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Abstract

This paper introduces new reduction and torsion codes for an octonary
code and determines their basic properties. These could be useful for
the classification of self-orthogonal and self dual codes over Zg. We also
focus our attention on the covering radius problem of octonary codes. In
particular, we determine lower and upper bounds of the covering radius
of several classes of repetition codes, simplex codes of type « and type S
and their duals, MacDonald codes, and Reed-Muller codes over Zg.

1 Introduction

Codes over finite rings is a well studied area investigated by many researchers in the
last two decades [2,3,5-7,9,14,16-18,21-23,27-29,31-33]. In particular, octonary
codes have received attention by many researchers [2,5,9,19,21,23,31]. For any
octonary linear code, we introduce binary and quaternary (over Z,) reduction and
torsion codes and study their basic properties with respect to self-orthogonality and
self-duality. One of the important properties of error correcting codes is that of
determining the covering radius. The covering radius of binary linear codes has been
studied in [10,11]. It is shown in [4,11] that the problem of computing covering
radii of codes is both NP-hard and Co-NP hard. In fact, this problem is strictly
harder than any NP-complete problem, unless NP=co-NP. The covering radius of
codes over Z4 has been investigated with respect to Lee and Euclidean distances [1].
Several upper and lower bounds on the covering radius of codes has been studied
in [1]. More recently, covering radius of codes over Zy. has been defined in [26] and
upper and lower bounds on the covering radius of several classes of codes over Z,
have been obtained [26]. We extend some of these results to octonary codes in this
paper.

A linear code C, of length n, over Zg is an additive subgroup of Zg. An element
of C is called a codeword of C and a generator matriz of C is a matrix whose rows
generate C. The Hamming weight wy(x) of a vector x in Zg is the number of
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non-zero components of x. The Homogeneous weight wgw (x) [13] of a vector x =
(z1,29,...,2,) € Zg is given by Y ", wyw(z;), where

2, €T 4

The Lee weight wy(x) of a vector x € Z§ is > min{z;,8 — 2;}. The Euclidean
weight wg(x) of a vector x € Zg is Y . min{z?, (8 — ;)?}.

The Hamming, Homogeneous, Lee and Euclidean distances dg(x,y), dgw(X,y),
dr(x,y), and dg(x,y) between two vectors x and y are wy(x —y), wagw (X —y),
wr(x—y) and wg(x —y), respectively. The minimum Hamming, Homogeneous, Lee
and Fuclidean weights, dg, dgw, drand dg of C are the smallest Hamming, Homo-
geneous, Lee and Euclidean weights among all non-zero codewords of C respectively.
One can define an isometry between ZJ — Z," as a coordinate-wise extension of the
function from Zg to Z, defined by 0 — (0,0,0,0),1 — (0,1,0,1),2 — (0,0,1,1),3 —
(0,1,1,0),4 — (1,1,1,1),5 — (1,0,1,0),6 — (1,1,0,0),7 — (1,0,0, 1) [8]. Such an
isometry ¢ is called as the generalized Gray map. The image ¢(C), of a linear code C
over Zg of length n by the generalized Gray map, is a binary code of length 4n [27].

Let x = (21, 22,...,2,) and y = (y1, Y2, ..., Yn) be two vectors in Zg. Then the
inner product of x and y is defined by x -y = (x1y1 + 22y2 + ... + ,y,)( mod 8).
The dual code C* of C is defined as {x € Zy | x-y = 0 for all y € C}, where x -y
is the inner product of x and y. C is self-orthogonal if C C C* and C is self-dual if
C=Ch

Two codes are said to be equivalent if one can be obtained from the other by
permuting the coordinates and (if necessary) changing the signs of certain coordi-
nates. Codes differing by only a permutation of coordinates are called permutation-
equivalent. Let C C Zg. If C has M codewords and minimum Homogeneous and
Euclidean distances dyw and dg respectively then C is called an (n, M, dgw,dg)
code. For more details about the octonary codes the reader is referred to any of the
papers from [19,23].

This paper is organized as follows. In Section 2, we define new torsion and
reduction codes for an octonary code and obtain their basic properties. In Section 3
we present some results of the covering radius of octonary codes. Section 4, we discuss
about the covering radius of the Octonary repetition codes. Octonary simplex codes
of type o and [ is discussed in Section 5. In Section 6, we consider MacDonald
codes Zg. Finally, Section 7 considers Reed-Muller codes and Section 8 considers
Octacode. Last section concludes the paper.

2 Reduction and Torsion Codes

The standard form of generator matrix G of the linear code C over Zg [19] is of the
form

Iy Aon Aoz Aogs
G = 0 2L, 2A12 245 |, (1)
0 0 4y, 4Ags
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where the matrices A, ; are binary matrices for ¢ > 0. A code with a generator matrix
in this form is of type {ko, k1, ko} and has 8%04k12%2 vectors.
The matrix (1) can also be written in the following form over Zs:

I, Boi+2Bj, +4B§, Boz+2Bj,+4Bj, Bos+2Bjs+4Bj,
G = O 2]k1 2A172 2A1 3
0 0 A1y, 4455

where By, Bj;, and Bj, are binary matrices for ¢ > 0 and the matrices A;; are
binary matrices for ¢ > 0. For a quaternary linear code one can define reduction
code and torsion code [14,27]. These codes have been generalized for a linear code
C over Zg in the form of four binary torsion/reduction codes in [19]. For 0 <1 < 3,

Tor;(C) ={v (mod 2) |2 € C}.

The generator matrices of T'ory(C), Tor (C),Tory(C) are the following three binary
matrices:

Grory = ( Iy Boa+2Bj, +4B3, Bos+2Bj,+4B}, Bos+2Bjs+4B3; )

Tors = 0 Iy, A1,2 Agg

Gror, = 0 Iy, Al Aus ;
0 0 Iy, A2,3

where
€ |=| Toro(C) || Ton(€) || Tora(C) | = 2%+t

The reduction and torsion code of quaternary linear code can also be generalized
for linear codes over Zg in another interesting way. We define two binary (over Zs)
torsion codes and two quaternary (Z,) torsion codes for a given linear code over Zg
as follows:

) = {c¢ (mod?2)|cecC},

) = {c (mod4)|cecC},
C® = {c|2cecC},

) = {cl|4ceC}.

The generator matrices G, G® GO GW of ¢ c? B CcHW are obtained
from equation (2) as follows:

GW = ( Ity Boax Boz2 Bos ),

G(Z) _ Iko BO,l + 23571 Boyg + 23(1)72 Bo’g + 23573
0 21, 241 5 2415 ’
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Iy, Boi+ 230171 By + 233’2 By s+ 230173

G(g) — 0 Ikl ALQ Al’g 5 (4)
0 0 21, 2453
I, Bo,1 Bo,2 Bo,3
G(4) - O [k1 ALQ A173
0 0 I, Ass

Note that the number of elements of C is 8k04k12k2 — 93ko+2ki+k2  The number
of elements of CV C? C®) CH are 2k gkogkt gkotkigks and 2kotkitke regpectively.
Thus for a linear code C over Zg we have the following relationship.

Proposition 1
CI=l e | x| e |= e | x ||,

Remark 1 Note that the above proposition admits a more natural proof by consid-
ering the kernel and image of the reduction map and applying the first isomorphism
theorem.

Note that if ky = ky = 0 then C® = C®). It is easy to observe the following.

Proposition 2
cW C CY andc® C c®.

The next result is a simple generalization of self-orthogonality characterization from
[24]. For c € C and 0 < i < 7, let w;(c) denotes the composition of symbol i in the
codeword c.

Proposition 3 A linear code C over Zsg is self-orthogonal if and only if each gener-
ator matriz of C has all its rows wy + w3 + ws + wy + dws + dwg = 0 (mod 8) and
every pair of rows of the generator matrix is orthogonal.

Proof. The proof is straightforward. U

Now we determine few relationships among various reduction and torsion codes
if code C is self-orthogonal or self-dual.

Proposition 4 IfC is a self-orthogonal code over Zg then CV,C™ are self-orthog-
onal codes over Zy and C?,C®) are self-orthogonal codes over Z,.

Proof. The self-orthogonality of CV,C®) follows from [19]. It remains to see
the self- orthogonality of C®, and C¥. Let v € C®. By definition of C® we
have 2v € C. As C is self orthogonal, < 2v,u >= 0 (mod 4) for all w € C. So
2y vu; =0 (mod 8) for all w € C. Then > v;u; =0 (mod 4) for all w € C. This
implies < v,u >= 0 for all u € C® as C® is a code over Zs. So v € C®". Hence
C®) is self orthogonal. The self-orthogonality of C¥) can be proved similarly. O
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Proposition 5 If C is self orthogonal code over Zg then C* C cO™ and C®) C
@

Proof. Let v € C. By definition of C, we have 4v € C. As C is self-orthogonal,
< 4v,u >= 0 (mod8) for all w € C. So 4> vu; = 0 (mod 8) for all u € C.
dYovu; =0 (mod2) for all w € C. Y (v; (mod 2))(u; (mod 2)) =0 (mod 2)
for all u (mod 2) € C. As C¥ is a code over Zy, v; (mod 2) = v; and as CV) is
a code over Zy, S vi(u; (mod 2)) =0 (mod 2) for all u € CM. So < v,u >=0
(mod 2) for all w € CY. This implies v € ™. The second inclusion ¢ C ¢+
can be proved similarly. O

Proposition 6 IfC is self-dual over Zg then CY) = CO" and B = O™

Proof. We know that C¥ C cO* from Proposition 5. It remains to show ct C
CW. Letv e CVT. So < v,w>=0 (mod 2)forallw € CY. Y vw; =0 (mod 2)
for all w € CV. 43 v;w; =0 (mod 8) for all w € C. > 4v;w; =0  (mod 8) for all
weC. <4dv,w>=0 (mod8) forall we C. 4v € Ct=C. This implies v € C,
Hence proved. The proof of second result is similar. O

We know that C® and C® are codes over Z,. Thus it is natural to consider the
torsion and reduction code of C®? and C®. We get the following:

2= {¢ (mod 2

c) )| cec?},

C?) = {c|2ceC?},

CB) = {c (mod2)|ceC®},

C3) = {c|2ceCB®).

The generator matrices GV, G2 GBY GG of @Y 22 cBY €32 are obtained
from (3) and (4) as follows:

G = ( Iy, Box Boz2 Bos )= G,

G2 — Iyy Boi Boa2 Bogs
0 Iy Ao Az )’

1

I, B B B
a6y — ko 0,1 02 Doz | _ G(QZ),
0 I, Aip A

Iy, Box Boz Bogs
GB? = 0 I, Aip A
0 0 I, Ass

All the codes C®Y, €2 cBY €62 are codes over Z,. It is easy to see the following
results from their generator matrices:
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Proposition 7 If C is a code over Zg then C?V) =M, ¢ C ¢ ¢BY = 2,
CcB C C(32), and CB32) =@

It is also natural to obtain the following from [14].

Proposition 8 IfC is self-orthogonal over Zg then
1. ¢ c @ c C(21)L.
2. CBY C B C 6(31){

Thus we have an interesting family of codes from a linear octonary codes having
beautiful inclusions.

3 Covering Radius of Octonary Codes

In this section, first we collect some known facts of the covering radius of codes over
Zg with respect to Homogeneous and Euclidean distances [26] and then derive some
of its properties. Let d be either a Homogeneous distance or Euclidean distance.
Then the covering radius of code C over Zg with respect to distance d is given by

ra(C) = max {min d(u, c)} .

ueZ;l ceC
We can easily see [26] that r4(C) is the minimum value 74 such that
Zg = UcecSr,(c),
where
Sr,(u) ={v e Zg | d(u,v) <rg}

for any element u € Zg.

The coset of C is the translate u+C = {u+c | ¢ € C} where u € Zg. A vector
of least weight in a coset is called a coset leader. The following proposition is well
known [26].

Proposition 9 The covering radius of C with respect to the general distance d is the
largest minimum weight among all cosets.

Proposition 10 For any octonary code over Zs,

%THW(C) < TE(C) < 5THW(C)7
r(C) < re(C),
THW (C) < 2rg (C)

Proof. We observe that 1dyw(x,y) < dp(x,y) < 5duw(x,y), so the first inequal-
ity follows. As dr(x,y) < dg(x,y), the second inequality follows. Further the third
inequality follows since we have dyw (x,y) < 2d.(x,y). O

The following proposition is also well known [26].
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Proposition 11 Let C be a code over Zs and ¢(C) the generalized Gray map image
of C. Then rgw(C) = ru(¢p(C)).

The following two results are the two upper bounds of the covering radius of
codes over Zg with respect to Homogeneous weight.

Proposition 12 (Sphere-Covering Bound) For any code C of length n over Zs,

4n C) 4
R DA GO

2471, B r (C)
T = 2o Vi
where 3100 Vit = (14 2z + 22* + 229 + 210)".

Proof. The proof of both inequality over Zg is similar to the proof over Z, given
in [1] (see also [26]) and hence omitted. O

Let C be a code over Zgs and let s(C+) = | {i | A;(C*) #0,i # 0} |, where A4;(C*)
is the number of codewords of homogenous weight i in C*.

Theorem 1 (Delsarte Bound) Let C be a code over Zg then rw (C) < s(Ct) and

rg(C) < 5s(CH).

Proof. The first result is obtained in [26]. The second result follows from [1] and

Proposition 10. U
The following result of Mattson [10] is useful for computing covering radii of codes

over rings [26].

Proposition 13 (Mattson) If Cy and C; are codes over Zs generated by matrices
Go and Gy respectively and if C is the code generated by

(0 |G,
o (ai)
then r4(C) < rq(Co) + r4(C1) and the covering radius of D (concatenation of Cy and

C1) satisfies the following
Td(D) 2 Td(CO) -+ rd(Cl),

for all distances d over Zs.

Now we determine a bound on the covering radius of octonary code and its
corresponding reduction and torsion codes. The following result is a generalization
of Theorem 4.4 of [1].

Theorem 2 For a code over Zs, let dy,ds,ds,dsy denote the minimum Hamming
distances of linear codes CV,C? C® CW respectively. If di > 8,dy > 18,d3 >
%,d;; > % then
TE(C) 9 min L%J) LcllQJaZng_sJ’ 16Ld_4J 9
raw(C) > 2 min ¢ [F], [2], 4152, 16] 5]

v
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Proof. Lett= min {Ld—slj, [L],4(%],16| %] } Hence t > 0. Let x =

(00...044...4). Let C be a code over Zg. Let ¢ = (¢y,¢a,...,¢,) € C such that
—
¢
¢; =0 or 4. Hence § € CW. So wt(CW) > d, as the minimum Hamming distance
of CW is dy. Thus wt($) > dy >t. Let ¢ = (00...044...4). Hence

>dy
dE(C, X) = ]_6(d4 — t) Z 9t,
de(C, X) = 4(d4 — t) Z 2t.
Similarly for ¢ € C such that £ € C® we get
dp(c,x) > 4d3— 16t > 9t
de(C, X) > 2d3 — 4t > 2t.
For ¢ € C such that ¢ (mod 4) € C® we have
dE(C, X) Z dg — 9t Z 9t,
de(C, X) = ng Z 2t.

Finally for ¢ € C such that ¢ (mod 2) € CV) we have

dE(C,X) = d1—|—8t > gt,
de(C,X) = 2d1 > 2t.

Hence the result follows. ]

4 Octonary Repetition Codes

A g-ary repetition code C over a finite field F, = {ap = 0,01 = 1, a9, a3, ..., 042}
is an [n,1,n]-code C = {a | a € F,}, where @ = {a, ..., a}. The covering radius
of C is f@} [20]. In [26], several classes of repetition codes over Z, have been
studied and their covering radius has been obtained. Now we generalize those results
for codes over Zg. Consider the repetition codes over Zg. One can define seven
basic repetition codes C,,, (1 < ¢ < n) of length n over Zg generated by G,, =
1. 1], G, = [22...2], Goy = [33...3], Go, = [44...4], Go, = [55...5], Goy =
— = — ~—— _

n n n

[66...6], Go, = [77...7]. So the repetition codes are Co;, = Cpy = Cos = Coy =

n n

{(00...,0),(11...1),(22...2),(33...3),(44...4),(55...5),
(66...6), (77...7)}, Cay = Cay = {(00...0),(22...2),(44...4),(66...6)} and Cy, =

{(00...0),(44...4)}. The following theorems determine the covering radius of C,,
for1 <¢<T7.

Theorem 3 75(Co,) = TE(Cas) = rE(Cos) = 1E(Cy,) = “T” and 1w (Cay)
= THW(Cag) = THW(Coz5) = THw(Ca7) = 2n.
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Proof. We know that rg(C,,) = maxmezg{dE(x,Cai)}. Let x € Zg. If x has
composition
(wo, w1, wa, w3, Wy, Ws, We, wr) Where 22‘7:0 w; = n, then

dE X, (_)) = Nn—wy+ 3wy + 8(4)3 + 15w4 + 8&)5 + 3(,06,

(
dE(X, i) = Nn—w —|—3w3+8w4—|— 15w5—|—8w6+3w7,
dp(x,2) = n — ws+ 3wy + 3wy + 8ws + 15ws + 8wy,
dE(X, g) = n—ws+ 80)0 + 3W1 + 3W5 + 8w6 + 150)7,
dp(x,4) = n —wy+ 15wy + 8wy + 3ws + 3wg + 8wr,
dE(X, 5) = n—w5—|—8w0+ 15&)1 +8W2+3W3+3w7,
dp(x,6) = n —ws+ 3wy + 8wy + 15wy + 8ws + 3wy,
dp(x,7) = n—ws+ 3wy + 8ws + 15wz + 8wy + 3ws.
Hence,

8n+36(wo+w1 +watwstwstws+ws+wr) _ 1ln
dp(x,Cqy) < 8 o2

Thus rp(Ca,) < 52
Let x = 00...011...122...233...344...455...566...677..7.7 € Zg, where
t t ¢ ¢ t ¢ ¢ n—Tt
t = [§]. Then dg(x,0) = n + 36t, dg(x,1) = 4n + 12t, dp(x,2) = 9n — 28t,
dp(x,3) = 16n — 84t, dg(x,4) = 9n — 28t, dg(x,5) = 4n + 12t, dg(x,6) = n + 36t,
dp(x,7) = 44t. Thus

44n+36t+12t—28t—84t—28t+12t+36t+44t __ 1ln
TE(CO“) Z S = 5 -

Thus rg(Ca,) = re(Cay) = re(Cas) = re(Ca;) = 52, The gray map ¢(C,,) will be a
binary repetition code of length 4n. Thus ryw (Ca,) = (%_1)} =2n=1rw(Coy) =
THW(Cas) = TH[/V(CQ7). D

Theorem 4 75(C,,) = rg(Caq) = 6n and rgw(Cay) = raw (Cag) = 2n.
Proof. The proof is similar to the proof of Theorem 3, hence omitted.
Theorem 5 75(C,,) = 8n and ryw (Co,) = 2n.

Proof. The proof is similar to the proof of Theorem 3, hence omitted.

In order to determine the covering radius of Simplex code S}’ over Zg, we have to
define a block repetition code over Zg and find its covering radius. Thus the covering
radius of the block repetition code BRep™ T™2F+"M7 with parameters

n = m1+m2+...+m7,

M = 8,
dgw = min{2m; + 2mgy + 2mg + 4my + 2ms + 2mg + 2my,

2mq + 4dmgy + 2ms + 2ms + dmg + 2my,
4m1 + 4m3 + 4m5 + 4m7},
dg = min{my + 4my + 9mg + 16m4 + 9ms + dmg + my,
4m1 + 16m2 + 4m3 + 4m5 + 16m6 + 4m7,
9m1 + 4m2 +ms + 16m4 +ms + 4m6 + 9m7,
16m1 + 16m3 + 16m5 + 16m7}
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and generator matrix G = [11...122...233...344...455...566...677...7]

mi mo ms3 maq ms me mr
is given in the following theorems.

Theorem 6 rg(BRep™ tm2t-+m7) = L (my + mg + ms + myz) + 6(ma + me) + 8my.
Proof. By proposition 13 and Theorem 3, 4, 5 we have rg(BRep™ Tm2t-+mr) >
5 (my + mg 4+ ms + mg) 4 6(ma + me) + 8my.

On the other hand, let x = (x; | X | X3 | X4 | X5 | X6 | x7) € Zg* ™7 with
X1, X2, X3, X4, X5, X6, X7 have compositions (p07p17 s 7p7)7 (QO7 qi;- .- 7Q7>7 (7"0, LRI
7’7), (SQ, St1yv-y 87), (t(), ti,... ,t7), (UQ, Upy ... ,U7), (wo, Wi, ... ,w7) such that Po+p1+
+p7 =mq, QO+(]1++CJ7 = My, ro+r+...+r7 = ms, So+S1+...+87= my,
t0+t1+...+t7:m5, Uy + U+ ...+ U = Mg, Wo + W1 + ...+ Wy = Mr.

dg(x,0) = mq + ma + mg + my +ms + me + mz — po + 3p2 + 8ps + 15ps + 8ps +
3p6 - q0+3q2+8q3+ 15Q4+SQ5 —|—3q6 —’1"0—|—3’I“2—|—8’1“3—|— 157"4"‘8’1“5"—3’1“6 — S0+
382 + 883 + 1584 + 885 + 386 — to + 3t2 + 8t3 + 15t4 + 8t5 + 3t6 — Ug + 3U2 + 8U3 +
15wy + 8us + 3ug — wo + 3ws + Sws + 15w, + Sws + 3w, where 0 is the first vector
of BRepmlerer...ery

dp(x, c1) = my+my+mz+my+ms+me+my—p1+3p3+8pa+15ps+8ps+3pr—qa+
3qO—|—3Q4+SQ5—|—15q6—|—8Q7—7"3+87“0+37“1+37"5+87"6+15T7—S4—|—1580+881+382+386+
837—t5+8t0+15t1+8t2—|—3t3+3t7—u6—|—3u0—1—8u1—1—15u2—|—8u3+3u4—w7+3w1+8w2+
15w3 + 8wy + 3ws, where ¢; = (11...122...233...344...455...566...677...7)

mi m2 ms3 my ms me mr
is the second vector of BRep™1 tmat-+tm7

dp(x, cz) = mi+mo+ma+my+ms-+me+mr—pa+3po+3ps+8ps+15ps+8pr —qa+
15q0+8q1+3q2+3q6+8q7r — 16+ 319+ 8r1 + 1579+ 8r3+3ry — s+ 352+ 853+ 1554+ 855+
356—t2—|—3t0—|—3t4+8t5+15t6+8t7—u4+15u0+8u1+3uz+3u6+8u7—w6+3w0+8w1+
15wq + 8ws + 3wy, where ¢y = (22...244...466...600...022...244...466...6)

mi m2 ms3 my ms me mr
is the third vector of BRep™ttmat.tmr,

dp(X, c3) = mi+my+ms+my-+ms+me+mr—ps+8po-+3p1+3ps+8ps+15p7 — s+
3q0+8q1+15q2+8q3+3q4—7"1+37“3+87“4+15r5+8r6+3r7—84+1580+881+332—|—386+
887—t7—|—3t1+8t2+15t3—|—8t4+3t5—U2+3U0+3U4+8U5+15U6—|—8U7—IU5—|—SIU0+15IU1+
8wy + 3ws + 3wz, where c3 = (33...366...611...144...477...722...255...5) is

N e o o S o

mi mo ms3 ma ms me e
the fourth vector of BRep™ tm2t-+mz,

dg (X, c4) = myi+ma+ma+my+ms+me+ms—ps+15po+8p1 +3pa+3ps+8pr—qo+
3(]2+8Q3+15Q4+8(]5+3q6—T’4+15T0+8T1+3T2+3T6+8T7—80+382+883+1584+885+
336—t4—|—15t0+8t1—|—3t2—|—3t6+8t7—u0—|—3u2+8u3—|—15u4+8u5+3u6—w4+15w0+8w1+
3wy + 3wg + 8wy, where ¢y = (44...400...044...400...044...400...044...4) is

ma2 m3 maq ms me mr

mi
the fifth vector of BRep™tmzt-+mz,
dg(x, c5) = my+my+ma+my+ms+me+my—ps+8po+15p1+8pa+3ps+3pr—qa+
3qO—|—3Q4+SQ5—|—15q6—|—8Q7—7"7—|—3’1“1—|—8’1“2+15T3+8T4+3T5—S4+1580+881 +382+386+
887—t1 +3t3+8t4—|—15t5—|—8t6—|—3t7—U6—|—3U0—|—8U1+15U2+8U3+3U4—’(U3+8100+3wl+
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3ws + 8wg + 15wy, where ¢5 = (55...522...277...744...411...166...633...3)
mi mo ms my ms me mr
is the sixth vector of BRep™tmzt--+m7
dp(X, ¢g) = my+my+mz+ma+ms+me+my—ps+3po+8p1+15p2+8ps+3ps—qa+
15(]0—|—8(]1+3QQ+3q6+8Q7—7’2+3T0+3T4+87’5—I—15T6+8T7—SQ+382+883+1584+885+
356—t6+3t0+8t1—|—15t2—|—8t3+3t4—u4+15u0+8u1+3u2+3u6+8u7—w2+3w0+3w4+
8ws + 15wg + 8wy, where c¢g = (66...644...422...200...066...644...422...2)
NGNS w4 i A A g S
mi mo ms3 my ms me mr7
is the seventh vector of BRep™ttmat-tmr,
dp(x, c7) = mi+mot+mg+my+ms+me+mr—pr+3p1 +8pa+15ps+8ps+3ps —qs+
3q0+8q1 +15¢2+8q3+3qs—15+8rg+ 1511 +8ro+3r3+3r; —s4+ 1550 +8s1 + 359+ 356+
887—t3+8t0+3t1+3t5+8t6+15t7—U2+3U0+3U4+8U5+15U6+8U7—w1+3IU3+SIU4+
15wy + 8wg + 3wy, where ¢y = (77...766...655...544...433...322...211...1)
— NN N o o o

m3 myg ms me mr

mi mo
is the eighth vector of BRep™+™m2t+tm7  Thyg

—

d(x, BRep™*mattmr) < Lm 4+ ms + my + my) + 6(my + mg) + Smy.

vl

Hence the equality.

Theorem 7 min{2m; + 2msy + 2ms + 2my + 2ms + 2mg + 2my, 2ms + 2mg + 2my +
dms 4 2me + 2my, 2mq 4 2mg + 2my + 2ms + 2meg + dmey, dmy + 2meo 4 2mg + 2my +
2mg + 2my, 2my + 2ms + 4ms + 2my + 2ms + 2meg} < rgw (BRep™ tmetAmn) <
11(m1 + ms + ms + m7) + 12(m2 + m6) + 16m4

1) c Zm1+m2+...+m7

Proof. By choosing x = (11......... and computing the
—_—

mi+ma+...+my
homogenous distance from each codeword we get dgw(x, BRep™tm2t+mm) —

min{2m; + 2mgy + 2ms + 2my + 2my + 2meg + 2mz, 2mg + 2ms + 2my + 4ms + 2me +
2mz, 2mq + 2me + 2my +2ms 4+ 2mg +4msy, dmq + 2me + 2ms +2my 4+ 2meg +2me, 2mq +
2my + 4ms + 2my + 2ms + 2mg}. Hence the first inequality follows. The second in-
equality follows from Proposition 10 and Theorem 6. O

5 Octonary Simplex Codes of Type a and

Simplex codes of type o and 8 have been studied in [25]. The linear code S¢ is a
type « simplex code over Zg with parameters (n = 8%, M = 8* dyy = 23¢:+1=2)
generated by

00---0]11---1[22---2]33---3]44---4|55---5|66---6|77---7
| G | G | Gl | G | G | Gy | G

Gy =
(5)

with G§ = [01234567]. The number of vectors in S¢ is 23%. The dual code of S¢ is
denoted by Sg+.
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The linear code Si is a type [ simplex code over Zg with parameters (n =
22k=1)(2k — 1), M = 8% dyw = 2%*71(2% — 1)) generated by

of _ [ 1L jo)2]4/6
2 01234567 [ 1] 111

and for £ > 2

GB_[11"'1‘OO"'O‘QQ"'Q‘44"'4‘66"'6}
: el el el el |

where Gf_, is the generator matrix of S; ;. The dual code of Sf is denoted by S,f -
Theorem 8 7y (S¢) > 23+ and rp(S¢) < 6(8F — 1) + 2.

Proof. The proof can be obtained using the Proposition 13, Theorem 6, equation
(5) and is similar to the Z4 case [26]. Hence it is omitted.

O
Theorem 9 75(S}) < 3(8F — 1) — 2(4" — 1) — 2 4+ 75(S}) and ruw (Sy) < 3(8% —
1) — (4% — 1) — 139 + rpw (S5).

Proof. The first inequality is proved using Theorem 6 and is similar to the Z,
case [26]. The case of homogeneous weight is similar. O

Theorem 10 r5(S¢t) <3, rgw(S¢h) =1 and THW(S]fl) = 2.

Proof. By Lemmaa 4.2 and Theorem 4.3 of [25], rx(S¢+) < 3. By Theorem
4.3(3) of [25], ragw(Sgt) < 1. Sience rhw(S¢T) > 1, so rgw(S¢t) = 1. By
Theorem 4.4 of [25] and by Theorem 1, THw(SlfJ—) < 2 and as THw(Slfl) > 1 thus

THW(S,fl) =1 or 2 but THW(S,fl) # 1 by Proposition 12. Hence the result follows.
U

Theorem 11 S} and Slf are self orthogonal codes over Zs.

Proof. The proof follows from Proposition 3.

6 Octonary MacDonald Codes of Type a and

The g-ary MacDonald code My ,(q) over the finite field F, is a unique [q::ilu Kk,
¢"~! — ¢*71] code in which every nonzero codeword has weight either ¢! or ¢*~1 —
q“~' [15]. In [12], authors have defined the MacDonald codes over Z, using the

generator matrices of simplex codes. In a similar manner one can define MacDonald
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code over Zsys. For 1 < u < k —1, let Gg,u <G£u> be the matrix obtained from

G¢ <G£) by deleting columns corresponding to the columns of G (Gg) ie,

Gru=| 0t \& |,
and
L=\ &]

where [A\%] is the matrix obtained by deleting the matrix 0 and B from A where
Bis a (k—u) x 2 matrix in (6) (resp. (k — u) x 2¢~D@=D(2* — 1)) matrix in (6).
The code

M, ¢ 2% — 2% k] (vau  [26-D=) 9k _ 1) _ 9l=D-D)(gu _ 1), sk:])

generated by the matrix Gy, <G£u> is the punctured code of Sy <S,f ) and is called

a MacDonald code of type a (B).
The next theorem provides basic bounds on the covering radii of MacDonald
codes over Zsg.

Theorem 12
TE(M‘,ju) < 6(8¥—8")+ rE(M;f‘u) foru<r<k.
Proof. Similar to Z, case [26]. O

7 Octonary Reed-Muller Code

In this section, we give covering radius of octonary first order Reed Muller code [25].
Let 1 <i <m — 2. Let v; be a vector of length 2™~2 consisting of successive blocks
of 0’s and 1’s each of size 2™ 27 and let 1 = (111...11) € Z;m%. Let G be a
(m—1) x 2™2 matrix given by (consisting of the rows as 1 and 4v; (1 < < m—2))

o0 .--0044 --- 414
ao | oo
04 .---0404 ---04
11 1 111 11

The code generated by G is called the first order Reed-Muller code over Zs, denoted
RY™ 2 Ttis a (n=2m"2 M = 2" dgy = 2™1) type a linear code over Zg [25].
The following proposition gives the covering radius of the first order binary Reed-
Muller code for even m [30].

Proposition 14 The covering radius of the binary first order Reed-Muller code
RM(1,m) for even m is given by

r(RM(1,m)) =2m 1 — 2%,
From Propositions 11 and 14 we obtain the following result.

Theorem 13 7y (RY™?) = 21 — 2% Lfor even m.
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8 Octonary Octa Codes

The octa code over Zg is generated by the following matrix.

5 756 1000

a— 5 0756100
50075610
500075 61

From Proposition 12 we get the following result.

Theorem 14 [f C is the code generated by G then rgw(C) > 6.

9 Conclusion

In this work, we have introduced new torsion and reduction codes for any linear
octonary code and obtained a nice relationship between various reduction and torsion
codes. Further, we have extended some of the results regarding covering radius of [26]
to the octonary case. In particular, we have found exact values and the bounds of
the covering radius of Repetition codes, Simplex codes of Type a and Type § and
their duals, MacDonald codes, and first order Reed-Muller codes, Octacode over Zs.
New reduction and torsion codes can be used to classify octonary linear codes.
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