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Abstract

Joyal’s theory of combinatorial species provides a rich and elegant frame-
work for enumerating combinatorial structures by translating structural
information into algebraic functional equations. We also extend the the-
ory to incorporate information about “structural” group actions (i.e. those
which commute with the label permutation action) on combinatorial
species, using the Γ-species of Henderson, and present Pólya-theoretic
interpretations of the associated formal power series for both ordinary
and Γ-species. We define the appropriate operations +, ·, ◦, and � on
Γ-species, give formulas for the associated operations on Γ-cycle indices,
and illustrate the use of this theory to study several important examples
of combinatorial structures. Finally, we demonstrate the use of the Sage
computer algebra system to enumerate Γ-species and their quotients.

1 Preliminaries

1.1 Classical Pólya theory

We recall here some classical results of Pólya theory for convenience.

Let Λ denote the ring of abstract symmetric functions and pi the elements of
the power-sum basis of Λ. Further, let P denote the ring of formal power series in
the family of indeterminates x1, x2, . . . , and let η : Λ → P denote the map which
expands each symmetric function in the underlying x-variables.

Let G be a finite group which acts on a finite set S of cardinality n. The classical
cycle index polynomial of the action of G on S is the power series

ZG(p1, p2, . . . , pn) =
1

|G|
∑
σ∈G

pσ (1.1)
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where pσ = pσ1
1 pσ2

2 . . . for σi the number of i-cycles of the action of σ on S. (In
particular, if G ⊆ Sn, we frequently consider the action of G on [n] as permutations;
then pσ simply counts the i-cycles in σ as a permutation.)

In this language, the celebrated Pólya enumeration theorem then has a simple
form:

Theorem 1.1 (Pólya enumeration theorem) Let ZG be the classical cycle index
polynomial of a fixed action of the finite group G on the finite set S and let π =
〈π1, . . . , πk〉 be a vector of positive integers summing to n. Then the number of G-
orbits of colorings of S having πi instances of color i is equal to the coefficient of
xπ = xπ1

1 xπ2
2 . . . xπk

k in η(ZG).

1.2 Combinatorial species

The theory of combinatorial species, introduced by André Joyal in [9], provides an
elegant framework for understanding the connection between classes of combinatorial
structures and their associated counting series. We adopt the categorical perspec-
tive on species; the reader unfamiliar with these constructs should first consult the
“species book” [1] for a primer on the associated combinatorics.

Let FinSet denote the category of finite sets with set maps and FinBij denote its
“core”, the groupoid1 of finite sets with bijections. A combinatorial species F is then
a functor F : FinSet → FinBij. Specifically, F carries each set A of “labels” to the
set F [A] of “F -structures labeled by A”, and each permutation σ : A → A to a per-
mutation F [σ] : F [A] → F [A]. (Thus, for example, for the species Graph of graphs
labeled at vertices, a permutation σ ∈ S4 is transported to a permutation Graph[σ]
on the class of labeled graphs with four vertices.) The crucial combinatorial insight
of species theory is that, for enumerative purposes, it is the algebraic structure of
the group F [SA] of “relabelings of F -structures over A” which is important, and not
the combinatorial details of the F -structures themselves.

Associated to each species F are several formal power series which enumerate
various sorts of F -structures. Classically, the generating functions for labeled and
unlabeled F -structures have received the most attention; species-theoretic analysis
instead uses the cycle index series, given by

ZF =
∑
n≥0

1

n!

∑
σ∈Sn

fix(F [σ])pσ1
1 pσ2

2 . . . (1.2)

where σi is the number of i-cycles in σ and pi is a formal indeterminate. It is easily
shown (cf. [1]) that we can recover the generating functions for labeled and unlabeled
F -structures from ZF , essentially by applying Burnside’s lemma to the actions of
Sn; however, the algebra of cycle index series captures the calculus of combinatorial
structures more fully than that of generating functions. Thus, we generally work at

1Recall that a groupoid is a category whose morphisms are all isomorphisms.
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the cycle-index level until we have characterized a species of interest, then extract
the desired enumerations.

It is often meaningful to speak of maps between combinatorial classes; for exam-
ple, there is a natural map from the class Tree of trees to the class Graph of simple
graphs which simply interprets each tree as a graph. Indeed, this map is “natural” in
the sense that it respects the structure of the trees and is not dependent on labelings;
this can be captured either by saying that it acts on “unlabeled trees and graphs”
or by noting that it commutes with the actions of Sn on labels. Since Tree and
Graph are each functors, it turns out that this “naturality” condition is equivalent
to the category-theoretic notion of a natural transformation. We can then define
the category Spec of species as simply the functor category FinBijFinSet. As noted
in [5, §1.1], the epi-, mono-, and isomorphisms of this category have natural combi-
natorial interpretations as “species embeddings”, “species coverings”, and “species
isomorphisms”. (Of course, this sort of category-theoretic approach obscures the
combinatorial applications of the theory, but the compactness of the representation
is attractive, and it suggests that this is a “natural” structure.)

1.3 Pólya theory for species

Once again, let F be a combinatorial species and let ZF be its cycle index series.
The formal indeterminates pi in equation (1.2) may be interpreted as the elements
of the power-sum basis of the ring Λ of abstract symmetric functions introduced in
Section 1.1. To demonstrate the usefulness of this interpretation, we note that the
Pólya-theoretic cycle index polynomial of equation (1.1) and the species-theoretic
cycle index series of equation (1.2) are intimately related.

Lemma 1.2 ([9, § 3.2.1, Prop. 13, eq. 3]) Let F be a combinatorial species. De-
note by Ω(F ) the collection of orbits2 of F -structures under the actions of the sym-
metric groups. For each such orbit ω ∈ Ω(F ), let stabω be the subgroup of Sn which
fixes3 some element of ω. Then

ZF =
∑

ω∈Ω(F )

Zstabω. (1.3)

Thus, we may reasonably hope to extend the classical Pólya theory which results
from Theorem 1.1 to the species-theoretic context. Typical species-theoretic analysis
requires treating all structures as labeled and considering the orbits of structures
under the actions of symmetric groups on those labels. To connect this idea with
the Pólya-theoretic idea of colors, we introduce an intermediate notion.

Definition 1.3 Let F be a combinatorial species and fix a positive integer n. Let P
denote the set of positive integers and let Pn denote the set of colorings c : P → [n].

2Note that Ω(F ) corresponds to the molecular decomposition of F .
3For a given ω, all available choices of subgroup will be conjugate, and so the formula will not

be affected by this choice.
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Let Sn act on Pn by (σ · c)(i) = c(σ−1(i)). Then an element of F [n]×Pn is a colored
F -structure, and a specific element (T, c) ∈ F [n]×Pn is said to have coloring c.

Fix a vector π = 〈π1, . . . , πk〉 of positive integers summing to n and let cπ ∈ Pn

be the coloring where the first π1 integers are the fiber of 1, the next π2 are the fiber
of 2, and so on. Then a partially-labeled F -structure with profile π is an orbit of
an F -structure with coloring cπ under the action of Sn.

Example 1.4 Let Graph denote the species of simple graphs. Fix the profile vector
π = 〈3, 1〉. Figure 1 shows a colored Graph[4]-structure (with the colors represented
by node shapes) and its orbit under the action of S4 (in schematic form, where the
labels may be assigned freely).

1

23

4

−→

Figure 1: A colored simple graph with 4 vertices and its associated partially-labeled
graph with profile 〈3, 1〉 (in schematic form)

This notion of a partially-labeled F -structure refines the classical Pólya-theoretic
notion of a ‘colored’ F -structure. In particular, if we can enumerate partially-labeled
F -structures with all profiles, we can use this information to count the classical k-
colored structures by summing over all profile vectors with k parts. In fact, the
enumeration of partially-labeled F -structures can be completed with no more than
the cycle index series ZF , as is shown in [1, eq. 4.3.23].

Theorem 1.5 (Pólya’s theorem for species) Let F be a combinatorial species
with cycle index series ZF and fix a vector π = 〈π1, π2, . . . , πk〉 of positive integers.
Let η : Λ → P be the map which expands each abstract symmetric function as a
formal power series in variables xi. Then the number of partially-labeled F -structures
of profile π is equal to the coefficient of xπ in η(ZF ).

This notion of “partially-labeled” structures allows us to interpolate between la-
beled and unlabeled structures. In particular, the notion of unlabeled F -structures
of order n may be recovered by taking the partially-labeled F -structures of profile
π = 〈n〉, while the labeled F -structures of order n may be recovered by taking the
partially-labeled F -structures of profile π = 〈1, 1, . . . , 1〉. This leads to a straightfor-
ward proof of two important enumerative results on species.

Theorem 1.6 ([1, §1.2, Thm. 8]) Let F be a combinatorial species. Denote by
F (x) the exponential generating function of labeled F -structures and by F̃ (x) the
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ordinary generating function of unlabeled F -structures. Then we have the following
identities of formal power series:

F (x) = ZF (x, 0, 0, . . .) (1.4a)

F̃ (x) = ZF (x, x
2, x3, . . .) (1.4b)

1.4 Species-theoretic enumeration of rooted binary leaf-multi-labeled
trees

As an example of the application of this theory, we now investigated the “rooted
binary leaf-multi-labeled trees” of [2]. To begin, we will consider the species RBLT
consisting of rooted binary trees whose internal nodes are unlabeled. Letting Lin2

denote the species of lists of length 2, we clearly have that

RBLT = X+ Lin2(RBLT). (1.5)

This allows for recursive calculation of the two-sort cycle index series of RBLT.

In light of the application in [2], we are interested in the enumeration of RBLT-
structures which are partially-labeled from a set of k labels. Let ηk : Λ → P denote
the map which expands each symmetric variables in the family {x1, . . . , xk} of k
indeterminates and let λ = [λ1, λ2, . . . , λi] 	 n be a partition with no more than k
parts. Then, by Theorem 1.5, the coefficient of xλ in ηk

(
ZRBLT

)
is the number of

RBLT-structures with n leaves with λ1 of them labeled 1, λ2 labeled 2, and so forth.
The total number of k-multi-labeled RBLT-structures with n vertices is then simply
the sum of the coefficients of the degree-n terms in ηk

(
ZRBLT

)
.

We can compute these numbers using the Sage code appearing in Listing 1. This
code is shown configured to compute the number of rooted binary leaf-multi-labeled
trees with 8 leaves labeled from [4], which it finds to be 366680 (in agreement with
[2, Table 1]).

Listing 1: Sage code to compute numbers of rooted binary leaf-multi-labeled trees

1 from sage.combinat.species.library import

SingletonSpecies ,LinearOrderSpecies

3 X = species.SingletonSpecies()

L2 = species.SetSpecies(size=2)

5
RootedBinaryLeafTrees = species.CombinatorialSpecies()

7 RootedBinaryLeafTrees.define(X + L2(RootedBinaryLeafTrees))

9 RBLT_sf =

RootedBinaryLeafTrees.cycle_index_series().expand_as_sf(4)

11 print sum(RBLT_sf.coefficient(8).coefficients())
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2 Γ-species

2.1 Groups acting on species

Now let us consider, for a fixed species F , the case of a species isomorphism φ : F →
F , which we hereafter call a species automorphism. Diagramatically, this is a choice
of a “set automorphism” (i.e. permutation) φA : A → A for each A ∈ FinSet such
that the diagram in Fig. 2 commutes for all σ ∈ SA.

A A

F [A]

F [A]

F [A]

F [A]

σ

F

F

F

F

F [σ]

F [σ]

φA φA

Figure 2: Diagram which must commute if φ is a species automorphism

In other words, φA is just a permutation of F [A] which commutes with all the
permutations F [σ]. This corresponds to the combinatorial notion of a “structural” or
“label-independent” operation, such as taking the complement of a graph, permuting
the colors of a colored graph, or cyclically rotating a finite sequence.

Many important problems in enumerative combinatorics arise when considering
the classes of structures which are “equivalent” under the operation of such a struc-
tural operation (or, often, several such operations acting in concert). In particular,
if a group Γ acts “structurally” (i.e. by structural operations) on a combinatorial
class, the equivalence classes under Γ are the “Γ-quotient structures”.

We can capture this idea efficiently in the language of species; we simply want
to describe a group Γ acting by species isomorphisms F → F for a fixed species F .
Since the collection Aut(F ) of all species automorphisms of F already forms a group,
we can achieve this classically by taking a specified homomorphism Γ → Aut(F ).

Categorically, Γ is simply a groupoid with a single object, so we can also achieve
our association of Γ with some of F ’s automorphisms by constructing a functor
sending Γ to F and each element γ of Γ to some automorphism γ′ of F in a structure-
preserving way. In other words, we need a functor from Γ to Spec whose object-image
is F .

This leads to a very compact definition: for a group Γ, a Γ-species is a functor
F : Γ → Spec. If F is a Γ-species, its quotient is the species F/Γ defined as follows:

• For a given label set A, each element of F/Γ[A] is a set of F -structures which
form an orbit under the action of Γ.

• For a given permutation σ ∈ [A], the transport F/Γ[σ] sends each Γ-orbit of
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F -structures labeled by A to the orbit containing the images of the original
structures under σ. (This is well-defined because the images of the morphisms
of Γ are natural isomorphisms of F and thus commute with permutations.)

Just as with ordinary species, we can associate to each Γ-species a formal power
series which encodes much of the relevant enumerative data. This is the Γ-cycle
index series, which associates to each element γ of Γ a classical cycle index series.
The Γ-cycle index series of a Γ-species F is given by

ZΓ
F (γ) =

∑
n≥0

1

n!

∑
σ∈Sn

fix(γ[n] · F [σ])pσ1
1 pσ2

2 . . . (2.1)

where [n] = {1, 2, . . . , n} is a canonical n-element set, γA is the permutation A → A
induced by γ, and γA · F [σ] is the operation which first permutes the F -structures
using σ and then applies γA. By functorality, fix(γ[n] ·F [σ]) is actually a class function
on permutations σ ∈ Sn, so we can instead work at the level of conjugacy classes
(indexed by partitions of n). In this light, the Γ-cycle index of a Γ-species F is given
by

ZΓ
F (γ) =

∑
n≥0

∑
λ�n

fix(γ[n] · F [λ])
pλ1
1 pλ2

2 . . .

zλ
(2.2)

for fixF [λ] = fixF [σ] for some choice of permutation σ ∈ Sn of cycle type λ, for
λi the number of i parts in λ, and for zλ =

∏
i i

λiλi! the number such that there
are n!/zλ permutations of cycle type λ. (Note that, in particular, for e the identity
element of the group Γ, we necessarily have ZΓ

F (e) = ZF , the ordinary cycle index of
the underlying actionless species F .)

The algebra of Γ-cycle indices is implemented by the GroupCycleIndexSeries

class of Sage [13]. We will demonstrate its use in Section 7.

2.2 Γ-species maps

Continuing in the categorical theme, we now define an appropriate notion of “mor-
phism” for the context of Γ-species. Since a Γ-species is a functor, one reasonable
approach is simply to say that a morphism of Γ-species F and G is a natural trans-
formation φ : F → G. However, since Γ-species are functors whose codomains are
themselves functor categories, this requires some unpacking. Additionally, this defi-
nition would in fact allow for the possibility of morphisms between the groups acting
on the species, creating additional complexity for limited benefit (since we will gen-
erally only be interested in isomorphisms at this level). Thus, we will take a more
concrete approach to the definition.

Suppose F and G are Γ-species and let φ : F → G be a species map of the
underlying combinatorial species. We wish to characterize the sense in which φ may
be “compatible” with the Γ-actions on F and G. For any two label sets A and B
with bijection σ : A → B and any element γ ∈ Γ, the fact that F and G are Γ-species
implies the existence of several maps:
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• bijections F [σ] : F [A] → F [B] and G[σ] : G[A] → G[B];

• permutations γF [A] : F [A] → F [A], γF [B] : F [B] → F [B], γG[A] : G[A] → G[A],
and γG[B] : G[B] → G[B];

• and set maps φA : F [A] → G[A] and φB : F [B] → G[B].

We can construct a diagram which encodes the relationships among all these
maps; this is shown in Fig. 3. This diagram automatically has substantial commu-
tativity: the inner and outer squares commute because F and G are species, and
the top and botton squares commute because φ is a species morphism. All that is
required to make φ compatible with γ is that the left and right squares commute as
well. This gives us our more concrete defintion of a Γ-species morphism.

Definition 2.1 Let F and G be Γ-species. Then a Γ-species map φ : F → G is a
choice of a set map φA : F [A] → G[A] for each finite set A such that the diagram
in Fig. 3 commutes for every set bijection σ : A → B. (Equivalently, φ is a natural
transformation F → G.) If every map φL is a bijection, φ is a Γ-species isomorphism.
If every map φL is an injection, φ is a Γ-species embedding. If every map φL is a
surjection, φ is a Γ-species covering.

F [A]

F [A]

F [B]

F [B]

G[A]

G[A]

G[B]

G[B]

F [σ]

F [σ]

γF [A] γF [B]

G[σ]

G[σ]

γG[A] γG[B]

φA

φA

φB

φB

Figure 3: Diagram which must commute if φ is a Γ-species map

We note that he definitions of Γ-species isomorphism, embedding, and covering
are simply the definitions of species isomorphism, embedding, and covering from [5,
Def. 1.1.4] combined with the compatibility condition. When there exists a Γ-species
isomorphism φ : F → G, we will often simply write F = G, omitting reference to
the specific isomorphism.

With this notion of Γ-species morphism in hand, we note that the class of all
Γ-species forms a category, which we denote SpecΓ.
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2.3 Pólya theory for Γ-species

We now revisit the core ideas of Section 1.3 in the context of Γ-species. First, we
present a useful generalization of Burnside’s lemma, which appears (in an unweighted
form) as [1, eq. A1.51].

Lemma 2.2 (Weighted generalized Burnside’s lemma) Let G andH be groups
with commuting actions on a finite set X. Let W : X → A be a weight function
from X to a Q-module A which is constant on (G×H)-orbits. For any endofunction
f : X → X, let FixX(f) =

∑
x∈X,f(x)=x W (x) denote the sum of the weights of the

fixed points of f . Then the sum of the weights of H-orbits fixed by a given element
g ∈ G is

FixX/H(g) =
1

|H|
∑
h∈H

FixX(g, h). (2.3)

Now let F be a Γ-species and let ZΓ
F be its Γ-cycle index series. Partial labelings

of F -structures are easily seen to be Γ-equivariant. Thus, we can extend our Pólya
theory for species to incorporate Γ-species.

Theorem 2.3 (Pólya’s theorem for Γ-species) Let F be a Γ-species with Γ-cycle
index series ZΓ

F and fix a vector π = 〈π1, . . . , πk〉 of positive integers. Let η : Λ → P
be the map which expands each abstract symmetric function as a formal power series
in variables xi. Then the number of partially-labeled F -structures of profile π which
are fixed by the action of γ ∈ Γ is equal to the coefficient of xπ in η

(
ZΓ

F (γ)
)
.

Proof: Following the notions introduced in Theorem 1.3, we let Sn act on Pn and
thus on F [n]×Pn. Let Γ act trivially on Pn; then Γ acts on F [n]×Pn also, and the
actions of Γ and Sn commute.

Let P denote the Q-module of formal power series in the countably infinite family
of variables x1, x2, . . . . Define a weight function W : F [n] × Pn → P by W (T, c) =∏

i∈[n] xc(i). It is clear that W is constant on (Γ×Sn)-orbits.

Fix some γ ∈ Γ. By Theorem 2.2, the sum of the weights of all the Sn-orbits fixed
by γ in F [n]×Pn is given by

Fix(F [n]×Pn)/Sn(γ) =
1

n!

∑
σ∈Sn

FixF [n]×Pn(γ, σ). (2.4)

For a given σ ∈ Sn, it is clear that a pair (T, c) ∈ F [n]×Pn is fixed by (γ, σ) if and
only if the F -structure T and the coloring c are fixed separately.

For a coloring c ∈ Pn to be fixed by (γ, σ), it must be fixed by σ. This occurs if
and only if c is constant on each orbit of σ in [n], so the sum of all the weights
of the colorings c fixed by σ is exactly η(pσ). Let fix(γ, σ) denote the number of
F [n]-structures fixed by (γ, σ). Then the sum of the weights of the fixed points of
(γ, σ) in F [n]×Pn is given by

FixF [n]×Pn(γ, σ) = fix(γ, σ)η(pσ). (2.5)
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Combining equations (2.4) and (2.5), we have

Fix(F [n]×Pn)/Sn(γ) =
1

n!

∑
σ∈Sn

fix(γ, σ)η(pσ). (2.6)

The desired result follows from summing over all n in equation (2.6). �

We note that Theorem 1.5 is an immediate consequence of Theorem 2.3, providing
a proof which does not require Theorem 1.2. It is also natural to extend Theorem 1.6
to the Γ-species context.

Theorem 2.4 Let F be a Γ-species and let γ ∈ Γ. Denote by Fγ(x) the exponential
generating function of labeled F -structures fixed by γ and by F̃γ(x) the ordinary
generating function of unlabeled F -structures fixed by γ. Then we have the following
identities of formal power series:

Fγ(x) = ZΓ
F (γ)(x, 0, 0, . . .) (2.7a)

F̃γ(x) = ZΓ
F (γ)(x, x

2, x3, . . .) (2.7b)

Proof: There is a natural bijection between labeled γ-fixed F -structures with n
vertices and partially-labeled γ-fixed F -structures of profile 〈1, 1, . . . , 1〉. Thus, the
number of labeled γ-fixed F -structures with n vertices is the coefficient of x1x2 . . . xn

in η
(
ZΓ

F (γ)
)
. Such a term can only appear in η(pσ) if σ is the identity permutation,

so this is equal to the coefficient of pn1 . Equation (2.7a) follows.

Similarly, there is a natural bijection between unlabeled γ-fixed F -structures with n
vertices and partially-labeled γ-fixed F -structures of profile 〈n〉. Thus, the number
of unlabeled γ-fixed F -structures with n vertices is the coefficient of xn

1 in η
(
ZΓ

F (γ)
)
.

Every symmetric function pσ contributes such a term, so this is the sum of all the
coefficients on terms of degree n in ZΓ

F (γ). Equation (2.7b) follows. �

Observation 1 Crucially, each of Fγ(x) and F̃γ(x) counts structures which are fixed
by γ with respect to their partial labelings. Thus, Fγ(x) counts only those labeled
F -structures which are fixed as labeled structures, while F̃γ(x) counts unlabeled F -
structures which are fixed as unlabeled structures.

3 Algebra of Γ-species

3.1 Species quotients

Classical species-theoretic enumeration uses the cycle index series to “keep the books”
on the actions of symmetric groups on the labels of combinatorial structures, then
apply Burnside’s lemma to take quotients at an appropriate time. Γ-species theory
extends this practice, using the Γ-cycle index series to analogously “keep the books”
on these actions and some structural group action simultaneously, then apply Burn-
side’s lemma to one or both as appropriate.
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Lemma 3.1 ([5, Thm. 1.5.11]) Let F be a Γ-species. Then we have

ZF/Γ =
1

|Γ|
∑
γ∈Γ

ZΓ
F (γ). (3.1)

where ZF/Γ is the classical cycle index of the quotient species F/Γ and ZΓ
F is the Γ-cycle

index of F .

(The proof of Theorem 3.1 is essentially a careful application of Burnside’s Lemma
and appears in full in [5].)

It remains, of course, to develop an algebraic theory facilitating the computation
of Γ-cycle indices analogous to that available for classical cycle indices. Fortunately,
this is not difficult. Each of the standard species operators +, −, ·, ◦, �, •, and ′ has
a natural analogue for Γ-species, corresponding to a suitable operation on Γ-cycle
indices.

With the exception of ◦ and �, the definitions of these Γ-species operations and
their associated Γ-cycle index operations are completely natural, so we omit them
here. However, the two composition operators are more subtle.

3.2 Plethystic composition of Γ-species

In the classical setting, if F and G are species, an (F ◦G)-structure is an “F -structure
of G-structures”. Extending this to the Γ-species setting does not require changing
our understanding of the structures; the difficulty is in making sense of how an
element γ of Γ should act on such a structure.

Consider a schematic (F ◦G)-structure, as in Fig. 4.

F

G G G

Figure 4: A schematic of an (F ◦G)-structure

The “parent F -structure” and each of the “descendant G-structures” is modified
in some way by the action of a particular element γ ∈ Γ. To obtain a action of γ ∈ Γ
on the aggregate (F ◦G)-structure, we can simply apply γ to each of the descendant
G-structures independently and then to the parent F -structure, as illustrated in
Fig. 5.

It is shown in [8, §4] that there is a corresponding operation ◦, the “Γ-cycle index
plethysm”, given by

ZΓ
F◦G =

(
ZΓ

F ◦ ZΓ
G

)
(γ)[p1, p2, p3, . . .] =

ZΓ
F (γ)

[
ZΓ

G(γ)[p1, p2, p3, . . .], Z
Γ
G(γ

2)[p2, p4, p6, . . .], Z
Γ
G(γ

3)[p3, p6, p9, . . .], . . .
]
. (3.2)
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F

G G G

γ γ γ

γ γ

Figure 5: A schematic of an (F ◦G)-structure with an action of γ ∈ Γ

It is crucial to note a subtle point in equation (3.2): the ZΓ
G terms are evaluated

at different powers of γ. To see why, recall that the coefficients of ZΓ
F (γ) count

F -structures that are fixed by the combined action of γ and some σ ∈ Sn. In
equation (3.2), each evaluation of ZΓ

G which is substituted for pi corresponds to a
G-structure which is set into a i-cycle of the parent F -structure; if the overall (F ◦G)-
structure is to be fixed by γ, this descendant G-structure must be returned to itself
after it moves around its i-cycle, which results in an application of γi. Thus, the
appropriate Γ-cycle index to substitute is ZΓ

G(γ
i).

The operation ◦ is implemented by the composition() method of the
GroupCycleIndexSeries class in Sage [13]. We will demonstrate its use in Sec-
tion 7.

3.3 Functorial composition of Γ-species

Since a combinatorial species is a functor FinSet → FinBij and thus can be lifted
to a functor FinSet → FinSet, it is at least algebraically meaningful to consider
the composition as functors of two species. This operation yields the “fuctorial
composition” F � G. An (F � G)-structure on a label set A is an F -structure
on the set G[A] of G-structures labeled by A. Although this operation is not as
combinatorially natural as the plethystic composition ◦, it nevertheless is useful
for certain constructions; for example, letting Subs denote the species of subsets
(i.e. Subs = E · E) and Graph the species of simple graphs, we have Graph =
Subs � Subs2.

Since a Γ-species is formally a functor Γ → Spec, it is not meaningful to compose
two Γ-species as functors. However, if F and G are Γ-species, we can consider the
functorial composition F�G of their underlying classical species. Each γ ∈ Γ induces
a permutation on the set G[A] of G-structures which commutes with the action of
SA.

Therefore, we can obtain a structural action of Γ on F � G in the following
manner. Consider a structure s ∈ (F � G)[A] and fix an element γ ∈ Γ. s consists
of an F -structure whose labels are all the G-structures in G[A]. Replace each G-
structure with its image under γ, then apply γ to the parent F -structure. The result
is a new (F � G)-structure over A, since γ must act by a bijection on G[A] and
F [G[A]]. That this action commutes with label permutations is clear.
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Therefore, F�G is in fact a Γ-species. In light of the relationship to the functorial
composition of classical species, we dub this the functorial composition of F and G,
although (as previously noted) the composition of F and G as functors is not in fact
well-defined.

It remains to compute the Γ-cycle index of the functorial composition of two
Γ-species. By definition,

ZΓ
F�G(γ) =

∑
n≥0

1

n!

∑
σ∈Sn

fix(γ · F [γ ·G[σ]])pσ,

so we need only compute the values fix(γ · F [γ ·G[σ]]) for each γ ∈ Γ and σ ∈ Sn.
Since γ · G[σ] is a permutation on G[n], this value already occurs as a coefficient in
ZΓ

F (γ). We therefore take the following definition.

Definition 3.2 Let F and G be Γ-species. The functorial composite ZΓ
F � ZΓ

G of
their Γ-cycle indices is the Γ-cycle index given by

(
ZΓ

F � ZΓ
G

)
(γ) =

∑
n≥0

1

n!

∑
σ∈Sn

fix(γ · F [γ ·G[σ]])pσ. (3.3)

That this corresponds to Γ-species functorial composition follows immediately.

Theorem 3.3 Let F and G be Γ-species. The Γ-cycle index of their functorial com-
position is given by

ZΓ
F�G = ZΓ

F � ZΓ
G. (3.4)

It remains only to find a formula for the cycle type of the permutation γ · G[σ]
on the set G[n].

Lemma 3.4 Let G be a Γ-species and fix γ ∈ Γ, σ ∈ Sn, and k ≥ 1. The number
of cycles of length k in γ ·G[σ] as a permutation of G[n] is then given by

(γ ·G[σ])k =
1

k

∑
d|k

μ

(
k

d

)
fix

(
γd ·G[

σd
])
, (3.5)

where μ is the integer Möbius function.

The proof is similar to that of [1, §2.2, Prop. 3]. We present it here in full for
completeness.

Proof: We clearly have that

fix
(
(γ ·G[σ])k

)
=

∑
d|k

d · (γ ·G[σ])d. (3.6)
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Applying Möbius inversion to equation (3.6), we obtain that

(γ ·G[σ])k =
1

k

∑
d|k

μ

(
k

d

)
fix

(
(γ ·G[σ])d

)
. (3.7)

Since γ commutes with G[σ], we can distribute the power of d to the two rightmost
terms in equation (3.7); furthermore, by functorality, G[σ]d = G

[
σd
]
. Equation (3.5)

follows immediately. �

Thus, the cycle type of the permutation γ · G[σ] may be computed using only
the values of fix(γ′ · [σ′]) (allowing γ′ to range over Γ and σ′ to range over Sn). This
justifies Theorem 3.2, since it implies that ZΓ

F � ZΓ
G may be computed using only

information taken from the coefficients of the Γ-cycle indices.

This operation is implemented by the functorial_composition() method of the
GroupCycleIndexSeries class in Sage [13]. We will demonstrate its use in Section 7.

4 Multisort Γ-species

Let FinSetk denote the category of finite k-sort sets (i.e. k-tuples of finite sets)
whose morphisms are k-sort set maps. A k-sort species F is then a functor F :
FinSetk → FinBij. (Note that a 1-sort species is simply a classical combinatorial
species.) k-sort species are useful for studying the combinatorics of structures which
carry labels on several different “parts”; a natural example is the 2-sort species of
graphs with one sort of label on vertices and the other on edges. (The use of 2-sort
set maps corresponds to the combinatorial fact that edge and vertex labels cannot
be shuffled with each other.)

The algebraic theories of generating functions and cycle index series and the
combinatorial calculus of species may all be extended naturally to the k-sort case for
each k. This is discussed at length in [1, §2.4]. We record here for future reference
that the k-sort cycle index of a k-sort species F is given by

ZF (p1,1, p1,2, . . . ; p2,1, p2,2, . . . ; . . . ; pk,1, pk,2, . . .) =∑
n1,n2,...,nk≥0

1

n1!n2! . . . nk!

∑
σi∈Sni

|fixF [σ1, σ2, . . . , σk]| pσ1,1

1,1 p
σ1,2

1,2 . . . p
σk,1

k,1 p
σk,2

k,2 . . . (4.1)

where pi,j are a two-parameter infinite family of indeterminates and σi,j is the number
of j-cycles of σi.

Since a k-sort species F admits a group Aut(F ) of automorphisms, we can trans-
late the notion of a Γ-species to the k-sort context easily. Specifically, a k-sort
Γ-species is a functor F : Γ → Speck. (As expected, a 1-sort Γ-species is a classical
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Γ-species.) Then the k-sort Γ-cycle index of F is given by

ZΓ
F (γ)(p1,1, p1,2, . . . ; p2,1, p2,2, . . . ; . . . ; pk,1, pk,2, . . .) =∑

n1,n2,...,nk≥0

1

n1!n2! . . . nk!

∑
σi∈Sni

∣∣fix γ[n1],...,[nk] ·F [σ1, σ2, . . . , σk]
∣∣ pσ1,1

1,1 p
σ1,2

1,2 i. . . p
σk,1

k,1 p
σk,2

k,2 . . .

(4.2)

where γA1,...,Ak
is the k-sort permutation (A1, . . . , Ak) → (A1, . . . , Ak) induced by γ,

pi,j are a two-parameter infinite family of indeterminates, and σi,j is the number of
j-cycles of σi.

As always, the k-sort Γ-cycle index is compatible with the appropriate operations
+ and · on k-sort Γ-species. In addition, it is compatible with a suitable notion of
“sorted substitution” which involves specifying a species to substitute for each sort
of labels.

5 Virtual Γ-species

The theory of virtual species (developed by Yeh in [14]) elegantly resolves several
algebraic problems in the theory of combinatorial species; in particular, it allows
for subtraction of arbitrary species and the computation of compositional inverses
of many species. The key idea is simply to complete the semiring of combinatorial
species with respect to the operations of species sum and species product. Specifi-
cally, taking any two combinatorial species F and G, we define their difference F−G
to be the equivalence class of all pairs of species (A,B) of combinatorial species sat-
isfying F +B = G+ A by species isomorphism.

This definition satisfies many desirable properties; perhaps most importantly, if
H = F +G, then H − F = G as an isomorphism of virtual species, and F − F = 0
for any virtual species F .

To extend this notion to the context of Γ-species is merely a matter of definition.
First, we define the relation which forms the classes.

Definition 5.1 Fix a group Γ and let F , G, H, and K be Γ-species. We write
(F,G) ∼ (H,K) if F +K = G +H as an isomorphism of Γ-species in the sense of
Theorem 2.1.

It is straightforward to show that this relation ∼ is an equivalence. Thus, we can
use it as the basis for a definition of virtual Γ-species.

Definition 5.2 Fix a group Γ and let SpecΓ denote the category of Γ-species. Then
a virtual Γ-species is an element of SpecΓ × SpecΓ/∼, where ∼ is the equivalence relation
defined in Theorem 5.1. If F and G are Γ-species, their difference is the virtual Γ-
species (F,G), frequently denoted F −G.
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We note that the elementary species 0 and 1 each admit a single (trivial) Γ-action
for any group Γ. These are the additive and multiplicative identities of the ring of
virtual Γ-species.

We also note that any virtual Γ-species Φ = F − G has a Γ-cycle index series
given by ZΓ

Φ = ZΓ
F − ZΓ

G. The fact that ∼ is an equivalence relation implies that we
may choose any representative pair (F,G) for Φ and obtain the same Γ-cycle index
series, so this is well-defined.

The remainder of Yeh’s theory of virtual species extends automatically to the
Γ-species context, so we will not develop it explicitly here.

6 A library of elementary Γ-species

To illustrate the use of Γ-species, we will now compute explicitly the Γ-cycle indices
of several important examples.

6.1 Trivial actions

Any (virtual) species F may be equipped with a trivial action by any group Γ (that
is, an action where every element of Γ acts as the identity map on F -structures).
The Γ-cycle index of the (virtual) Γ-species F obtained in this way is given by

ZΓ
F (γ) = ZF . (6.1)

6.2 Linear and cyclic orders with reversal

Let Lin denote the species of linear orders and Cyc denote the species of cyclic
orders. Each of these admits a natural S2-action which sends each ordering to its
reversal, and so we also have associated S2-species Lin and Cyc.

Theorem 6.1 The S2-cycle index series of the species Lin of linear orderings with
the order-reversing action is given by

ZS2
Lin(e) = ZLin =

1

1− p1
= 1 + p1 + p21 + p31 + . . . (6.2a)

ZS2
Lin(τ) =

∞∑
k=1

pk2 + pk2p1 (6.2b)

where e denotes the identity element of S2 and τ denotes the non-identity element.

Proof: Equation (6.2a) appears with proof as [1, eq. 1.2.15].

In light of equation (2.2), to compute ZS2
Lin(τ), we need to compute for each n ≥ 0

and each λ 	 n the number of linear orders which are fixed by the combined action of
τ and a permutation of cycle type λ. Clearly this is 0 unless λ is composed entirely
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of 2’s and possibly a single 1, as illustrated in Fig. 6. If it does have this form, a
permutation σ of cycle type λ will act by reversing the order of the lists L which are
constructed by the following process:

1. Choose an ordering on the �n/2
 2-cycles of σ.

2. For each 2-cycle, choose one of the two possible orderings of the pair of elements
in that cycle.

3. If applicable, place the element in the 1-cycle in the center.

Thus, there are 2	n/2
 · �n/2
! lists whose order is reversed by the action of this σ.
But, for a partition λ of this form, we also have that zλ = 2	n/2
 · �n/2
!, and so the
contribution to the cycle index series term ZS2

Lin(τ) is simply 1pλ. Equation (6.2b)
follows. �

a b . . . c . . . d e

Figure 6: Schematic of a permutation (dashed arrows) which reverses a linear order
(solid arrows)

The S2-cycle index ZS2
Lin of Lin is available in Sage [13]:

module: sage.combinat.species.group_cycle_index_series_library

class: LinearOrderWithReversalGroupCycleIndex()

Theorem 6.2 The S2-cycle index series of the species Cyc of cyclic orderings with
the order-reversing action is given by

ZS2
Cyc(e) = ZCyc = −

∞∑
k=1

φ(k)

k
ln

1

1− p1
(6.3a)

ZS2
Cyc(τ) =

∞∑
k=1

1

2

(
pk2 + pk−1

2 p21
)
+ pk2p1 (6.3b)

where φ is the Euler φ-function, e is the identity element of S2, and τ is the non-
identity element of S2.

Proof: Equation (6.3a) appears with proof as [1, eq. 1.4.18].

Proof of equation (6.3b) proceeds essentially identically to that of equation (6.2b).
Once again, we note that the combined action of τ and a permutation of cycle type
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a

b

c

d

e

Figure 7: Schematic of a permutation (dashed arrows) which reverses the direction
of a cyclic order (solid arrows) of odd length

a

bc

d

e f

(a) All 2’s

a

bc

d

e f

(b) Two 1’s

Figure 8: Schematics of permutations (dashed arrows) which reverse the direction of
a cyclic order (solid arrows) of even length

λ 	 n can only fix a cyclic order if λ satisfies very strong constraints. If n is odd, λ
must consist of �n/2
 2’s and a single 1, as illustrated in Fig. 7.

If, on the other hand, if n is even, λ may consist either of n/2 2’s or (n/2 − 1) 2’s and
two 1’s, as illustrated in Fig. 8.

Counting arguments analogous to those in the previous proof then yield the desired
result by explaining the coefficients 1

2
and 1 in equation (6.3b). �

The S2-cycle index ZS2
Cyc of Cyc is available in Sage [13]:

module: sage.combinat.species.group_cycle_index_series_library

class: CyclicOrderWithReversalGroupCycleIndex()

6.3 Linear k-orders with arbitrary interchange

Fix k ∈ N and a permutation group Γ ⊆ Sk. The species Link of linear k-orders
admits a natural action of Γ which permutes the “slots” of each Link-structure. For
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example, Link[(132)]([A,B,C]) = [B,C,A]. Thus, Link is a Γ-species with respect
to such an action of any Γ ⊆ Sk.

Theorem 6.3 If Γ ⊆ Sk, the Γ-cycle index of the Γ-species Link of linear k-orders
with interchange group Γ is given by

ZΓ
Link

(γ) = pγ (6.4)

where pγ = pγ11 pγ22 . . . for γi the number of i-cycles in γ as a permutation of [k].

Proof: Per equation (2.2), the coefficient of pλ in ZΓ
Link

(γ) is equal to 1/zλ times the
number of Link-structures fixed by the combined action of γ and a label permutation
of cycle type λ. If γ is not of cycle type λ, this is clearly 0; otherwise, the number of
linear k-orders which are fixed by the combined action of γ and some permutation
of cycle type λ is clearly zλ. Equation (6.4) follows. �

7 Examples of Γ-species enumeration

7.1 Graphs with complementation

Let Graph denote the species of simple graphs. It is well-known (see [1]) that

Graph = Lin2(E)� (E2 ·E). (7.1)

The species Graph admits a natural action of S2 in which the nontrivial element τ
sends each graph to its complement. By construction, if we give E the trivial S2-
action and Lin2 the order-reversing action of Section 6.2, then equation (7.1) may
be read as an isomorphism of S2-species.

The quotient ofGraph under this action ofS2 is the speciesGraphC = Graph/S2

of “complementation classes”—that is, of pairs of complementary graphs on the same
vertex set. Additionally, per Theorem 2.3, Z

Graph
S2

(τ)(x, x2, x3, . . .) is the ordinary
generating function for unlabeled self-complementary graphs. This analysis is con-
ceptually equivalent to that given by Read [11], although of course the Γ-species
approach may be written much more compactly.

Sage code to enumerate complementarity classes of graphs is available from the
author on request. It is necessary to implement the S2-cycle index of Graph man-
ually, which results in code of considerable length.

7.2 Digraphs with reversal

Let Digraph denote the species of directed graphs. In natural language, “a digraph
is a subset of the set of ordered pairs of vertices”, so in the algebra of species we
conclude that

Digraph = Subs � (Lin2 · E). (7.2)
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The species Digraph admits a natural action of S2 in which the nontrivial
element τ reverses the direction of all edges. By construction, if we give Subs
and E trivial S2-actions and Lin2 the order-reversing action of Section 6.2, then
equation (7.2) may be read as an isomorphism of S2-species.

The quotient of Digraph under this action of S2 is the species DigraphC =
Digraph/S2 of “conversity classes” of digraphs—that is, of digraphs identified with
their converses. In light of equation (7.3), we can compute the cycle index of
DigraphC using the Sage code appearing in Listing 2. We note that the results
in Table 1 agree with those given in [12, A054933], although in this case our method
is much less computationally-efficient than others referenced there.

Listing 2: Sage code to compute numbers of conversity classes of digraphs

1 from sage.combinat.species. group_cycle_index_series import

GroupCycleIndexSeriesRing

from sage.combinat.species.library import SetSpecies ,

SubsetSpecies

3 from sage.combinat.species. group_cycle_index_series_library

import LinearOrderWithReversalGroupCycleIndex

5 S2 = SymmetricGroup(2)

GCISR = GroupCycleIndexSeriesRing(S2)

7
P = GCISR(SubsetSpecies().cycle_index_series())

9 E = GCISR(SetSpecies().cycle_index_series())

L2 = LinearOrderWithReversalGroupCycleIndex ().restricted

11 (min=2,max=3)

13 D = P.functorial_composition(L2*E)

15 print D.quotient().isotype_generating_series ().counts (6)

n DigraphCn

0 1
1 1
2 3
3 13
4 144
5 5158
6 778084

Table 1: NumberDigraphCn of isomorphism classes of conversity classes of digraphs
with n vertices

Again, per Theorem 2.3, Z
Digraph
S2

(τ)(x, x2, x3, . . .) is the ordinary generating
function for unlabeled self-complementary digraphs. This analysis is conceptually
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analogous to that given by Harary and Palmer [7, §6.6], but, again, the Γ-species
account is much more compact.

7.3 Binary trees with reversal

Let BT denote the species of binary rooted trees. It is a classical result that

BT = 1 +X+X · Lin2(BT − 1) (7.3)

for X the species of singletons.

BT admits a natural S2-action whose nontrivial element reflects each tree across
the vertical axis, and we may treat it as a S2-species with respect to this action.
Thus, equation (7.3) also holds as an isomorphism of S2-species with X equipped
with the trivial S2-action and Lin2 equipped with the order-reversing action from
Section 6.2.

The quotient of BT under this action of S2 is the species BTR = BT/S2 of “re-
versal classes” of binary trees—that is, of binary trees identified with their reverses.
In light of equation (7.3), we can compute the cycle index of BTR using the Sage
code appearing in Listing 3. We note that the results in Table 2 agree with those
given in [12, A007595].

Listing 3: Sage code to compute numbers of reversal classes of binary trees

1 from sage.combinat.species. group_cycle_index_series import

GroupCycleIndexSeriesRing

from sage.combinat.species.library import SingletonSpecies

3 from sage.combinat.species. group_cycle_index_series_library

import LinearOrderWithReversalGroupCycleIndex

5 S2 = SymmetricGroup(2)

GCISR = GroupCycleIndexSeriesRing(S2)

7
X = GCISR(SingletonSpecies().cycle_index_series())

9 L2 = LinearOrderWithReversalGroupCycleIndex ().restricted

(min=2,max=3)

11
BT = GCISR (0)

13 BT.define (1+X+X*L2(BT - 1))

15 print BT.quotient().isotype_generating_series ().counts (20)

7.4 k-ary trees with interchange

Let RTreek denote the species of k-ary rooted trees—that is, rooted trees where
each node has k linearly-ordered child trees. Any Γ ⊆ Sk acts naturally on RTreek;
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n BTRn

0 1
1 1
2 1
3 3
4 7
5 22
6 66
7 217
8 715
9 2438

Table 2: Number BTRn of isomorphism classes of binary trees up to reversal with
n internal vertices

an element γ ∈ Γ acts on a tree T by applying γ to the linear order on each node’s
children. Thus, RTreek is a Γ-species with respect to this action, and it satisfies

RTreek = 1 +X+X · Link(RTreek) (7.4)

for X the species of singletons with the trivial Γ-action and Link the Γ-species of
linear k-orders from Section 6.3. Its quotient is the species RTreek/Γ of Γ-equivalence
classes of k-ary trees.

7.5 Paths and polygons

Recall from Section 6.2 the S2-species Cyc of cyclic orders and Lin of linear orders
with reversal. Their quotients are, respectively, the species Poly = Cyc/S2 of “neck-
laces” and Path = Lin/S2 of “paths”. This species of polygons is also studied using
similar methods in [10, §3].

We can compute the cycle indices of Path and Poly using the Sage code appear-
ing in Listing 4. Of course, there is only one Path-structure and one Poly-structure
for each n, so we do not print the results here.

7.6 Bicolored graphs

The species GraphBC of properly 2-colored graphs admits a structural S2-action
in which the nontrivial element interchanges colors. In [4], Gessel and the author
compute theS2-cycle index ofGraphBC from first principles, then apply the results
of Section 3 and some structural results to enumerate unlabeled bipartite blocks.
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Listing 4: Sage code to compute numbers of paths and polygons

1 from sage.combinat.species. group_cycle_index_series_library

import LinearOrderWithReversalGroupCycleIndex ,

CyclicOrderWithReversalGroupCycleIndex

3 L = LinearOrderWithReversalGroupCycleIndex ()

Path = L.quotient()

5 print Path. generating_series().counts (8)

print Path. isotype_generating_series ().counts (8)

7
C = CyclicOrderWithReversalGroupCycleIndex ()

9 Poly = C.quotient()

print Poly. generating_series().counts (8)

11 print Poly. isotype_generating_series ().counts (8)

7.7 k-trees

In [3], the author enumerates k-trees using the theory of Γ-species. To achieve this,
we introduce the notion of an oriented k-tree (which is a k-tree together with a choice
of cyclic ordering of the vertices of each (k + 1)-clique, subject to a compatibility
condition). We then recast the problem as one of enumerating orbits of oriented
k-trees under a suitable action of Sk and calculate the relevant Sk-cycle index series
using recursive structure theorems.

In [6], Gessel and the author simplify this approach, using colorings instead of
cyclic orderings to break the symmetries of k-trees. The results in that work are
phrased in the language of generating functions, without explicit reference to species-
theoretic cycle indices.
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