maximum distance from �, and let N(x) ∩ N(y) = {z1, . . . , zr}. If x
has no guard, then at most two vertices in {z1, . . . , zr} have guards, and since r ≥ 3
it follows that some edge xzi is unguarded. Hence assume x contains a guard. If
(say) z1 has a guard, then y has no guard (S is depleted) and so yz2 is not covered
by a guard. Hence no zi has a guard; the guards on S are on x and y. To repel an
attack on xz1, g(x) moves to z1. But then xz2 and xz3 are not covered, so guards
must move to cover these edges. But only g(y) can move to these edges, and only to
one of xz2 and xz3. Hence at least one of these edges cannot be covered. We have
therefore shown that 2α(G) − 1 guards cannot protect G. Hence α∞

m (G) = 2α(G)
and the proof is complete. �
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Question 1 If G∗ has k cycles, is α∞
m (G) ≤ 2α(G) − k?

6 Lower bound

Our main question in this section is the following.

Question 2 For which graphs is α∞
m (G) = α(G)?

An elegant characterization resolving this question seems difficult, but a sufficient
condition is given in the next result.

Proposition 9 If G has two disjoint minimum vertex covers and each edge of G is
contained in a maximum matching, then α∞

m (G) = α(G).

Proof. If G has two disjoint minimum vertex covers A1 and A2, then both A1 and
A2 are independent and each edge joins a vertex in A1 to a vertex in A2. Thus G
is bipartite and so by Theorem 1 there is a perfect matching between A1 and A2.
Place a guard on each vertex in A1. To defend an edge uv, where u ∈ A1, let M be
a perfect matching containing uv. Then all guards move from A1 to A2 along the
edges of M . This strategy can be repeated indefinitely and so α∞

m (G) = α(G). �

Both the existence of disjoint minimum vertex covers and the property that each
edge is contained in a maximum matching are required to ensure that α∞

m (G) =
α(G). The paths P2n have disjoint minimum vertex covers but a unique maximum
matching, i.e., not every edge is contained in a maximum matching, and by Corollary
5, α∞

m (P2n) = 2n − 1 > α(P2n) for n ≥ 2. On the other hand, if G is the graph
consisting of two triangles which share one vertex v, then every edge of G is contained
in a maximum matching (β1(G) = 2), G has distinct but not disjoint minimum
vertex covers consisting of v and one other vertex of each triangle, so α(G) = 3,
but an attack on an edge incident with v cannot be defended by the guards in any
minimum vertex cover. Odd cycles show that the conditions are not necessary for
G to satisfy α∞

m (G) = α(G); they do not have disjoint minimum vertex covers but
α∞

m (Cn) = α(Cn) for all n.

Question 3 Is it true that if α∞
m (G) = α(G), then each edge of G is contained in a

maximum matching?

An interesting class of graphs to examine is vertex transitive graphs. Let G×H
denote the Cartesian product of G and H. The following is easy to verify.

Fact 10 Each graph in the following classes satisfies α∞
m (G) = α(G).

(i) Kn

(ii) Petersen graph
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(iii) Km × Kn

(iv) Cm × Cn

(v) Circulant graphs (to repel an attack along the edge uv, move (say) g(u) to v
and move each other guard along its incident edge that corresponds to uv in
the same orientation of the cycle).

A natural question then is the following.

Question 4 Do all vertex transitive graphs G have α∞
m (G) = α(G)?

We now exhibit a family of graphs that are not vertex transitive, but which satisfy
α∞

m (G) = α(G) (see Theorem 11(ii)). We sometimes call Pn × Pm the n × m grid
graph.

Theorem 11 (i) α∞
m (P1 × Pn) = n − 1.

(ii) If n is even, then α∞
m (Pn × Pm) = nm

2
= α(Pn × Pm).

(iii) If n, m > 1 are odd, n ≥ m, then α∞
m (Pn × Pm) = �nm

2
� = α(Pn × Pm) + 1.

Proof. Statement (i) is Proposition 2.

(ii) If n is even, then G = Pn ×Pm is Hamiltonian. By choosing alternative vertices
on a Hamilton cycle we obtain a minimum vertex cover; the remaining nm

2
vertices

are also a minimum vertex cover. By placing the nm vertices of G in the form of an
n×m grid and rotating and reflecting Hamilton cycles (the number of rotations and
reflections depend on the parity of m), we note that every edge of G, n ≥ 4, lies on
a Hamilton cycle and is thus contained in a perfect matching. Hence by Proposition
9, α∞

m (G) = α(G) = nm
2

.

(iii) Let G = Pn × Pm and note that G has a unique minimum vertex cover A of
cardinality

⌊
nm
2

⌋
which consists of the vertices at odd distance from the vertices of

degree two, while B = V −A is a vertex cover of cardinality
⌈

nm
2

⌉
. Call the vertices

in A the A-vertices, and the vertices in B the B-vertices. Label the vertices in row
i of the grid by vi1, . . . , vim, i = 1, . . . , n; the vertices whose indices sum to odd
(respectively even) numbers are A-vertices (respectively B-vertices). Let b0 be any
B-vertex and G0 = G − b0. The sets A ⊆ V (G0) and B0 = V (G0) − A = B − {b0}
are minimum vertex covers of G0. Then G0 is Hamiltonian and by considering
various Hamilton cycles of G0 we note that every edge of G0 lies on a Hamilton
cycle and hence is contained in a maximum matching of G0. [Two Hamilton cycles
of (P5 × P5) − v2,2 are illustrated in Figure 1 (a) and (b). Superimposing the two
cycles and then reflecting in the southeast – northwest diagonal covers all edges of
(P5 × P5) − v2,2.]

In G, initially place guards on all the A-vertices and on b0. By Proposition 9 the
edges in G0 can be protected without using g(b0). Now consider an attack on an
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edge ub0. While there is a guard on b0 we only need to consider an attack when the
other guards in G are on B-vertices. [See Figure 1 (c).] Let b1 	= b0 be a B-vertex
adjacent to u and let M0 be a perfect matching of G0 that contains ub1. Move g(b0)
to u and move all guards on B-vertices other than b1 to A-vertices according to M0.
(Hence we use all edges of M0 except the edge ub1.) Now all guards in G are on A-
vertices, except that there is a guard on the B-vertex b1. [See Figure 1 (d).] Define
G1 = G − b1 and B1 = V (G1) − A = B − {b1} and repeat the above-mentioned
strategy. It is clear that the

⌈
nm
2

⌉
guards can protect G against any sequence of

attacks. Since A is the unique minimum vertex cover of G and any movement of
guards to defend an edge destroys this vertex cover,

⌊
nm
2

⌋
guards cannot protect G

and the result follows. �

We saw graphs G, H in Theorem 11(ii) that require more guards than their
vertex cover number, yet α∞

m (G × H) = α(G × H). The next question is whether
α∞

m (G) = α(G) implies that α∞
m (G × H) = α(G × H).

Proposition 12 For n ≥ 2, α(Kn × G) = α∞
m (Kn × G).

Proof. View Kn ×G as consisting of n copies G1, . . . , Gn of G, where corresponding
vertices in any two copies are joined by a perfect matching. Denote the copy of
v ∈ V (G) in Gi by vi. Place guards on a minimum vertex cover of Kn × G. An
attack on an edge between Gi and Gj is handled by moving all guards from Gi to
their corresponding vertices in Gj and vice versa (some guards may cross in the
process). Consider an attack on an edge uivi of Gi; assume without loss of generality
that i = 1 (attacks on Gi, i ≥ 2, are treated identically) and that there is a guard
on u1. Since v1 has no guard, vi has a guard for each i ≥ 2. Consider the 4-cycle
u1, v1, v2, u2, u1 and note that u2 may or may not contain a guard. Move g(u1), g(u2)
(if it exists) and g(v2) to v1, u1 and u2 respectively, and switch all other guards
between G1 and G2. The new guard configuration on G1 is the same as the former
configuration on G2 and vice versa, thus the guards on Kn ×G form a vertex cover.

�

Using the same ideas (but involving all copies of G in each movement of guards
instead of just two), it is simple to prove the following.

Proposition 13 α(C2n × G) = α∞
m (C2n × G).

Question 5 Let G and H be graphs such that α∞
m (G) = α(G). Is it true that

α∞
m (G × H) = α(G× H)?

We conjecture that the following weaker result is true.

Conjecture 6 Let G and H be graphs such that α∞
m (G) = α(G) and α∞

m (H) = α(H).
Then α∞

m (G × H) = α(G × H).
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Figure 1: Hamilton cycles, matchings and guards in (P5 × P5) − v2,2
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