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ABSTRACT. A Mendelsohn design M(k,v) is a pair (V,B),
where |V|=v and B is a set of cyclically ordered k-tuples of
distinct elements of V, called blocks, such that every
ordered pair of distinct elements of V belongs to exactly
one block of B. A M(k,v) is called cyclic if it has an
automorphism consisting of a single cycle of length v. The
spectrum of existence of cyclic M(3,v)’s and M(4,v)’'s is
known. In this paper we prove that in every cyclic M(k,v)
with kg2 (mod 4) v is odd, and we give some constructions
which allow us to determine the spectrum of cyclic M(k,v)’'s
for every k such that 5sks<8.

1. INTRODUCTION
Given a finite set V, a Mendelsohn k-tuple on V, k23, is
a set
Hxax by ees(x, ox )a(x hx )},
where xj,xz,...,xk are distinct elements of V. A Mendelsohn

k-tuple will be denoted by [xi,xz,...,xkj. Clearly:

[xi,xz,...,xk]={x2,...,x ,xij=...=[xk,x1,..., ]

X
k k-1

A 2-{v,k,\) Mendelsohn design is a pair (V,B), where
‘V[=v and B is a collection of Mendelsohn k-tuples on V,
called blocks, such that every ordered pair of distinct
elements of V belongs to exactly A blocks of B.

A 2~(v,k,1) Mendelsohn design will be denoted by M(k,v).

If (V,B) is a M(k,v) then ‘Blz v(v=1)

3y it follows that a
necessary condition for the existence of M(k,v)'s is
viv-1}=0 (mod k), vzk.

The problem of existence of M(k,v)’'’s is open; however the
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spectrum of M(k;v)’s is known for every k such that 3<k<l16,
k15 ([71,011,02],[3]).

A M(k,v) is called cyclic if it has an automorphism
consisting of a single cycle of length v. In what follows a
cycliec M(k,v) will be denoted by CM(k,v).

In (6] it is proved that a CM(3,v) exists if and only if
v=l or 3 (mod ), v#9. Further, in [8] it is showed that a
CM{4,v) exists if and only if v=l1 (mod 4).

In this paper we study the spectrum of CM(k,v)’'s. We
prove that if a CM(k,v) exists and kg2 (mod 4) then v is
odd. Further we give some constructions from which it
follows that for 5<k<8 a CM(k,v) exists if and only if k=5
and vel or 5 (mod 10), k=6 and v=0 or 1 (mod 3), v#6,9, k=7

and v=l or 7 (mod 14), k=8 and v=l (mod 8).

2. EXISTENCE OF CM(k,v)’'s

Suppose that (V,B) is a CM(k,v). Then we may assume that
V=Zv and thaﬁ if b={x1,x2,...,qu€B then alsoc every block

b+y=1X +¥,X_+y, ...y X +¥]

yezv, belongs to B.

With each block b={x1,x2,..‘,xk]€B we can associate a
cyclically ordered k-tuple:

d(b)=(x2—x1,...,xk—xkni,x}-xk) N

which will be called differehce block (briefly d-block} of
b.

We will say that the set B={d(b): beB} is the difference

family of (ZV,B).
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The following result is well known. -

THEOREM 1. A CM(k,v) exists if and only if there exists a
set D of cyclically ordered k-tuples of elements of Zv—{O}
such that:

(1) every zezv-{O} is contained in exactly one k-tuple of D;

t2) for every (21’22""’Zk)€D:

k m

Z z =0 and z zi;eO for every m=1,2,...,,k-1 .
1

i=1 i1

Let (Z ,B) be a CM(k,v) and let B be its difference
family. In the following lemmas we determine some properties
of B.

LEMMA 1. For every (zl,zz,...,zk}eﬁ, if z,=z then
1

Proof. Let (z1,z2,...,zk)e§ and suppose that z =z . Let
1

K
z and;;:zz,r=1,2,...,k.
3 P L

Consider b=[w1,w2,...,wk]€B. Since (Z ,B) is cyclic,
v
b+w eB; further, w +w =w and w +W =w because z =z . It
i i-1 ik i1 17
follows that b+w =b, hence, in particular, w W 1+€5., for
i 14 1
that z =z . W
2 i+l

From Lemma 1 it follows that for every deB there exists a
divisor & of k such that d=(za’zz’""26’z1’zz"”'26"°'
""zx'zz""’ZS)’ where Zi’zz""’ZS are distinct elements
of Zv-i;()}. Let n=zl+zz+...+z6, where + is the usual addition
between integers. From Theorem 1 7n=0 (mod -v) if and only if

5=k. We set T(d)=(6,n).

LEMMA 2. For every deB, if T(d)=(8,n) then there exists

tv

tet{d,28,...,lk-118} such that GCD{t,k)=§ and 5= -
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Proof. Let &= -—g— Then there exists he{l1,2,...,k~1}
such that né'zhv. Let t=h§. Then n= _EL’ with te{8,28,...,
(k-1)8}.

We prove that GCD(t,k)=86. Clearly & is a divisor of t ahd
k. Now, suppose that 3 is a divisor of t and k and let t=3h
and k=383‘. Then nd’zhv. But then from Theorem 1 it follows
that &'28’ and hence 3<5. ® |

In the following theorem we give a necessary condition
for the existence of CM(k,v)’s.

THEOREM 2. If a CM({k,v) exists and k#2 (mod 4) then v is
odd.

Proof. Let (Z ,B) be a CM(k,v) and let B be its
difference family, with ﬁz{dt’dz""’de} and T(di)=(6i,ni),

1iz1,2,404,8,

t. v .
From Lemma 2, ni= ——{z——- , and from (1) of Theorem 1,
e
Vn_= -Y-!-Y—:l—-’- . It follows that
by ¢ ;
]
(3) , t = Ko1)o

. i
i=1

Therefore, if k=1 or 3 (mod 4) then v is odd.
Further, from Lemma 2, if k is even then, for every

i=1,2,...48, t is even if -and only if & is -even.
1 1
L] -]

Thereforeg t is even if and only if z 8, is even.
1

iw®1 i=1
8

Suppose now that k=0 (mod . 4); then, from (3), z

ti is
iw1

-]

even, therefore z 6‘=vl—1 is even, so v is odd. @
i
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3. CONSTRUCTIONS OF CM(k,v)’'s

In this section we give some constructions which allow us
to determine the spectrum of CM(k,v)’s for b5skx8.

THEOREM 3. If k is prime, k23, then a CM(k,k) exists.

Proof. From Theorem 1, the family of cyclically ordered
k~tuples D={{isis;eo.,i): 1i=1,25...3k-1} determines a
CMik,k). m

THEOREM 4. If v=l or 5 (mod 10}, v>6, then a CM(5,v)
exists.

Proof. First consider the case vel (mod 10).

Let wv=10h+1, h2l. For every 1i=1,2,...,h, let di=(i,
h+2i~-1,3h+2i~1,10h~-4i+43,6h~i+1), d;:(h+2i,3h+2i,10h—4i+2.
10h-4i+4,6h+4i-3) and let D={di: i=1,2,...,h}u{d;: i=1,2,..
«osht.

It is a routine matter to verify that (1) and (2) of
Theorem 1 hold for D, so a CM(5,v) exists for every v=l {(mod
10).

Now, consider the case vs=b (mod 10).

Let v=10h+5, h=2l. For every 1i=1,2,...,h we consider
di=(i,2h—i+1,6h+i+3,8h+i+4,4h—21+2) and d;=(4h+i+2,7h+i+3,
6h-i+3,9h+i+4,4h~2i+3). Further, for every 1i=1,2,3,4, let
d?:(i(2h+l),i(2h+l),i(2h+1),i(2h+1),i(2h+1)) and let D={di:
i=l,2,...,h}u{d;: i=1,2,...,h}u{d:: i=1,2,3,4} .

In a similar way to the case vzl (mod 10) we can verify
that, in wview of Theorem 1, the family D determines a
CM(5,v) for every vs5 {mod 10}, v>5. This vcomplete the

proof. =



Iin the following theorems we apply Theorem 1 to give
constructions of CM(k,v)‘’s for k=6,7,8., The proofs are
similar to that of Theorem 4 and we give only the
constructions of CM(k,v);é, because the verifications are
tedious but straightforward.

In {1] it is proved that a M(6,v) exists if and only if
v=0 or 1 (mod 3), v>6. By Theorem 1 it 1is easy to verify
that there does not exist a CM{(6,9).

THEOREM 5. If v=0 or 1 (mod 3), v>6 and vg#9, then a
CM(6,v) exists.

Proof. First, consider the case v=0 (mod 6).

Let wv=6h, h=22. For every i=1,2,...,h-2 let diz(i,h+i,
2h+i,6h-1, B5h-i,4h~-i}. Let D1={di: i=1,2,...,h=-2}, Dzn{(h,h,
h,h,h,h}, {(5h,5h,5h,5h,5h,5h), (2h,3h~1,4h+1,2h,3h~1,4h+1),
(h~1,2h-1,3h,3h+1,5h+1,4h)} and D=DluD2. Observe that for
h=2, D1=¢. .

From the family D we can construct a CM{(6,6h) for every
h22.

Consider now the case vsl (mod 6).

Let wv=6h+l1, h2l. For every i=1,2,...,h let di=(i,h+i,
2h+i,6h~i+1,4h-i+1,5h-i+1} and let D={dj: i=1,2,...,h}. The
family D determines a CM(6,6h+l) for every h=z1.

Now we suppose that v=3 {(mod 6), v#8, and we distinguish
two cases: v=3 (mod 12) and v=9 (mod 12).

Let v=12h+3, hzl. For every i=1,2,...,h-1 let di1;(4h+zi,
4h-21+2,4h+2i,4h-2142,4h+2i,4h~2i+2), d12=(21-1,8h~21+3,

2i-1,8h-21+3,21i-1,8h-2i+3}, di3=(4h+21+1,12h—21+3,4h+21+1,



12h-2i+3,4h+2i+1,12h~2i+3), di4=(8h—21+2,8h+2i+2,8h—21+2,
8h+21+2,8h~2i+2,8h+2i+2), di5=(8h+21+1,12h—21+4,8h+21+1,
12h-2i+4,8h+2i+1,12h-2i+4), and for every i=1,2,...,h-2
di6=(4h«21+1,Zi,4h—2i+1,2i,4h—21+1,21).

For r=1,2,...,5 let Dr={dir: i=1,2,...,h-1}; let D6={di6:
i=1,2,...,h-2}, D7={(2h—2,2h+3,2h~2,2h+3,2h—2,2h+3)}, D8=
={(2h,2h+1,2h,2h+1,2h,2h+1)}, (2h~1,2h+2,2h~1,2h+2,2h~1,
2h+2), (10h+2,10h+3,10h+2,10h+3,10h+2,10h+3), (10h+1,10h+4,
10h+1,10h+4,10h+1,10h+4), (4h+1l, 6h,6h+1,8h+2,6h+2,6h+3)}.

Observe that for h=1, rngr=¢ and for h=2, D6=¢.

For every hzi the family D=r§11Dr determines a
CM(6,12h+3}.

Let v=12h+9, hzl. For every i=1,2,...,h let di1=(4h+21+2,
4h-2i+4,4h+2i+2,4h~2i+4+4,4h+2i+2,4h~2i+4), diz=(21*1,8h—21+7,
2i-1,8h-2i+47,2i~1,8h~2i+47), di3=(8h+21¥5.12h~21+10,8h+21+5,
12h~-2i+10,8h+2i+5,12h-2i+10), and for every i=1,2,...,h~1
let di4=(4h~21+3,2i,4h—2i+3,21,4h—21+3,21), di5=(4h+21+3,
12h-2i+9,4h+2i+43,12h~21i+9,4h+2i+3,12h-21+9), di6=(8h—2i+6,
8h+2i+6,8h-2i+6,8h+2i+6,8h~2i+6,8h+2i+6).

For r=1,2,3 let Dr={dir: i=1,2,...h} and for r=4,5,6
Dr={dir: i=l,2,...,h-1}; 1let D7={(2h+1,2h+2.2h+l,2h+2,2h+1,
2h+2}, (2h,2h+3,2h,2h+3,2h,2h+3), (10h+6,10h+9,10h+6,10h+9,
10h+6,10h+9), (10h+7,10h+8,10h+7,10h+8,10h+7,10h+8), (4h+3,
6h+3,6h+4,8h+6,6h+5,6h+6}}. Observe that if h=1  then
D4=D5=D6=¢. ,

For every  h2l the family D'-'r\;fiDr determines a

CM(6,12h+9).




Finally, consider the case vs4 (mod 6).

Let v=6h+4, h2l. For every i=1,2,...,h let di=(i+1,h+i+1,
2h+i+1,6h-i+4,4h-i42,5h-i+3). For every hzl the family
D:{di: 1,2,...,htu{(1,4h+2,5h+3,1,4h+2,5h+3)} determines a
CM(6,6h+4).

This complete the proof. =

THEOREM 6. If v=l or 7 {(mod 14), v>7, then a CM(7,v)
exists.

Proof. First, consider the case vzl (mod 14).

Let v=14h+1l, hz2l. For every i=1,2,...,h let di1=(2h—2i+1’
2h-2i+2,8h+6i-4,14h~-6i+6,4h+4i~3,8h~-4i+3,4h+4i-2), diz=
=(2h+2i,8h~4i+4,8h+6i-1,14h~61+4,8h+6i~3,14h-6i+1,2h+2i-1).

From the family D={di1: i=1,2,...,h}u{dizz i=1,2,...4h}
we can obtain a CM(7,14h+1), for every hzl.

Now, we consider the case v=7 (mod 14).

Let v=14h+7, h=2l. For every i=1,2,...,h let diizti,
3h-i+2,h+i,5h~143,6h+2i+2,4h-i+2,9h-i45), diz=(5h+i+2,
14h~i+7,6h+2i4+3,12h-i+6,13h-i+7,9h+i+4,11h-i+6), and for
every 1i=1,2,...,6 let di3=(i(2h+1),i(2h+1),i(2h+1),i(2h+1),
i{2h+1),1i(2h+1),i(2h+1}).

The family D:{dil: i=1,2,...,h}u{di2: i=l,2,...,h}u{di3:
i=1, 2,...,6} determines a CM(7,14h+7) for every hzl. ®

THEOREM 7. If v=1 (mod 8), v>8, thenm a&a CM{8,v) exists.

Proof. Let wv=8h+l, h21. The family D={{(i,Th-i+1,2h+i,
5h-i+l,6h-i+1,h+i,8h-i+1,3h+i): i=1,2,...,h} determines a
CM(8,8h+1) for every hzl. m

Collecting together Theorems 2-7 gives the following
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theorem:

THEOREM 8. For 5<k<8 a CM(k,v) exists if and only if k=5
and vel or 5 (mod 10), with vz5; k=6 and v=0 or 1 (mod 3),
with v>6 and v#9; k=7 and vl or 7 {(mod 14), with vz7; k=8

and vl (mod 8}, with v>8.
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