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ABSTRACT. A Mendelsohn design M(k,v) is a pair (V,B) t 

where IV\=v and B is a set of cyclically ordered k-tuples of 
distinct elements of V, called blocks, such that every 
ordered pair of distinct elements of V belongs to exactly 
one block of B. A M( k, v) is called cyclic if it has an 
automorphism consisting of a single cycle of length v. The 
spectrum of existence of cyclic M(3,v)'s and M(4,v)'s is 
known. In this paper we prove that in every cyclic M(k,v) 
wi th k,,2 (mod 4) v is odd, and we give some constructions 
which allow us to determine the spectrum of cyclic M(k,v)'s 
for every k such that 5sks8. 

1. INTRODUCTION 

Given a finite set V, a Mendelsohn k-tuple on V, k~3, is 

a set 

Ux ,x ), ... ,(x ,x ),(x ,x)} 
1 2 k-l k k 1 

where x ,x , ... ,x are distinct elements of V. A Mendelsohn 
12k 

k-tuple will be denoted by [x ,x , ... ,x J. Clearly: 
12k 

Lx,x , ... ,x ]=[x , ... ,x ,x j= ... =[x ,x , ... ,x J 
12k 2 k 1 k 1 k-l 

A 2-(v,k,A) Mendelsohn design is a pair (V,B), where 

I V I =v and B is a collection of Mendelsohn k-tuples on V, 

called blocks, such that every ordered pair of distinct 

elements of V belongs to exactly A blocks of B. 

A 2-(v,k,1) Mendelsohn design will be denoted by M(k,v). 

If (V,B) is a M(k,v) then IBI= v(v-l) 
k it follows that a 

necessary condition i'or the existence of M(k,v) I s is 

v ( v-I) =0 (mod k), v~k. 

The problem of existence of M(k,v)'s is open; however the 
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spectrum of M(k,v)'s is known for every k such that 3~;s;16, 

k#15 ([7] ,[lJ,[2J,[3]). 

A M(k,vl is called cyclic if it has an automorphism 

consisting of a single cycle of length v. In what follows a 

cyclic M(k,vl will be denoted by CM(k,v). 

In (6] it is proved that a CM(3,v) exists if and only if 

valor 3 (mod 6), v~9. Further, in [8J it is showed that a 

CM(4,v) exists if and only if val (mod 4). 

In this paper we study the spectrum of CM(k,v)'s. We 

prove that if a CM(k,v) exists and kJ'2 (mod 4) then v is 

odd. Further we give some constructions from which it 

follows that for 5;s;k;s;8 a CM(k,v) exists if and only if k=5 

and vel or 5 (mod 10), k=6 and VEO or 1 (mod 31, v#6,9, k=7 

and valor 7 (mod 14), k=8 and vel (mod 8). 

2. EXISTENCE OF CM(k,v)'s 

Suppose that (V,B) is a CM(k,v). Then we may assume that 

V=Z and that if b=[x ,x , ..• ,x JEE then also every block 
v 12k 

b+y=Lx +y,x +y, ... ,x +y] 
12k 

YEZ , belongs to B. 
v 

With each block b=[x ,x , ... ,x JEB we can associate a 
12k 

cyclically ordered k-tuple: 

d ( b ) = (x -x , ... , x -x , x -x ) , 
2 1 k k-1 1 k 

which will be called difference block (briefly d-block) of 

b. 

We will say that the set B={d(b): bEB} is the difference 

t'amily oft Z , B) • 
v 
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The following result is well known. 

THEOREM 1. A CM(k,v) exists if and only if there exists a 

set D of cyclically ordered k- tuples of elements of '1. -{ O} 
v 

such that: 

(1) every zEI -{OJ is contained in exactly one k-tuple of D; 
v 

(2 ) for every ( z 1,z2,·",zk )ED: 
k m 

i~1 Z =0 and i~1 z.~O for every m= 1 ,2, ••• ,k-l 
i 1 

Let (I ,B) be a CM(k,v) and let S- be its difference 
v 

family. In the following lemmas we determine some properties 

of B. 

LEMMA 1. 

Z =z 
2 1+1 

For every (z ,z , ... ,z )EE, 
12k 

if Z =z 
1 

then 

Proof', Let (z ,z , ••. , z )EE and suppose that z:::z . Let 
12k 1 i 

r k 

W = \' z and w ::: \' Z , r= 1 , 2 , ••• ,k. 
r jfl j r jfr j 

Consider b:::[w ,w , ... ,w lEB. 
12k 

Since (I ,B) is cyclic, 

b+w EB; 
i 

further, 

v 

w +w:::w and w +w =w because z =z . It 
i-1 i k i i 1 1 i 

follows that b+w:::b, hence, in particular, w =w +w, for 
i 2 i+1 i 

that z:::z . III 
2 1+1 

From Lemma 1 it follows that for every dEB there exists a 

divisor 0 of k such that d:::(z ,z t ••• ,z~,z ,Z , ••• ,z~, ... 
1 2 () 1 2 () 

where z ,z , ... , z ~ are distinct elements 
1 2 () 

of lv-tO}. Let n=z1+z2+"'+zo' where + is the usual addition 

between integers. From Theorem 1 neO (mod v) if and only if 

o=k. We set T(d)=(<5,n). 

LEMMA 2. For every dEB, if T(d)=<o,rd then there exists 

tEU>,20, ... ,(k-ll(jJ such that GCD(t,k)=6 and n= -¥- . 
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Proof. Let 8'= 
k 

5""' Then there exists hE{ 1,2, .•. ,k-l } 

such that 7t<5'=hv. Let t=h<5. Then 7t= -¥-' with te:{o,2<5, •.• , 

(k-l )o}. 

We prove that GCD(t,k)=<5. Clearly <5 is a divisor of t and 

k. Now, suppose that & is a divisor of t and k and let t=&h 

and k=SS'. Then nS'=hv. But then from Theorem 1 it follows 

that 6'~<5' and hence 5~ •• 

In the following theorem we give a necessary condition 

for the existence of CM(k,v)'s. 

THEOREM 2. If a CM(k,v) exists and k~2 (mod 4) then v is 

odd. 

Proof'. Let (Z, B) be a eM« k , v ) and let B be its 
v 

difference family, wi th B= { d , d , ••• , d } 
1 2 s 

and T (d ) = (0 ,'I( ), 
iii 

i::l,2, ••• ,So 

From Lemma 2, n :: 
i 

t v 
i 

-.c- and from ( 1 ) of Theorem 1, 
s 

iii 

k(v-l) 
2 

Therefore, if kal or 3 (mod 4) then v is odd. 

Further, from Lemma 2, if k is even then, 

i::l,2, .•• ,s, t 1S even if and only if <5 
i 

s s 

Therefore L t is even if and only if i~1 <5 
i .1 

Suppose now that k!EO (mod 4) ; then, from ( 3) , 

s 

i 

even, therefore i~l (5 =v-l is even, so v is odd. • i 
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s 

i~1 t is 
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3. CONSTRUCTIONS OF CM(k,v)'s 

In this section we give some constructions which allow us 

to determine the spectrum of CM(k, v) I s for 5~k~8. 

THEOREM 3. If k is prime, k~3, then a CM(ktk) exists. 

Proof. From Theorem 1, the family of cyclically ordered 

k-tuples D= { ( i, i , .•• , i ) : i=I,2, .•. ,k-l} determines a 

CM(k,k). IiIIIII 

THEOREM 4. If valor 5 (mod 10), v> 5, then a CM ( 5 ,v l 

exists. 

Proof. First consider the case VEl (mod 10). 

Let v=10h+1, h~l. For every i=1,2, ... ~h, let d =(i, 
i 

h+2i-1,3h+2i-l,10h-4i+3,6h-i+l), d'=(h+2i,3h+2i,10h-4i+2, 
i 

10h-4i+4,6h+4i-3) and let D={d : i=1,2, .•. ,h}u{d~: i=1,2, •. 
i 1 

•• ,h}. 

It is a routine matter to verify that (1) and (2) of 

Theorem 1 hold for D, so a CM(5,v) exists for every Val Cmod 

101. 

Now, consider the case va5 (mod 10). 

Let v=10h+5, h~l. For every i=1,2, ... ,h we consider 

d =(i,2h-i+l,6h+i+3,8h+i+4,4h-2i+2) and d':(4h+i+2,7h+i+3, 
i i 

6h-i+3,9h+i+4,4h-2i+3). Further, for every i=1,2,3,4, let 

d/~=(i(2h+1),i(2h+l),i(2h+l),i(2h+1),i(2h+1) and let D={d: 
1 i 

i = 1, 2, ••• ,h J u{ d': i = 1 ,2, ... ,h} u{ d": i = 1 , 2 , 3 , 4} . 
i ' i 

In a similar way to the case Val (mod 10) we can verify 

that, in view of Theorem 1, the family D determines a 

CM( 5, v) for every va5 (mod 10), v>5. This complete the 

proof. III 
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In the following theorems we apply Theorem 1 to give 

constructions of CM(k,v)'s for k=6,7,8. The proofs are 

similar to that of Theorem 4 and we give only the 

constructions of CM(k,v)'s, because the verifications are 

tedious but straightforward. 

In [1] it is proved that a M(6,v) exists if and only if 

Vl50 or 1 (mod 3), v>6. By Theorem 1 it is easy to verify 

that there does not exist a CM(6,9). 

THEOREM 5. If V'!i!O or 1 (mod 3), v>S and v:;i9, then a 

CM(6,v) exists. 

Proof. First, consider the case Vl50 (mod 61. 

Let v=6h, h:;;:2. For every i=1,2, .•. ,h-2 let d.=(i,h+i, 
1 

2h+i,6h-i, 5h-i,4h-il. Let D {d: i=1,2, •.. ,h-2}, D={(h,h, 
i 2 

h,h,h,hl, (5h,5h,5h,5h,5h,5h), (2h,3h-l,4h+l,2h,3h-14h+1), 

(h-l,2h-l,3h,3h+l,5h+l,4h)} 

h=2, D =0. 
1 

and D=D uD . 
1 2 

Observe that for 

From the family D we can construct a CM(S,6h) for every 

Consider now the case vel (mod 6). 

Let v=6h+l, For every i=1, 2, ..• ,h let d =(i,h+i, 
i 

2h+i,6h-i+l,4h-i+l,5h-i+l) and let D={d
i

: i=1,2, ..• ,h}. The 

family D determines a CM(6,6h+l) for every h~1. 

Now we suppose that Vl53 (mod 6), v¢9, and we distinguish 

two cases: vl53 (mod 12) and vl59 (mod 12). 

Let v=12h+3, h~1. For every i=1,2, ... ,h-l let d =(4h+2i, 
i 1 

4h-2i+2,4h+2i,4h-2i+2,4h+2i,4h-2i+2), d
i2

=(2i-l,8h-2i+3, 

2i-1,8h-2i+3,2i-1,8h-2i+3), d =(4h+2i+l,12h-2i+3,4h+2i+1, 
i3 



12h-2i+3,4h+2i+l,12h-2i+3), d (8h-2i+2,8h+2i+2,8h-2i+2, 

8h+2i+2,8h-2i+2,8h+2i+2), d =(8h+2i+l,12h-2i+4,8h+2i+l, 
i5 

12h-2i+4,8h+2i+l,12h-2i+4), and for every i=1,2, ... ,h-2 

d =(4h-2i+l,2i,4h-2i+l,2i,4h-2i+l,2i). 
i6 

i=1,2, .•. ,h-2}, D ={(2h-2,2h+3,2h-2,2h+3,2h-2,2h+3)}, 
7 

D = 
B 

={(2h,2h+l,2h,2h+l,2h,2h+l), (2h-l,2h+2,2h-l,2h+2,2h-l, 

2h+2), (lOh-+-2, lOh+3, 10h+2, lOh+3 ,lOh+2! lOh+3), (lOh+l, lOh+4, 

lOh+l,lOh+4,lOh+l,lOh+4) I (4h+l, 6h,6h+l,8h+2,6h+2,6h+3)}. 
7 

Observe that for h=l, U D =0 and for h=2, D6=0. 
r:: 1 r 

For every h;;::.l the 

eM ( 6, 12h+ 3) • 

family 
8 

D= U D 
r=l r 

determines a 

Let v=12h+9, h;;::.l. For every i=1,2, ... ,h let d =(4h+2i+2, 
i 1 

4h-2i+4,4h+2i+2,4h-2i+4,4h+2i+2,4h-2i+4), d =(2i-l,8h-2i+7, 
i 2 

2i-l,8h-21+7,2i-l,8h-2i+7), d
i3

=(8h+2i+5,12h-2i+lO,8h+2i+5, 

12h-2i+l0,8h+2i+5,12h-2i+l0), and for every i=1,2, ... ,h-l 

let d =(4h-2i+3,2i,4h-2i+3,2i,4h-2i+3,2i), 
i4 

12h-2i+9,4h+2i+3,12h-2i+9,4h+2i+3,12h-2i+9), 

8h+2i+6,8h-2i+6,8h+2i+6,8h-2i+6,8h+2i+6). 

d =(4h+2i+3, 
i5 

d
i6

:::(8h-2i+6, 

For r=l,2, 3 let D ={d : 
r i r 

i=1,2, ... h} and for r=4,5,6 

D ={ d 
r i r 

i=1,2, ... ,h-l}; let D ={ (2h+l,2h+2 ,2h+l,2h+2 ,2h+l, 
7 

2h+2), (2h, 2h+3, 2h I 2h+3, 2h I 2h+3 )! (lOh+6, 10h+9, lOh+6, lOh+9, 

lOh+6, lOh+9), (10h+7 ,10h+8 I 10h+7, lOh+8, lOh+7 ,lOh+8)! (4h+3, 

6h+3,6h+4,8h+6,6h+5,6h+6)}. Observe 

D 4 =D 5 =D 6 =0. 

For every the family 

CM(6,12h+9) . 

that 

7 

D= U D 
r=l r 

if h=l then 

determines a 



Finally, consider the case VE4 (mod B). 

Let v=Bh+4, h~l. For every i=1,2, ... ,h let d =(i+1,h+i+l, 
i 

2h+i+l,Bh-i+4,4h-i+2,5h-i+3). For every h<:::l the family 

D={d: 1,2, ... ,h}u{(1,4h+2,5h+3,1,4h+2,5h+3)} determines a 
i 

CM(6,6h+4). 

This complete the proof. _ 

THEOREM 6. If vsd or 7 (mod 14), v>7! then a CM( 7 ,v) 

exists. 

Proof. First, consider the case val (mod 14). 

Let v=14h+l, h<:::l. For every i=I,2, ... ,h let d =(2h-2i+1, 
i 1. 

2h-2i+2,8h+6i-4,14h-6i+6,4h+4i-3,8h-4i+3,4h+4i-2), d :::: 
i2 

=(2h+2i,8h-4i+4,8h+6i-l,14h-Bi+4,8h+Bi-3,14h-Bi+l,2h+2i-I). 

From the family D={d : i::::l,2, ..• ,h}u{d : i::::l,2, .. .,h} 
- i"1 i 2 

we can obtain a CM(7,14h+l), for every h<:::l. 

Now, we consider the case va7 (mod 14). 

Let v::::14h+7, h~1. For every i::::l,2, .•. ,h let d =(i, 
i 1. 

Jh-i+2,h+i,5h-i+3,6h+2i+2,4h-i+2,9h-i+5), d =(5h+i+2, 
i2 

14h-i+7,6h+2i+3,12h-i+B,13h-i+7,9h+i+4,11h-i+B), and for 

every i=1,2, ... ,6 let d =(i(2h+l),i(2h+l),i(2h+l),i(2h+l), 
i3 

i(2h+l),i(2h+l),i(2h+l)}. 

The fami 1 y D= {d i1 : i:::: 1,2 I • • • , h} u{ d i 2: i=l,2, ... ,h}u{d : 
i3 

i=1, 2, ... ,o} determines a CM(7,14h+7) for every h~l .• 

THEOREM 7. If VEl (mod 8), v>8, then a CM(8,v) exists. 

Proof. Let v=8h+l, h<:::1. The family D={(i,7h-i+l,2h+i, 

5h-i+l,Bh-i+1,h+i,8h-i+l,3h+i): i=1,2, .. 'Ih} determines a 

CM(8,8h+l) for every h~l. _ 

Collecting together Theorems 2-7 gives the following 
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theorem: 

THEOREM 8. For 5~k~8 a CM(k,v) exists if and only if k=5 

and VEl or 5 (mod 10), with v~5; k=6 and YEO or 1 (mod 3), 

wi th v>6 and v:¢9; k::::7 and viIlll or '1 (mod 14), wi th v~7; k=8 

and VEl (mod 8), with v>8. 
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