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Abstract

We provide an algorithm that converts any instance of the Hamiltonian
cycle problem (HCP) into a cubic instance of HCP (3HCP), and prove
that the input size of the new instance is only a linear function of that
of the original instance. This result is reminiscent of the famous SAT
to 3SAT conversion by Karp in 1972. Known conversions from directed
HCP to undirected HCP, and sub-cubic HCP to cubic HCP are given.
We introduce a new subgraph called a 4-gate and provide a procedure
that converts any sub-quartic instance of HCP to a sub-cubic instance.
Finally, we describe a procedure to convert any graph to a sub-quartic
graph, and use the previous results to provide an algorithm which con-
verts HCP to 3HCP with only linear growth in the instance size.

1 Introduction

The Hamiltonian cycle problem (HCP) is a famous NP-complete graph theoretic
decision problem that can be described simply: given a graph Γ, determine whether
it contains any simple cycles containing all vertices in the graph, or not.

Throughout this paper, when referring to HCP in its traditional form, we will use
the expression general HCP. An instance of general HCP takes the form of a (possibly
directed) simple graph, which is defined by its vertices and (directed) edges. We refer
to the sum of the number of vertices and the number of edges of an instance as the
input size of the instance. So if a graph contains n vertices and m edges, the input
size is n+m. However, any meaningful instance of HCP will have at least as many
edges as vertices, or else it is trivially non-Hamiltonian. For this reason, when talking
about the order of the input size, it suffices to merely consider the number of edges
in the graph.

∗ Corresponding author.



V. EJOV ET AL. /AUSTRALAS. J. COMBIN. 62 (1) (2015), 45–58 46

Although the definition of general HCP permits any simple graph as an instance,
a natural idea is to adopt restricted definitions of HCP in which only graphs that
satisfy certain properties are to be considered. For some such restrictions, HCP is
known to remain NP-complete. The first of these was proved by Karp [16], who
showed that any general HCP instance can be converted to an equivalent instance
which only contains undirected edges. The input size of the new instance is a linear
function of that of the original instance. We will use the expression undirected HCP to
describe the restricted version of HCP where only undirected instances are permitted.
For the sake of completeness, we include the reduction here.

Suppose we have a directed graph containing n vertices, which forms an instance
of general HCP. We can produce a new graph containing 3n vertices, and add edges
to it using the following algorithm.

General HCP to Undirected HCP Conversion Procedure

1. Add edges (3i− 1, 3i− 2) and (3i− 1, 3i) for all i = 1, . . . , n.

2. For each (directed) edge (i, j) in the original graph, add edge (3i, 3j − 2).

In the above procedure, a new graph instance is constructed from scratch. For
convenience, however, for the remainder of this manuscript we will think of such
procedures as having replaced certain components of a graph with new components,
whose constructions depend upon the components they are replacing, as displayed
in Figure 1.1. If the original instance has maximum in-degree r and maximum out-
degree s, the new undirected instance will have maximum degree of max(r, s)+1. It
is easy to see that there is a 1-1 correspondence between Hamiltonian cycles in the
original instance and Hamiltonian cycles in the equivalent undirected graph.

Figure 1.1: A vertex with adjacent directed edges, and the corresponding undirected
subgraph which replaces it.

Throughout this manuscript, we will refer to conversions as being polynomially-
growing, depending on the degree of the polynomial that describes the new input
size as a function of the old input size. For example, the above procedure describes
a linearly-growing conversion, because the resultant graph has input size which is a
linear function of the original input size. Specifically, in the above conversion, if the
original graph had n vertices and m (directed) edges, the new undirected graph will
contain 3n vertices, and m+ 2n undirected edges.

In addition to the conversion from general HCP to undirected HCP, it was proved
by Garey et al. [10] that even if HCP is restricted to only instances that are undi-
rected, cubic, planar and 3-connected, the problem is still NP-complete. Of course,
this implies that one may restrict HCP instances to any subset of those four con-
ditions and the problem will remain NP-complete. In this manuscript we will be
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primarily interested in cubic, undirected HCP instances. We will refer to HCP
restricted to such instances as cubic HCP (note that the undirected condition is
implied in this title). Cubic HCP is a widely studied problem in its own right,
with Barnette’s conjecture [2] that every bipartite, planar, 3-connected cubic graph
is Hamiltonian still open. More recently, Eppstein [7] conjectured that undirected
cubic graphs with n vertices have at most 2n/3 Hamiltonian cycles, with Gebauer
[11] providing the best proven bound to date of approximately 1.276n. Eppstein [7]
also provided an algorithm (of exponential time complexity) for finding Hamiltonian
cycles in cubic graphs. Another open conjecture by Filar et al. [9] is that almost
all non-Hamiltonian cubic graphs are bridge graphs, and may therefore be easily
detected. Royle [19] maintains an online database of exhaustive sets of small cubic
graphs containing various properties.

In practice, however, the result of Garey et al. [10] is inefficient, as the reduction
in [10] is not from general HCP, but rather from boolean satisfiability (SAT) in
conjunctive normal form with clauses of size 3 (3SAT). Currently, the best known
conversion from general HCP to SAT is a cubically-growing conversion [18], and the
conversion of SAT to 3SAT is a linearly-growing conversion [16]. Converting from
3SAT to cubic, planar, 3-connected HCP using the method by Garey et al. requires
a quadratically-growing conversion; however, if we drop the requirement of planarity,
the conversion reduces to linearly-growing. So, to convert a general HCP instance
into a cubic HCP instance via the approach in [10], we must first convert to SAT, then
to 3SAT, and finally to cubic HCP, which results in a cubically-growing conversion.

Although it is generally accepted that conversions which result in polynomial
growth are, in some sense, efficient, very little attention seems to have been paid to
the degree of the polynomial which describes the growth. From a practical perspec-
tive, it seems unlikely that any one problem framework could be sufficiently simpler
to solve difficult instances in than another to justify using conversions that induce
anything larger than linear growth. From a theoretical perspective, it is an inter-
esting, and largely unexplored1 line of research to see which NP-complete problems
may be converted to one another via linearly-growing conversions. To that end, we
now describe a new approach to convert directly (that is, we remain within the scope
of HCP for the entirety of the conversion) from general HCP to cubic HCP, using
a linearly-growing conversion. We begin by revising the well-known conversion for
sub-cubic (undirected) HCP to cubic HCP. We then provide a new conversion for
sub-quartic HCP to sub-cubic HCP. Finally, we provide a procedure to convert any
graph to a sub-quartic graph, and using the previous results we conclude that general
HCP may be reduced to cubic HCP via a linearly-growing conversion. We conclude
with some examples of the savings to be gained by using this approach, compared
with the approach in [10].

1Manuscripts by Dewdney [6] and Creignou [5] appear to be the primary contributions in this
area.
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2 Converting Sub-cubic HCP to Cubic HCP

Consider an undirected graph with maximum degree 3. We refer to HCP restricted
to such instances as sub-cubic HCP. Then there is a simple procedure to convert
sub-cubic HCP to cubic HCP.

Sub-cubic HCP to Cubic HCP Conversion Procedure

1. If the sub-cubic instance has any degree 1 vertices, the graph is non-Hamilt-
onian, and may be replaced by any non-Hamiltonian cubic graph (such as the
Petersen graph [15]).

2. Otherwise, replace any degree 2 vertices with a diamond subgraph, as shown
in Figure 2.1.

Figure 2.1: A degree 2 vertex, and the corresponding cubic subgraph which replaces
it.

It is clear that the resultant graph is cubic. To see that the Hamiltonicity has not
been altered, it suffices to recognise that an introduced diamond, once entered, must
be fully traversed before departing, as it will be impossible to enter it again. Then
this subgraph functions exactly the same as the vertex it replaced, and therefore the
new cubic instance contains Hamiltonian cycles if and only if the original instance
did.

It is also clear that the above procedure constitutes a linearly-growing conversion.
Even in the worst case, where all vertices are of degree 2, the number of vertices is
only quadrupled and the number of edges is only sextupled.

It is worth noting that the diamond subgraphs used in the above conversion can
be traversed in either of two different ways. Therefore, there is not a 1-1 relationship
between the Hamiltonian cycles in the sub-cubic instance, and the Hamiltonian cycles
in the converted instance. The 1-many relationship is unavoidable in general, as it
is a known result that undirected cubic Hamiltonian graphs must contain at least
three Hamiltonian cycles [21], but sub-cubic graphs may contain any number of
Hamiltonian cycles, i.e. 1 or 2 in particular.

3 Undirected Graphs with Maximum Degree 4

Consider an undirected graph with maximum degree 4. We refer to HCP restricted
to such instances as sub-quartic HCP. Then there is a simple procedure to convert
sub-quartic HCP to sub-cubic HCP. First we define a subgraph which we call a 4-
gate, as displayed in Figure 3.1. Note that there are four edges, indicated by dashed
lines in Figure 3.1, by which the 4-gate may be entered or exited. We will refer to
these four edges as external edges.
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Figure 3.1: A 4-gate, with the dashed lines representing the four external edges.

Lemma 3.1 It is possible to enter the 4-gate via any of the external edges, and exit
via any of the remaining external edges, visiting every vertex exactly once.

Proof: It suffices to give paths between any two of the external edges. Since the
4-gate is undirected, the reverse path is obviously permitted, so we only need to
consider unordered pairs. Also, due to symmetry, the top and bottom edges are
equivalent, as are the left and right edges. Then there are only three cases that need
to be considered, which are displayed in Figure 3.2.

Top edge to left edge: The path is 1− 3− 4− 6− 7− 8− 9− 10− 11− 5− 2.
Top edge to bottom edge: The path is 1− 3− 2− 5− 4− 6− 7− 8− 9− 10− 11.
Left edge to right edge: The path is 2− 3− 1− 8− 7− 6− 4− 5− 11− 10− 9. �

Figure 3.2: The three paths through the 4-gate described in Lemma 3.1, displayed
here as bold edges.

In the following proof we make use of the concept of a live edge, being one that
may still be used without creating a short cycle. In general, if a vertex v has only
two live edges, and an adjacent vertex is visited, then vertex v must be visited
immediately afterwards in order for a Hamiltonian cycle to be formed.

Proposition 3.2 Upon entering the 4-gate, every vertex must be traversed before
exiting in a Hamiltonian cycle.
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Proof: Suppose that during the course of a Hamiltonian cycle, the 4-gate is entered,
and then exited before all vertices are visited. Then the Hamiltonian cycle must
later enter and exit the 4-gate again. Therefore, one such path must enter or exit
through the top edge. Since the graph is undirected, without loss of generality we
may assume that the top edge is entered. Then, suppose the cycle travels from vertex
1 to 3. At this point, the cycle may either continue to vertex 2 or 4.

If the cycle continues to vertex 4, it must then continue to the degree 2 vertex 6, and
on to vertex 7. Then, since edge (1, 8) was not used, there are only two remaining
live edges adjacent to vertex 8, so the cycle must continue to vertex 8 and through
to vertex 9. At this point it must exit the right edge (or else it will be impossible
to re-enter and re-exit the 4-gate later). Clearly then, since edges (7, 10) and (9, 10)
were not used, it is now impossible to visit vertex 10 without getting stuck.

If, instead, the cycle continues to vertex 2, then using the same argument as above,
it must exit via the left edge. Then, some time later, the cycle re-enters the 4-gate.
Again, without loss of generality, suppose it enters via the right edge. Then using the
same argument as above, the cycle is forced to travel the path 9−8−7−6−4−5−11.
At this stage, the cycle must exit via the bottom edge, as it is the only remaining
external edge. However, it is then impossible to visit vertex 10. So we conclude that
the initial choice of travelling from vertex 1 to 3 is flawed.

However, due to symmetry, travelling from vertex 1 to 8 will be similarly flawed.
Therefore the initial assumption that the 4-gate was exited before all vertices was
visited must be incorrect. �

From Lemma 3.1 and Proposition 3.2 we see that the 4-gate functions the same
as a degree 4 vertex. That is, once it is entered via one edge, any of the other three
edges can be departed from, but only once the entire 4-gate has been traversed.
Then, the procedure to convert a sub-quartic instance to a sub-cubic instance is as
follows.

Sub-quartic HCP to Sub-cubic HCP Conversion Procedure

1. Replace any degree 4 vertices with a 4-gate, with the four adjacent edges to
the degree 4 vertex forming the four external edges to the 4-gate.

Since the 4-gate subgraphs are sub-cubic, and all remaining vertices in the original
instance are degree 3 or less, the resulting instance is now sub-cubic. It is clear
that the conversion from sub-quartic HCP to sub-cubic HCP is a linearly-growing
conversion, where in the worst case there are 11 times as many vertices, and 4.5
times as many edges. Then, since there is a linearly-growing conversion from sub-
cubic HCP to cubic HCP, we conclude that there is a linearly-growing conversion
from sub-quartic HCP to cubic HCP.

The 4-gate is a special case of a more general object which we call an s-gate,
displayed in Figure 3.3. Much like for the 4-gate, once the s-gate is entered by a
Hamiltonian cycle all vertices must be visited before departing, and it is possible to
enter and exit via any pair of external edges. It is clear that all vertices in the s-gate
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have degree no greater than 3 except for the first vertex, which has degree s− 1. It
is then clear that any graph could be converted to a sub-cubic graph by iteratively
replacing any vertices of degree s with s-gates, then any vertices of degree s − 1
(including those introduced by the s-gates) with s− 1-gates, and so forth. It is also
easy to see that this approach can be generalised to work for directed graphs as well,
where a vertex of in-degree r and out-degree s should be replaced by an (r+ s)-gate.
However, this procedure results in a quadratically-growing conversion, and so we do
not include it in this manuscript. It should be noted that for graphs of relatively low
order and maximum degree, this approach often results in a smaller instance than
the linearly-growing conversion in the following section. It should also be noted that
if the maximum degree in the original graph is bounded above by a constant, the
conversion is linearly-growing.

Figure 3.3: An s-gate, with the dashed edges representing the s external edges.

4 A Linearly-growing Conversion from General HCP to Cu-
bic HCP

We now outline a procedure by which any instance of general HCP may be reduced
to a sub-quartic instance of HCP. During the conversion we will make use of three
special subgraphs, which we call a split, an in-split and an out-split, displayed in
Figure 4.1. We refer to the edges on the outside of the subgraphs which connect to
the rest of the graph as external edges.

Consider a graph containing any of the above three subgraphs. It is trivial to
check that any Hamiltonian cycle, upon entering the subgraph, must traverse every
vertex before exiting. It is also trivial to check that it is possible to travel from any
incoming external edge to any outgoing external edge. Therefore we can replace any
vertex by any of the above subgraphs without altering Hamiltonicity. Note that the
number of Hamiltonian cycles does not grow when a vertex is replaced by one of the
above subgraphs.

We now consider a conversion using the above three subgraphs. Suppose that a
general HCP instance is given. It will be assumed that every edge in the graph is
directed, and so any undirected edges should be thought of as two individual directed
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Figure 4.1: A split, an in-split, and an out-split respectively. The arrow-less edge in
each of the in-split and the out-split represents two directed edges between the same
two vertices, which functions as an undirected edge. The dashed edges represent
directed external edges.

edges. The objective will be to replace all vertices of large in-degree or large out-
degree (or both) with subgraphs, such that the final graph has maximum in-degree
and maximum out-degree below a fixed constant, say d. We will choose d = 3, but
as will become clear later, d may be chosen as any integer value of 3 or above if so
desired.

Consider a particular vertex v in the graph, with in-degree s and out-degree r,
where max(s, r) > d. We may replace this vertex with a subgraph by a proce-
dure called the Splitting Procedure, which we outline below. Note that throughout
the Splitting Procedure we refer to replacing vertices with the subgraphs described
above. This should be done in such a way that the incoming edges adjacent to the
replaced vertex form the incoming external edges in the subgraph, and likewise for
the outgoing edges. For the in-split, there are two sets of incoming external edges,
and so the incoming edges adjacent to the replaced vertex should be shared equally
(or different by one, if there is an odd number) between these two sets. Likewise, for
the out-split, there should be an equal share of the outgoing edges in each of the two
sets of outgoing external edges. An example of such a replacement, using an in-split,
is displayed in Figure 4.2.

Figure 4.2: A vertex with in-degree 7 and out-degree 3, and the corresponding in-split
that replaces it.

Splitting Procedure

1. Replace vertex v with a split.

2. While a vertex in the subgraph has in-degree greater than d, replace that vertex
with an in-split.
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3. While a vertex in the subgraph has out-degree greater than d, replace that
vertex with an out-split.

Lemma 4.1 The Splitting Procedure terminates in finite time for any d ≥ 3.

Proof: Consider a vertex with in-degree s and out-degree r. The first step of the
Splitting Procedure occurs only once. After it has concluded, the first vertex in the
split will have in-degree s and out-degree 1, and the second vertex will have in-degree
1 and out-degree r.

Next, the second step runs for as long as vertices with in-degree greater than d
exist. Each time a vertex with in-degree s is replaced with an in-split, the maximum
in-degree of the replacing subgraph is � s

2
� + 1. It is easy to see that the resultant

in-degree will shrink by an integer amount for any s ≥ 4. Therefore step 2 will
conclude in finite time for any d ≥ 3. The final step is equivalent to the second step,
except the arguments involve the out-degree. Therefore, this step will also conclude
for d ≥ 3, and the algorithm will therefore terminate in finite time. �

Since the Splitting Procedure terminates in finite time, and cannot alter the
Hamiltonicity of the graph, the Splitting Procedure is guaranteed to convert any
vertex of large in-degree or large out-degree (or both) to an equivalent subgraph of
maximum in-degree and out-degree of d. Then if this is performed on all vertices in
the graph, the resultant graph instance is equivalent to the original graph instance,
but has in-degree and out-degree bounded above by d. The only remaining task is
to determine how large the resultant graph will be after the Splitting Procedure is
applied to all vertices.

Proposition 4.2 Consider a vertex v with in-degree s ≥ 3 and out-degree no greater
than 2. After the Splitting Procedure is completed for d = 3, the resultant subgraph
that replaces v has 2s− 5 vertices.

Proof: We will prove the result by induction on the value of s. For s = 3 the result
is trivial. Suppose the result is true for all in-degrees in the interval 3, . . . , s − 1.
Then, after one iteration of the Splitting Procedure, v is replaced with three vertices
whose in-degrees are � s

2
�+1, � s

2
�+1, and 2 respectively. Each of these vertices also

has out-degree no larger than 2. Then, by the induction hypothesis, the Splitting
Procedure will replace these vertices with 2� s

2
� − 3 vertices, 2� s

2
� − 3 vertices, and

1 vertex respectively, which is 2s − 5 vertices in total, agreeing with the induction
hypothesis. Therefore, by induction the result is proved. �

Clearly an equivalent argument to the above can be made for a graph with out-
degree r ≥ 3 and in-degree no greater than 2, which leads to the following corollary.

Corollary 4.3 Consider a vertex v with in-degree s and out-degree r. After the
Splitting Procedure is completed for chosen d = 3, the resultant subgraph that replaces
v has O(s+ r) vertices and O(s+ r) edges.
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Figure 4.3: A vertex with in-degree 9 and out-degree 6, and the subgraphs produced
by applying the splitting procedure for d = 3. The bold path shows how the graph
HCP would traverse the new graph at each stage.

Proof: Follows immediately from Proposition 4.2 and the fact that all vertices after
the splitting procedure have bounded in-degree and out-degree. �

An example of the Splitting Procedure is displayed in Figure 4.3.
It is trivial to see that replacing a vertex with a subgraph, using the above

procedure, does not alter the in-degree or out-degree of any other vertex in the
graph. Then we may simply perform the above procedure for all vertices in the
graph with in-degree or out-degree greater than d. Suppose that, in the original
instance containing n vertices, vertex i has maximum in-degree or out-degree di, and
define k :=

∑n
i=1 di. It is clear that k at least as big as the number of directed edges

in the graph. Then, when the Splitting Procedure is applied to all vertices in the
graph, there will be O(k) vertices of in-degree and out-degree no larger than d.

Finally, we present the main theorem of this manuscript.

Theorem 4.4 Using the procedures described in this manuscript, one may convert
any general HCP instance to an equivalent (undirected) cubic HCP instance contain-
ing O(k) vertices and O(k) edges, where k is defined as above.

Proof: Corollary 4.3 demonstrates that it is possible to reduce any instance of
general HCP to a directed instance containing a maximum in-degree and maximum
out-degree of 3. Then, converting to an undirected graph produces a sub-quartic
instance of HCP. Finally, using the procedures outlined in Section 3, an instance
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of cubic HCP is obtained. All of these procedures describe conversions which are
linearly-growing, completing the proof. �

The proof of Theorem 4.4 gives rise to an algorithm for converting any instance of
general HCP to cubic HCP, which we call the “HCP to 3HCP Conversion Procedure”.

HCP to 3HCP Conversion Procedure

1. Perform the Splitting Procedure on any vertex with in-degree or out-degree
greater than 3.

2. Convert the directed graph to an undirected graph.

3. Replace any degree 4 vertices with 4-gates using the Sub-quartic HCP to Sub-
cubic HCP Conversion Procedure.

4. Convert the sub-cubic graph to a cubic graph using the Sub-cubic HCP to
Cubic HCP Conversion Procedure.

We now conclude this section with an upper bound on the size of the cubic
instance obtained from the HCP to 3HCP Conversion Procedure.

Lemma 4.5 Consider a graph Γ, and denote by k the sum of in-degrees and out-
degrees of all vertices in Γ. Then the instance obtained after performing the HCP to
3HCP Conversion Procedure will contain no more than 25k − 60 vertices.

Proof: Consider a single vertex in Γ, with in-degree s and out-degree r. From
Proposition 4.2 we know that the subgraph replacing this vertex will contain 2s +
2r−10 vertices. Therefore, once step 1 is carried out for all vertices in Γ, the number
of vertices in the resultant subgraph will be 2k − 10. Note that at this stage, there
are at most k vertices with maximum in-degree or out-degree of 3 (e.g. see Figure
4.3). In step 2, the number of vertices is tripled, so there are 6k− 30 vertices. There
are still at most k vertices with maximum in-degree or out-degree 4. Exactly 2k−10
vertices have degree 2. In step 3, we replace at most k vertices with 4-gates, which
each contain 11 vertices, including one vertex of degree 2. So at this point the number
of vertices is no more than 16k−30, of which at most 3k−10 vertices have degree 2.
In step 4, we replace at most 3k − 10 vertices with diamonds, which each contain 4
vertices. So after the HCP to 3HCP Conversion Procedure is completed, the graph
contains at most 25k − 60 vertices. �

For undirected graphs containing m edges, it is trivial to see that k = 4m. The
following corollary is therefore obvious, and does away with the need to count the
in-degree and out-degree of each vertex.

Corollary 4.6 If Γ is an undirected graph containing m undirected edges, the cubic
graph resulting from the HCP to 3HCP Conversion Procedure contains no more than
100m− 60 vertices and 150m− 90 edges.
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5 Improvement over the existing approach

We have implemented the HCP to 3HCP Conversion Procedure using Java and
have converted several famous graphs to cubic graphs using our approach. We now
compare the corresponding instance input sizes with those of the cubically-growing
conversion obtained by first converting from HCP to SAT using the Ariadne100
software package [18], then to 3SAT using the conversion given in Karp [16], and
finally to 3HCP using the approach by Garey et al. [10]. Note that, since we do
not demand planarity, we may avoid the most expensive step in their approach. In
fact, although it is not stated explicitly in [10], it can be relatively easily checked
that if the 3SAT instance has m clauses and n literals, the resultant cubic graph will
contain 408m+40n vertices. It is also interesting to note that Ariadne100 produces
SAT instances for which the number of vertices bounds the size, rather than edges.
Specifically, if a graph has n vertices and m undirected edges, the SAT instance has
2n3 − 2n2 + 2n − 2nm and n2 literals. For completeness, we also include the sizes
of instances obtained by iteratively replacing vertices with s-gates, as discussed at
the end of Section 3; in many cases this approach outperforms the HCP to 3HCP
Conversion Procedure. The comparative results are listed in Table 1, where the
savings that may be obtained from using the approaches described in this manuscript
are made stark.

Graph n Max, mean n in HCP n in n in
Degree to 3HCP s-gate Garey

K10 10 (9,9) 3,560 1,090 845,280
Goldner-Harary [14] 11 (8,4.9091) 1,594 336 1,655,720

Sousselier [1] 16 (5,3.375) 932 96 6,044,160
6-Andrásfai [13] 17 (6, 6) 3,502 782 6,670,664

24-cell [4] 24 (8,8) 7,344 2,064 19,230,336
29-Paley [8] 29 (14,14) 17,574 7,366 30,968,520

Foster Cage [17] 30 (5,5) 4,680 870 41,617,440
Sheehan-40 [20] 40 (39,20.05) 36,316 24,784 80,791,040
Sims-Gewirtz [12] 56 (10,10) 22,736 7,504 271,272,064
Knight’s Tour [3] 64 (8,5.25) 10,592 2,416 427,084,800
Sheehan-80 [20] 80 (79,40.025) 152,556 186,324 652,154,880

K100 100 (99,99) 485,600 1,036,900 856,612,800

Table 1: Comparative sizes of cubic graphs obtained from the conversions of some
famous higher-degree graphs. The HCP to 3HCP conversion and s-gate conversion
are those discussed in this manuscript. The Garey et al. conversion is that which
uses (in the final step) the result by Garey et al. [10].
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[13] C. Godsil and G. Royle, The Andrásfai Graphs, in: Algebraic Graph Theory,
New York: Spinger-Verlag, pp. 118–123, 2001.

[14] A. Goldner and F. Harary, Note on a smallest nonhamiltonian maximal planar
graph, Bull. Malaysian Math. Soc. 6(1) (1975), 41–42.

[15] D.A. Holton and J. Sheehan, The Petersen Graph, Cambridge University Press,
1993.

[16] R.M. Karp, Reducibility among combinatorial problems, Springer, New York,
1972.

[17] M. Meringer, Fast Generation of Regular Graphs and Construction of Cages, J.
Graph Theory 30 (1999), 137–146.

[18] M. Nasu, Ariadne100: Hamiltonian Circuit Experiment Project, cited 7th May
2013, http://www.aya.or.jp/∼babalabo/Ariadne/Ariadne.html, 2000.

[19] G. Royle, Gordon Royle’s Cubic Graphs,
http://school.maths.uwa.edu.au/∼gordon/remote/cubics/, 1996.

[20] J. Sheehan, Graphs with exactly one hamiltonian circuit, J. Graph Theory 1
(1977), 37–43.

[21] W.T. Tutte, On Hamiltonian circuits, J. London Math. Soc. 21 (1946), 98–101.

(Received 27 May 2014; revised 19 Sep 2014, 21 Oct 2014)


