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Abstract

We show that several known Ramsey number inequalities can be ex-
tended to the setting of r-uniform hypergraphs. In particular, we extend
Burr’s results on tree-star Ramsey numbers, providing exact evaluations
for certain hypergraph Ramsey numbers. Then we turn our attention to
proving a general multicolor hypergraph Ramsey number inequality from
which generalizations of results due to Chvátal and Harary and Robertson
can be obtained. Finally, we consider ways in which one may generalize
a more recent multicolor Ramsey number inequality due to Xiaodong,
Zheng, Exoo, and Radziszowski.
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1 Introduction

One of the aims of Ramsey theory on graphs is the explicit determination of Ram-
sey numbers, often by making gradual improvements on known upper and lower
bounds. Lower bounds are typically found by constructing optimal graphs, while
upper bounds require more theoretical approaches. An excellent resource for access-
ing the current state of knowledge on Ramsey numbers on graphs (and hypergraphs)
is Radziszowski’s Dynamic Survey [5]. In addition to known bounds for specific
Ramsey numbers, it lists numerous inequalities for generalized Ramsey numbers.
Our goal is to show how many general Ramsey theorems on graphs can be extended
to the setting of r-uniform hypergraphs.

Recall that for r ≥ 2, an r-uniform hypergraph H = (V,E) consists of a set V
of vertices and a set E of different unordered r-tuples of vertices, called hyperedges.
A vertex is incident with a hyperedge if it is contained in the hyperedge. As usual,
we will write V (H) for V and E(H) for E when we wish to emphasize the specific
hypergraph we are working with. The degree of a vertex is the number of hyperedges
incident with that vertex. When r = 2, these definitions coincide with that of
standard graphs.

The complete r-uniform hypergraph K
(r)
n is the hypergraph containing n vertices

in which every r-subset of the vertices represents a hyperedge. An r-uniform tree T
(r)
m

is a connected r-uniform hypergraph on m vertices that can be formed hyperedge-by-
hyperedge, with each new hyperedge including exactly one vertex from the previous
hypergraph. We refer to an r-uniform hyperedge that includes r−1 vertices of degree
1 as a leaf. Of course, K

(r)
n is unique (up to isomorphism), but there can be many

r-uniform trees on a given number of vertices. It is also easily observed that the
number of hyperedges in K

(r)
n and T

(r)
m are n!

r!(n−r)!
and m−1

r−1
, respectively.

An r-uniform hypergraph H is called bipartite if V (H) can be partitioned into
two disjoint subsets V1 and V2 with every hyperedge including vertices from both V1

and V2. The complete bipartite r-uniform hypergraph K
(r)
m,n has vertex sets V1 and

V2 with cardinalities m and n, respectively, and includes all r-uniform hyperedges
that include vertices from both V1 and V2. In particular, we call the hypergraph K

(r)
1,n

a star and note that it contains n!
(r−1)!(n−r+1)!

hyperedges. When r = 2, we write Kn,

Tm, and Km,n in place of K
(2)
n , T

(2)
m , and K

(2)
m,n.

For any r-uniform hypergraph H , define the weak chromatic number χw(H) to be
the minimum number of colors needed to color the vertices of H so that no hyperedge
is monochromatic. The strong chromatic number χs(H) is the minimum number of
colors needed to color the vertices of H so that all adjacent vertices (contained
within a common hyperedge) have different colors. It is easily observed that for any
r-uniform hypergraph H ,

χw(H) ≤ χs(H),

and whenever r = 2, χw = χs = χ, where χ is the chromatic number for graphs.

For any finite collection H1, H2, . . . , Ht of r-uniform hypergraphs, define the Ram-
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sey number
R(H1, H2, . . .Ht; r)

to be the least n ∈ N such that every coloring of the hyperedges of K
(r)
n using t colors

results in a subhypergraph isomorphic to Hi for some color i ∈ {1, 2, . . . , t}. One
can find a comprehensive overview of the current state of knowledge on hypergraph
Ramsey numbers in Section 7 of Radziszokski’s dynamic survey [5]. If H1 = H2 =
· · · = Ht, then we write Rt(H1; r) for the corresponding Ramsey number. It is also

standard to write R(k1, k2, . . . , kt; r) whenever Hi = K
(r)
ki

for all i ∈ {1, 2, . . . , t}.
When r = 2, it is standard to reduce the notation to R(G1, G2, . . . , Gt) for graphs
G1, G2, . . . , Gt, or to just R(k1, k2, . . . , kt) when Gi = Kki for all i ∈ {1, 2, . . . , t}.
Finally, we denote by �x� and �x� the ceiling and floor functions for x ∈ R, respec-
tively.

This paper focuses on extending numerous results in Ramsey theory that in-
volve the construction of graphs with known maximal complete subgraphs to the
setting of r-uniform hypergraphs. In Section 2, we focus on the r-uniform tree-star
Ramsey numbers R(T

(r)
m , K

(r)
1,n; r) and provide exact evaluations under certain divis-

ibility assumptions, generalizing the work of Burr [1]. In Section 3, we introduce
a new theorem giving lower bounds for multicolor hypergraph Ramsey numbers,
which immediately implies several classical inequalities due to Chvátal and Harary
[3], Chvátal [2], and Robertson [6]. We also extend a constructive result of Xiaodong,
Zheng, Exoo, and Radziszowski [7], which we then use to find new lower bounds for
some diagonal 3-uniform Ramsey numbers of the type Rk(5; 3) for 2 ≤ k ≤ 9.

2 r-Uniform Tree-Star Ramsey Numbers

In 1974, Burr [1] proved that when m− 1 divides n− 1,

R(Tm, K1,n) = m+ n− 1, (2.1)

for any tree Tm on m vertices. We extend this result to r-uniform hypergraphs in
the following two theorems, and corollary.

Theorem 2.1 If r ≥ 2, k ≥ 1, and T
(r)
m is any r-uniform tree on m ≥ r vertices,

then
R(T (r)

m , K
(r)
1,k(m−1)+r−1; r) ≥ (k + 1)(m− 1) + 1.

Proof: Form a 2-coloring of the hyperedges in K
(r)
(k+1)(m−1) by taking k + 1 copies

of K
(r)
m−1. Let all of the hyperedges in each copy of K

(r)
m−1 be colored red and all

interconnecting hyperedges colored blue. No red T
(r)
m has been formed since T

(r)
m has

m vertices and the largest connected component in the hypergraph spanned by the
red hyperedges has order m − 1. When considering the largest value of t for which
there exists a blue K

(r)
1,t , note that if x is the vertex that is alone in its bipartite vertex
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set, then at most r − 2 other vertices in the same copy of K
(r)
m−1 can be included in

the other vertex set. Thus, our coloring includes a blue K
(r)
1,k(m−1)+r−2, but not a blue

K
(r)
1,k(m−1)+r−1, resulting in the lower bound stated in the theorem. �

Note that in the special case in which n − 1 is divisible by m − 1, we can let
k = n−1

m−1
to obtain the lower bound

R(T (r)
m , K1,n+r−2; r) ≥ n +m− 1. (2.2)

This result agrees with the lower bound necessary to prove (2.1) when r = 2. Now
we turn our attention to finding an upper bound for r-uniform tree-star Ramsey
numbers.

Theorem 2.2 If t+ 1 ≥ r ≥ 2, and T
(r)
m is any r-uniform tree on m vertices, then

R(T (r)
m , K

(r)
1,t ; r) ≤ m+ t− (r − 1).

Proof: Let m = r + �(r − 1) (that is, � + 1 is the number of hyperedges in T
(r)
m ).

We proceed by induction on � ≥ 0. In the case � = 0, it is easily seen that

R(T (r)
r , K

(r)
1,t ; r) = t + 1 = r + t− (r − 1).

Now assume that the inequality is true for the �− 1 case:

R(T
(r)
m−(r−1);K1,t; r) ≤ m+ t− 2(r − 1),

for all r-uniform trees on m− (r− 1) vertices. For a given r-uniform tree T
(r)
m , let T ′

be the tree formed by removing a single leaf (the hyperedge and the r − 1 vertices
of degree 1 incident with that hyperedge) and let x be the vertex in T ′ that was
incident with the removed leaf. Consider a red/blue coloring of the hyperedges in

K
(r)
m+t−(r−1). By the inductive hypothesis, this coloring contains either a red T ′ or

a blue K
(r)
1,t . Assume the former case and note that besides the vertices in T ′, the

graph K
(r)
m+t−(r−1) contains

m+ t− (r − 1)− (m− (r − 1)) = t

other vertices. Now consider the hyperedges that include x along with all r − 1
subsets of vertices from the t not included in T ′. If any one of these hyperedges is
red, we obtain a red copy of T

(r)
m . Otherwise, they are all blue, and we have a blue

K
(r)
1,t . �

If we assume that n−1 is divisible by m−1 and let t = n+r−2, then combining
(2.2) with Theorem 2.2, we obtain the following corollary.

Corollary 2.3 If t + 1 ≥ r ≥ 2, T
(r)
m is any tree on m vertices, and m − 1 divides

t− (r − 1), we have that

R(T (r)
m ;K

(r)
1,t ; r) = m+ t− (r − 1).
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3 Generalizations of Some Classical Ramsey Theory Results

In 1972, Chvátal and Harary [3] proved a general Ramsey inequality for graphs:

R(G1, G2) ≥ (c(G1)− 1)(χ(G2)− 1) + 1, (3.1)

where c(G1) is the order of the largest connected component of G1 and χ(G2) is the
chromatic number of G2. Using this result, Chvátal [2] was then able to prove the
explicit Ramsey number

R(Tm, Kn) = (m− 1)(n− 1) + 1, (3.2)

where Tm is any tree on m vertices. Forty years later, Robertson (Theorem 2.1, [6])
proved that if t ≥ 3 and ki ≥ 3 for i = 1, 2, . . . , r, then

R(k1, k2, . . . , kt) ≥ (k1 − 1)(R(k2, . . . , kr)− 1) + 1. (3.3)

His result followed from a “Turán-type” coloring of a complete graph and implied
four improved lower bounds for diagonal multicolor Ramsey numbers:

R5(4; 2) ≥ 1372, R5(5; 2) ≥ 7329, R4(6; 2) ≥ 5346, and R4(7; 2) ≥ 19261.

While all of these bounds have since been improved (see [5]) Robertson’s theorem
remains as an excellent way to build multicolor bounds from known results on smaller
graphs. In this section, we show that both of these results can be thought of as
consequences of the following theorem.

Theorem 3.1 Let r ≥ 2, t ≥ 3, and H1, H2, . . . , Ht be r-uniform hypergraphs with
H2, . . . , Ht connected. Then

R(H1, H2, . . . , Ht; r) ≥ (χw(H1)− 1)(R(H2, . . . , Ht; r)− 1) + 1.

Proof: Let n = R(H2, . . . , Ht; r)− 1 and consider a coloring of the hyperedges of

K
(r)
(χw(H1)−1)n formed by considering (χw(H1)−1) copies of K

(r)
n . Within each copy of

K
(r)
n , the hyperedges are colored with colors 2 through t such that no monochromatic

copy of Hj appears for any color 2 ≤ j ≤ t. Color all of the hyperedges that

interconnect the different copies of K
(r)
n with color 1. If there were a monochromatic

H1 of color 1, then there would be a copy of H1 where each hyperedge contained
vertices in at least two different copies of K

(r)
n . But coloring vertices according to

which of the (χw(H1)− 1) copies of K
(r)
n they are in would yield a weak coloring of

H1 with (χw(H1)− 1) colors, which is impossible. Thus, we find that

R(H1, H2, . . . , Ht; r) > (χw(H1)− 1)n,

from which the result follows. �
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Using Theorem 3.1, we obtain the following generalization of Chvátal and Har-
ary’s result (3.1) to r-uniform hypergraphs.

Corollary 3.2 Let H1 and H2 be r-uniform hypergraphs with r ≥ 2. Then

R(H1, H2; r) ≥ (c(H1)− 1)(χw(H2)− 1) + 1,

where c(H1) is the order of the largest connected component of H1 and χw(H2) is the
weak chromatic number of H2.

Proof: It is easy to see that R(H1, K
(r)
r ; r) ≥ c(H1). Theorem 3.1 thus gives us

that

R(H1, H2; r) = R(H1, H2, K
(r)
r ; r) ≥ (χw(H2)− 1)(R(H1, K

(r)
r ; r)− 1) + 1

≥ (χw(H2)− 1)(c(H1)− 1) + 1,

completing the proof of the corollary. �

In addition to Theorem 3.1, we will make use of the following lemma to prove
generalizations of the theorems of Chvátal [2] and Robertson [6].

Lemma 3.3 If n ≥ r ≥ 2, it follows that χw(K
(r)
n ) =

⌈
n

r−1

⌉
and χs(K

(r)
n ) = n.

Proof: Every weak coloring of K
(r)
n contains at most r−1 vertices of a given color.

Thus,
⌈

n
r−1

⌉
colors are necessary and sufficient. For a strong coloring, no two distinct

vertices can have the same color since there exists some hyperedge that includes both
vertices. �

We now exploit Corollary 3.2, along with an inductive argument similar to that of
Chvátal [2], to find upper and lower bounds for r-uniform tree-complete hypergraph
Ramsey numbers.

Theorem 3.4 If n ≥ r ≥ 2 and T
(r)
m is any r-uniform tree on m vertices, then

(m− 1)

(⌈ n

r − 1

⌉
− 1

)
+ 1 ≤ R(T (r)

m , K(r)
n ; r) ≤ (m− 1)(n− 1) + 1.

Proof: Letting H1 = T
(r)
m and H2 = K

(r)
n in Theorem 3.2 and using the weak

chromatic number result from Lemma 3.3, we obtain the first inequality

(m− 1)

(⌈ n

r − 1

⌉
− 1

)
+ 1 ≤ R(T (r)

m , K(r)
n ; r).

To prove the second inequality, consider a 2-coloring of the edges on K
(r)
k , where

k = (m− 1)(n− 1) + 1. First, we handle the base cases in which m = r or n = r. If

m = r, then T
(r)
m consists of a single hyperedge and it is easily seen that

R(T (r)
m , K(r)

n ; r) = n ≤ (r − 1)(n− 1) + 1.
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If n = r, then K
(r)
n consists of a single hyperedge and we have

R(T (r)
m , K(r)

n ; r) = m ≤ (m− 1)(r − 1) + 1.

Now we proceed by using strong induction on m+ n. Assume that

R(T
(r)
m′ , K

(r)
n′ ; r) ≤ (m′ − 1)(n′ − 1) + 1

for all m′ + n′ < m+ n and any r-uniform tree T
(r)
m′ on m′ vertices. Now, for a fixed

r-uniform tree T
(r)
m on m vertices, form the r-uniform tree T ′ by removing a single

“leaf.” That is, for some hyperedge containing only a single vertex of degree greater
than 1, remove the hyperedge and the r−1 vertices of degree 1, resulting in T ′ having
order m − (r − 1). Call the one remaining vertex from the removed leaf x. By the

inductive hypothesis, we have that the red/blue coloring of the hyperedges of K
(r)
k

contains either a red T ′ or a blue K
(r)
n . In the latter case, we are done, so assume

the former case. Now, consider the red/blue coloring of the edges of K
(r)
k−(m−(r−1))

formed by removing the m− (r−1) vertices in the red T ′-subgraph from the original

K
(r)
k . It is easily confirmed that

k − (m− (r − 1)) ≥ (m− 1)(n− 2) + 1

from which we obtain a red/blue coloring of the edges of K
(r)
(m−1)(n−2)+1. Applying the

inductive hypothesis again, we find that this hypergraph contains either a red T
(r)
m

or a blue K
(r)
n−1. In the former case, we are done, so assume the latter case. Thus,

the original red/blue coloring of the edges of K
(r)
k contains a red T ′ and a blue K

(r)
n−1

that are disjoint. Consider the possible colors that can be assigned to the hyperedges
that contain x and r − 1 vertices from the K

(r)
n−1 subgraph. If any of them are red,

then there exists a red T
(r)
m . Otherwise, all of them are blue and there exists a blue

K
(r)
n . Hence,

R(T (r)
m , K(r)

n ; r) ≤ (m− 1)(n− 1) + 1,

completing the proof of the theorem. �

From this theorem, it seems that the exact value in equation (3.2) found by
Chvátal [2] for the r = 2 case was due to the fact that the weak and strong chro-
matic numbers agree in this setting. In general, finding explicit values in the higher-
uniformity setting seems to be much more difficult.

We now use Theorem 3.1 along with Lemma 3.3 to prove the following general-
ization of Robertson’s Theorem (Theorem 2 in [6]).

Corollary 3.5 Let q, r ≥ 2, n ≥ 3, and suppose that H2, . . . , Ht are connected r-
uniform hypergraphs. Then

R(K
(r)
(r−1)q+q′ , H2, . . . , Ht; r) ≥ q(R(H2, . . . , Ht; r)− 1) + 1,

for all 1 ≤ q′ ≤ r − 1.
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Proof: By Lemma 3.3, χw(K
(r)
(r−1)q+q′) = q + 1. Applying this to Theorem 3.1

completes the proof. �

Of course, for fixed r and q, Corollary 3.5 is strongest when q′ = 1. When q′ = 1,
r = 2, q + 1 = k1, and Hi = Kki for 2 ≤ i ≤ t, Theorem 3.5 reduces to Robertson’s
inequality (3.3). As an example of the utility of Corollary 3.5, the following lower
bounds follow immediately from the explicit lower bounds given in Section 7.1 of
Radziszowski’s dynamic survey [5]:

R(K
(3)
4 , K

(3)
4 ; 3) = 13 =⇒ R(K

(3)
2q+1, K

(3)
4 , K

(3)
4 ; 3) ≥ 12q + 1,

R(K
(3)
4 , K

(3)
5 ; 3) ≥ 33 =⇒ R(K

(3)
2q+1, K

(3)
4 , K

(3)
5 ; 3) ≥ 32q + 1,

R(K
(3)
5 , K

(3)
5 ; 3) ≥ 82 =⇒ R(K

(3)
2q+1, K

(3)
5 , K

(3)
5 ; 3) ≥ 81q + 1,

R(K
(4)
5 , K

(4)
5 ; 4) ≥ 34 =⇒ R(K

(4)
3q+1, K

(4)
5 , K

(4)
5 ; 4) ≥ 33q + 1,

R(K
(3)
4 − e,K

(3)
4 − e; 3) = 7 =⇒ R(K

(3)
2q+1, K

(3)
4 − e,K

(3)
4 − e; 3) ≥ 6q + 1,

R(K
(3)
4 − e,K

(3)
5 ; 3) ≥ 14 =⇒ R(K

(3)
2q+1, K

(3)
4 , K

(3)
5 ; 3) ≥ 13q + 1,

R(K
(3)
4 , K

(3)
4 , K

(3)
4 ; 3) ≥ 56 =⇒ R(K

(3)
2q+1, K

(3)
4 , K

(3)
4 , K

(3)
4 ; 3) ≥ 55q + 1.

The next corollary is proved by induction on the number of colors. To simplify
the statement, we define the notation Rk(K

(r)
m , H1, H2; r) to denote the k-color r-

uniform hypergraph Ramsey number for k−2 copies of K
(r)
m along with nonempty r-

uniform hypergraphs H1 and H2. Note that we are using superscripts to denote these
semi-diagonal Ramsey numbers, in contrast to using subscripts for their diagonal
counterparts.

Corollary 3.6 If k ≥ 3 and q ≥ 2, then

Rk(K
(r)
(r−1)q+1, H1, H2; r) > qk−2(R(H1, H2; r)− 1).

Proof: The proof of Corollary 3.6 follows from a simple inductive argument on k.
For the k = 3 case, Corollary 3.5 implies

R3(K
(r)
t , H1, H2; r) > q(R(H1, H2; r)− 1),

where t = (r − 1)q + 1. Assume now that

Rk(K
(r)
t , H1, H2; r) ≥ qk−2(R(H1, H2; r)− 1) + 1,

for k ≥ 3. Applying Corollary 3.5 again, we have

Rk+1(K
(r)
t , H1, H2; r) ≥ q(Rk(K

(r)
t , H1, H2; r)− 1) + 1

≥ q(qk−2(R(H1, H2; r)− 1)) + 1,

implying the statement of the corollary. �
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Of course, when H1 = H2 = K
(r)
(r−1)q+1 , we obtain the following diagonal case:

Rk(K
(r)
(r−1)q+1; r) > qk−2(R2(K

(r)
(r−1)q+1; r)− 1).

Now we turn our attention to a 2004 result of Xiaodong, Zheng, Exoo, and
Radziszowski. In Theorem 2 of [7], they proved the following multicolor Ramsey
number inequality for graphs:

R(k1, k2, . . . , kt) ≥ (R(k1, k2 . . . , ki)− 1)(R(ki+1, . . . , kt)− 1) + 1, (3.4)

for kj ≥ 2, 1 ≤ j ≤ t, and 2 ≤ i ≤ t − 2. Their proof was constructive and
described a method for coloring the edges inKmn with t colors, avoiding the necessary
monochromatic subgraphs, where

m = R(k1, k2 . . . , ki)− 1 and n = R(ki+1, . . . , kt)− 1.

Although their approach does not easily generalize to hypergraphs, the following
theorem makes use of the constructive method used in [7] to provide a new multicolor
Ramsey number inequality for hypergraphs.

Theorem 3.7 Let r ≥ 2 and t− 2 ≥ i ≥ 3. Then

R((r − 1)2 + 1, k2, . . . , kt; r) ≥ (R(k2, . . . , ki; r)− 1)(R(ki+1, . . . , kt; r)− 1) + 1.

Proof: Let

m = R(k2, . . . , ki; r)− 1 and n = R(ki+1, . . . , kt; r)− 1

and form a t-coloring of the hyperedges in K
(r)
mn by considering m copies of K

(r)
n .

Color the hyperedges within each copy of K
(r)
n with colors i+1 through t so that no

copy of K
(r)
kj

exists in color j for any i + 1 ≤ j ≤ t. The remaining hyperedges are

those that interconnect the different copies of K
(r)
n . Give color 1 to the hyperedges

that have at least two vertices within a common copy of K
(r)
n . So, all hyperedges in

color 1 include at most r − 1 vertices from any given copy of K
(r)
n and can include

vertices from at most r − 1 different copies of K
(r)
n . Thus, the maximum clique

in color 1 has order (r − 1)2. Finally, the remaining hyperedges are those whose

vertices are all in different copies of K
(r)
n . If we identify the vertices in K

(r)
m with

the distinct copies of K
(r)
n , we can form a coloring of the remaining hyperedges with

colors 2 through i that avoids a copy of K
(r)
kj

in color j for all 2 ≤ j ≤ i. Thus, our

t-coloring of the hyperedges of K
(r)
mn has avoided all of the necessary monochromatic

subhypergraphs. �
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This theorem can been seen to be a true generalization of Xiaodong, Zheng, Exoo,
and Radziszowski’s Theorem as it reduces to (3.4) when r = 2 since

R(2, k1, . . . , kt; r) = R(k1 . . . , kt; r).

The following proposition follows as an application of Corollary 3.5 and Theorem 3.7
and describes lower bounds for diagonal 3-uniform hypergraph Ramsey numbers of
the form Rk(5; 3).

Proposition 3.8 The following inequalities hold:

1. R2(5; 3) ≥ 82,

2. R3(5; 3) ≥ 163,

3. R4(5; 3) ≥ 131, 073,

4. R5(5; 3) ≥ 262, 145,

5. R6(5; 3) ≥ 524, 289,

6. R7(5; 3) ≥ 10, 616, 833,

7. R8(5; 3) ≥ 21, 233, 665,

8. R9(5; 3) ≥ 17, 179, 869, 185.

Proof: The first inequality (1) can be found in [5] and (3) follows from Theorem
2 in [4]. The other inequalities follow as direct applications of Corollary 3.5 and
Theorem 3.7. �

4 Conclusion

As we have demonstrated, many general Ramey theorems that use both constructive
and theoretical (usually inductive) arguments can be extended to the setting of r-
uniform hypergraphs. While we have initiated a study of such generalizations, there
are many Ramsey results left to consider for such extensions. We conclude with an
additional conjectured extension of Theorem 2 of [7].

Conjecture 4.1 If r ≥ 2 and t > i+ 1 > 2, then

R(k1, k2, . . . , kt; r) ≥
⌊
R(k1, k2, . . . , ki; r)− 1

r − 1

⌋
(R(ki+1, . . . , kt; r)− 1) + 1.
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To provide some support for our conjecture, consider the following construction.
Let

m = R(k1, k2, . . . , ki; r)− 1, n = R(ki+1, . . . , kt; r)− 1,

a = � m
r−1

�, and form a t-coloring of the hyperedges of K
(r)
an using a copies of K

(r)
n .

Within each copy of K
(r)
n , color the hyperedges with colors i+1 through t so that no

copy of K
(r)
kj

exists in color j for any i+ 1 ≤ j ≤ t. The remaining hyperedges each

have at most r− 1 vertices within a single copy of K
(r)
n , forming a clique of order at

most ⌊ m

r − 1

⌋
(r − 1) ≤ m.

It is clear that for any choice of r − 1 vertices from each copy of K
(r)
n , the resulting

K
(r)
� m
r−1

�(r−1) has an i-coloring of the hyperedges that lack a copy of K
(r)
kj

in color j

for all 1 ≤ j ≤ i. Of course, it is not clear whether or not this can be done in a
well-defined manner for all choices of r− 1 vertices from each K

(r)
n . We welcome the

reader to determine whether such a coloring is possible.
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