CONSTRUCTIONS OF CYCLIC MENDELSOHN DESIGNS

B.MICALE and M.PENNISI

Department of Mathematics, University of Catania, Italy

ABSTRACT. A Mendelsohn design M(k,v) is a pair (V,B), where |V|=v and B is a set of cyclically ordered k-tuples of distinct elements of V, called blocks, such that every ordered pair of distinct elements of V belongs to exactly one block of B. A M(k,v) is called cyclic if it has an automorphism consisting of a single cycle of length v. The spectrum of existence of cyclic M(3,v)'s and M(4,v)'s is known. In this paper we prove that in every cyclic M(k,v) with $k\not\equiv 2 \pmod 4$ v is odd, and we give some constructions which allow us to determine the spectrum of cyclic M(k,v)'s for every k such that $5 \le k \le 8$.

1. INTRODUCTION

Given a finite set V, a Mendelsohn k-tuple on V, $k \ge 3$, is a set

$$\{(x_1, x_2), \dots, (x_{k-1}, x_k), (x_k, x_1)\}$$
,

where x_1, x_2, \ldots, x_k are distinct elements of V. A Mendelsohn k-tuple will be denoted by $[x_1, x_2, \ldots, x_k]$. Clearly:

$$[x_1, x_2, \dots, x_k] = [x_2, \dots, x_k, x_1] = \dots = [x_k, x_1, \dots, x_{k-1}]$$
.

A 2-(v,k, λ) Mendelsohn design is a pair (V,B), where |V|=v and B is a collection of Mendelsohn k-tuples on V, called blocks, such that every ordered pair of distinct elements of V belongs to exactly λ blocks of B.

A 2-(v,k,1) Mendelsohn design will be denoted by M(k,v). If (V,B) is a M(k,v) then $|B| = \frac{v(v-1)}{k}$; it follows that a necessary condition for the existence of M(k,v)'s is $v(v-1)\equiv 0\pmod k$, $v\geq k$.

The problem of existence of M(k,v)'s is open; however the

Australasian Journal of Combinatorics 5(1992), pp.169-177

spectrum of M(k,v)'s is known for every k such that $3 \le k \le 16$, $k \ne 15$ ([7],[1],[2],[3]).

A M(k,v) is called *cyclic* if it has an automorphism consisting of a single cycle of length v. In what follows a cyclic M(k,v) will be denoted by CM(k,v).

In [6] it is proved that a CM(3,v) exists if and only if $v\equiv 1$ or 3 (mod 6), $v\neq 9$. Further, in [8] it is showed that a CM(4,v) exists if and only if $v\equiv 1\pmod 4$.

In this paper we study the spectrum of CM(k,v)'s. We prove that if a CM(k,v) exists and $k\not\equiv 2\pmod 4$ then v is odd. Further we give some constructions from which it follows that for $5\leq k\leq 8$ a CM(k,v) exists if and only if k=5 and $v\equiv 1$ or $5\pmod {10}$, k=6 and $v\equiv 0$ or $1\pmod {3}$, $v\not\equiv 6,9$, k=7 and $v\equiv 1$ or $7\pmod {14}$, k=8 and $v\equiv 1\pmod {8}$.

2. EXISTENCE OF CM(k,v)'s

Suppose that (V,B) is a CM(k,v). Then we may assume that $V=\mathbb{Z}_{v}$ and that if $b=[x_1,x_2,\ldots,x_k]\in B$ then also every block

$$b+y=[x_1+y,x_2+y,...,x_k+y]$$
,

 $y \in \mathbb{Z}_{v}$, belongs to B.

With each block $b=[x_1,x_2,\ldots,x_k]\in B$ we can associate a cyclically ordered k-tuple:

$$d(b) = (x_2 - x_1, \dots, x_k - x_{k-1}, x_1 - x_k)$$
,

which will be called $difference\ block$ (briefly d-block) of b.

we will say that the set $\overline{B}=\{d(b): b\in B\}$ is the difference family of (Z,B).

The following result is well known.

THEOREM 1. A CM(k,v) exists if and only if there exists a set D of cyclically ordered k-tuples of elements of \mathbb{Z}_{v} -{0} such that:

- (1) every $z \in \mathbb{Z}_{v}^{-}\{0\}$ is contained in exactly one k-tuple of D;
- (2) for every $(z_1, z_2, \ldots, z_k) \in D$:

$$\sum_{i=1}^{k} z_{i} = 0 \quad and \quad \sum_{i=1}^{m} z_{i} \neq 0 \quad for \ every \ m=1, 2, \ldots, k-1 .$$

Let (\mathbb{Z}_{v}, B) be a CM(k, v) and let \overline{B} be its difference family. In the following lemmas we determine some properties of \overline{B} .

LEMMA 1. For every $(z_1, z_2, \dots, z_k) \in \overline{B}$, if $z_1 = z_1$ then $z_2 = z_1$

Proof. Let $(z_1, z_2, \dots, z_k) \in \overline{\mathbb{B}}$ and suppose that $z_1 = z_i$. Let $w = \sum_{j=1}^{r} z_j$ and $\overline{w} = \sum_{j=r}^{k} z_j$, $r = 1, 2, \dots, k$.

Consider $b=[w_1,w_2,\ldots,w_k]\in B$. Since (\mathbb{Z}_v,B) is cyclic, $b+\overline{w}_i\in B$; further, $w_{i-1}+\overline{w}_i=w_k$ and $w_i+\overline{w}_i=w_1$ because $z_1=z_i$. It follows that $b+\overline{w}_i=b$, hence, in particular, $w_2=w_{i+1}+\overline{w}_i$, for that $z_2=z_{i+1}$.

From Lemma 1 it follows that for every $d \in \overline{B}$ there exists a divisor δ of k such that $d = (z_1, z_2, \ldots, z_{\delta}, z_1, z_2, \ldots, z_{\delta}, \ldots, z_{\delta}, \ldots, z_{1}, z_{2}, \ldots, z_{\delta})$, where $z_1, z_2, \ldots, z_{\delta}$ are distinct elements of $\mathbb{Z}_{v} = \{0\}$. Let $\pi = z_1 + z_2 + \ldots + z_{\delta}$, where t is the usual addition between integers. From Theorem 1 $\pi \equiv 0 \pmod{v}$ if and only if $\delta = k$. We set $T(d) = (\delta, \pi)$.

LEMMA 2. For every $d \in \overline{B}$, if $T(d) = (\delta, \pi)$ then there exists $t \in \{\delta, 2\delta, \ldots, (k-1)\delta\}$ such that $GCD(t, k) = \delta$ and $\pi = \frac{tv}{k}$.

Proof. Let $\delta' = \frac{k}{\delta}$. Then there exists $h \in \{1, 2, ..., k-1\}$ such that $\pi \delta' = hv$. Let $t = h\delta$. Then $\pi = \frac{tv}{k}$, with $t \in \{\delta, 2\delta, ..., (k-1)\delta\}$.

We prove that $GCD(t,k)=\delta$. Clearly δ is a divisor of t and k. Now, suppose that $\bar{\delta}$ is a divisor of t and k and let $t=\bar{\delta}\bar{h}$ and $k=\bar{\delta}\bar{\delta}'$. Then $\pi\bar{\delta}'=\bar{h}v$. But then from Theorem 1 it follows that $\bar{\delta}'\geq\delta'$ and hence $\bar{\delta}\leq\delta$.

In the following theorem we give a necessary condition for the existence of CM(k,v)'s.

THEOREM 2. If a CM(k,v) exists and k#2 (mod 4) then v is odd.

Proof. Let $(\mathbf{Z}_{v}, \mathbf{B})$ be a CM(k,v) and let $\bar{\mathbf{B}}$ be its difference family, with $\bar{\mathbf{B}} = \{\mathbf{d}_{1}, \mathbf{d}_{2}, \ldots, \mathbf{d}_{s}\}$ and $\mathbf{T}(\mathbf{d}_{i}) = (\delta_{i}, \pi_{i})$, i=1,2,...,s.

From Lemma 2, $\pi_i = \frac{t_i v}{k}$, and from (1) of Theorem 1, $\sum_{i=1}^{s} \pi_i = \frac{v(v-1)}{2}$. It follows that

(3)
$$\sum_{i=1}^{8} t_{i} = \frac{k(v-1)}{2}.$$

Therefore, if kml or 3 (mod 4) then v is odd.

Further, from Lemma 2, if k is even then, for every $i=1,2,\ldots,s$, t_i is even if and only if δ_i is even. Therefore $\sum_{i=1}^s t_i$ is even if and only if $\sum_{i=1}^s \delta_i$ is even. Suppose now that $k\equiv 0 \pmod 4$; then, from (3), $\sum_{i=1}^s t_i$ is even, therefore $\sum_{i=1}^s \delta_i = v-1$ is even, so v is odd.

3. CONSTRUCTIONS OF CM(k,v)'s

In this section we give some constructions which allow us to determine the spectrum of CM(k,v)'s for $5 \le k \le 8$.

THEOREM 3. If k is prime, k≥3, then a CM(k,k) exists.

Proof. From Theorem 1, the family of cyclically ordered k-tuples $D=\{(i,i,\ldots,i): i=1,2,\ldots,k-1\}$ determines a CM(k,k).

THEOREM 4. If $v \equiv 1$ or 5 (mod 10), v > 5, then a CM(5,v) exists.

Proof. First consider the case vml (mod 10).

Let v=10h+1, h≥1. For every i=1,2,...,h, let $d_i = (i, h+2i-1,3h+2i-1,10h-4i+3,6h-i+1)$, $d_i' = (h+2i,3h+2i,10h-4i+2,10h-4i+4,6h+4i-3)$ and let D={ d_i : i=1,2,...,h} \cup { d_i' : i=1,2,...

It is a routine matter to verify that (1) and (2) of Theorem 1 hold for D, so a CM(5,v) exists for every $v\equiv 1\pmod{10}$.

Now, consider the case v=5 (mod 10).

Let v=10h+5, h≥1. For every i=1,2,...,h we consider $\begin{aligned} &d_i=(i,2h-i+1,6h+i+3,8h+i+4,4h-2i+2) & \text{ and } &d_i'=(4h+i+2,7h+i+3,6h-i+3,9h+i+4,4h-2i+3). \end{aligned}$ Further, for every i=1,2,3,4, let $&d_i''=(i(2h+1),i(2h+1),i(2h+1),i(2h+1),i(2h+1)) & \text{ and } &\text{ let } D=\{d_i:i=1,2,...,h\} \cup \{d_i':i=1,2,...,h\} \cup \{d_i':i=1,2,3,4\} \end{aligned} .$

In a similar way to the case $v\equiv 1\pmod{10}$ we can verify that, in view of Theorem 1, the family D determines a CM(5,v) for every $v\equiv 5\pmod{10}$, v>5. This complete the proof.

In the following theorems we apply Theorem 1 to give constructions of CM(k,v)'s for k=6,7,8. The proofs are similar to that of Theorem 4 and we give only the constructions of CM(k,v)'s, because the verifications are tedious but straightforward.

In [1] it is proved that a M(6,v) exists if and only if $v\equiv 0$ or 1 (mod 3), v>6. By Theorem 1 it is easy to verify that there does not exist a CM(6,9).

THEOREM 5. If $v \equiv 0$ or 1 (mod 3), v > 6 and $v \neq 9$, then a CM(6,v) exists.

Proof. First, consider the case v≡0 (mod 6).

Let v=6h, h≥2. For every i=1,2,...,h-2 let d_i =(i,h+i, 2h+i,6h-i, 5h-i,4h-i). Let D_1 ={ d_i : i=1,2,...,h-2}, D_2 ={(h,h,h,h,h,h,h), (5h,5h,5h,5h,5h,5h), (2h,3h-1,4h+1,2h,3h-1,4h+1), (h-1,2h-1,3h,3h+1,5h+1,4h)} and $D=D_1\cup D_2$. Observe that for h=2, D_1 =Ø.

From the family D we can construct a CM(6,6h) for every $h \ge 2$.

Consider now the case vml (mod 6).

Let v=6h+1, $h\geq 1$. For every $i=1,2,\ldots,h$ let $d_i=(i,h+i,2h+i,6h-i+1,4h-i+1,5h-i+1)$ and let $D=\{d_i: i=1,2,\ldots,h\}$. The family D determines a CM(6,6h+1) for every $h\geq 1$.

Now we suppose that $v\equiv 3\pmod 6$, $v\neq 9$, and we distinguish two cases: $v\equiv 3\pmod {12}$ and $v\equiv 9\pmod {12}$.

Let v=12h+3, h≥1. For every i=1,2,...,h-1 let d_{i1} =(4h+2i, 4h-2i+2,4h+2i,4h-2i+2), d_{i2} =(2i-1,8h-2i+3, 2i-1,8h-2i+3), d_{i3} =(4h+2i+1,12h-2i+3,4h+2i+1,

 $\begin{aligned} & \text{12h-2i+3,4h+2i+1,12h-2i+3)}, & & \text{d}_{\text{i4}} = (8h-2i+2,8h+2i+2,8h-2i+2,8h+2i+2,8h-2i+2,8h+2i+2), \\ & \text{8h+2i+2,8h-2i+2,8h+2i+2)}, & & \text{d}_{\text{i5}} = (8h+2i+1,12h-2i+4,8h+2i+1,12h-2i+4,8h+2i+1,12h-2i+4,8h+2i+1,2h-2i+4), \\ & \text{and for every } i=1,2,\ldots,h-2 \\ & \text{d}_{\text{i6}} = (4h-2i+1,2i,4h-2i+1,2i,4h-2i+1,2i). \end{aligned}$

For r=1,2,...,5 let $D_r = \{d_{ir}: i=1,2,...,h-1\}; let D_6 = \{d_{i6}: i=1,2,...,h-2\}, D_7 = \{(2h-2,2h+3,2h-2,2h+3,2h-2,2h+3)\}, D_8 = \{(2h,2h+1,2h,2h+1,2h,2h+1), (2h-1,2h+2,2h-1,2h+2,2h-1,2h+2,2h-1,2h+2), (10h+2,10h+3,10h+2,10h+3,10h+2,10h+3), (10h+1,10h+4,10h+1,10h+4), (4h+1,6h,6h+1,8h+2,6h+2,6h+3)\}.$ Observe that for h=1, $\bigcup_{r=1}^{7} D_r = \emptyset$ and for h=2, $D_6 = \emptyset$.

For every $h\geq 1$ the family $D=\bigcup_{r=1}^{\infty}D$ determines a CM(6,12h+3).

Let v=12h+9, h≥1. For every i=1,2,...,h let d_{i1} =(4h+2i+2,4h-2i+4,4h+2i+2,4h-2i+4), d_{i2} =(2i-1,8h-2i+7,2i-1,8h-2i+7), d_{i3} =(8h+2i+5,12h-2i+10,8h+2i+5,12h-2i+10,8h+2i+5,12h-2i+10,8h+2i+5,12h-2i+10,8h+2i+5,12h-2i+10), and for every i=1,2,...,h-1 let d_{i4} =(4h-2i+3,2i,4h-2i+3,2i,4h-2i+3,2i), d_{i5} =(4h+2i+3,12h-2i+9,4h+2i+3,12h-2i+9), d_{i6} =(8h-2i+6,8h+2i+6,8h-2i+6,8h+2i+6).

For r=1,2,3 let $D_r = \{d_{ir}: i=1,2,...h\}$ and for r=4,5,6 $D_r = \{d_{ir}: i=1,2,...,h-1\};$ let $D_r = \{(2h+1,2h+2,2h+1,2h+2,2h+1,2h+2),$ (2h,2h+3,2h,2h+3,2h,2h+3), (10h+6,10h+9,10h+6,10h+9,10h+6,10h+9), (10h+7,10h+8,10h+7,10h+8,10h+7,10h+8), $(4h+3,6h+3,6h+4,8h+6,6h+5,6h+6)\}.$ Observe that if h=1 then $D_4 = D_5 = D_6 = \emptyset.$

For every $h\ge 1$ the family $D=\bigcup_{r=1}^{7}D_r$ determines a CM(6,12h+9).

Finally, consider the case vm4 (mod 6).

Let v=6h+4, $h\ge 1$. For every $i=1,2,\ldots,h$ let $d_i=(i+1,h+i+1,2h+i+1,6h-i+4,4h-i+2,5h-i+3)$. For every $h\ge 1$ the family $D=\{d_i:\ 1,2,\ldots,h\}\cup\{(1,4h+2,5h+3,1,4h+2,5h+3)\}$ determines a CM(6,6h+4).

This complete the proof. .

THEOREM 6. If $v \equiv 1$ or 7 (mod 14), v > 7, then a CM(7,v) exists.

Proof. First, consider the case vml (mod 14).

Let v=14h+1, $h\ge 1$. For every i=1,2,...,h let $d_{i,1}=(2h-2i+1,2h-2i+2,8h+6i-4,14h-6i+6,4h+4i-3,8h-4i+3,4h+4i-2)$, $d_{i,2}=(2h+2i,8h-4i+4,8h+6i-1,14h-6i+4,8h+6i-3,14h-6i+1,2h+2i-1)$.

From the family $D=\{d_{i1}: i=1,2,\ldots,h\} \cup \{d_{i2}: i=1,2,\ldots,h\}$ we can obtain a CM(7,14h+1), for every $h\geq 1$.

Now, we consider the case $v=7 \pmod{14}$.

Let v=14h+7, h≥1. For every i=1,2,...,h let d_{i1} =(i, 3h-i+2,h+i,5h-i+3,6h+2i+2,4h-i+2,9h-i+5), d_{i2} =(5h+i+2, 14h-i+7,6h+2i+3,12h-i+6,13h-i+7,9h+i+4,11h-i+6), and for every i=1,2,...,6 let d_{i3} =(i(2h+1),i(2h+1),i(2h+1),i(2h+1),i(2h+1)).

The family $D=\{d_{i1}: i=1,2,...,h\} \cup \{d_{i2}: i=1,2,...,h\} \cup \{d_{i3}: i=1,2,...,h\} \cup \{d_{i3}: i=1,2,...,6\}$ determines a CM(7,14h+7) for every h>1.

THEOREM 7. If $v=1 \pmod{8}$, v>8, then a CM(8,v) exists.

Proof. Let v=8h+1, h≥1. The family D={(i,7h-i+1,2h+i, 5h-i+1,6h-i+1,h+i,8h-i+1,3h+i): i=1,2,...,h} determines a CM(8,8h+1) for every h≥1.

Collecting together Theorems 2-7 gives the following

theorem:

THEOREM 8. For $5 \le k \le 8$ a CM(k,v) exists if and only if k=5 and $v \equiv 1$ or 5 (mod 10), with $v \ge 5$; k=6 and $v \equiv 0$ or 1 (mod 3), with v > 6 and $v \ne 9$; k=7 and $v \equiv 1$ or 7 (mod 14), with $v \ge 7$; k=8 and $v \equiv 1$ (mod 8), with v > 8.

REFERENCES

- [1] J.C.BERMOND and V.FABER, Decomposition of the complete directed graph into k-circuits, J. Combin. Theory, ser. B, 21(1976), 146-155.
- [2] J.C.BERMOND, C.HUANG and D.SOTTEAU, Balanced cycle and circuit designs: even case, Ars Combin. 5(1978), 293-318.
- [3] J.C.BERMOND and D.SOTTEAU, Balanced cycle and circuit designs: odd case, *Proc. Colloq. Oberhof Illmenau*, 1978, 11-32.
- [4] N.BRAND and W.C.HUFFMAN, Invariants and constructions of Mendelsohn designs, Geometriae Dedicata 22(1987), 173-196.
- [5] N.BRAND and W.C.HUFFMAN, Mendelsohn designs admitting the affine group, *Graphs Combin.* 3(1987), 313-324.
- [6] C.J.COLBOURN and M.J.COLBOURN, Disjoint cyclic Mendelsohn triple systems, Ars Combin. 11(1981), 3-8.
- [7] N.S.MENDELSOHN, A natural generalization of Steiner triple systems, in: A.O. Atkin and B. Birch, eds., "Computers in number theory" (Academic Press, London, 1971), 323-338.
- [8] B.MICALE and M.PENNISI, Cyclic Mendelsohn quadruple systems, to appear on Ars Combinatoria.
- [9] D.SOTTEAU, Decompositions of $K_{m,n}(K_{m,n}^*)$ into cycles (circuits) of length 2k, J. Combin. Theory, ser. B, 30(1981), 75-81.

