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Abstract

The values of hypergraph 2-color Ramsey numbers for loose cycles and
paths have already been determined. The only known value for more
than 2 colors is R(C%;3) = 8, where C3 is a 3-uniform loose cycle of
length 3. Here we determine that R(Py;3) =9, where Pj is a 3-uniform
loose path of length 3. Our proof relies on the determination of the Turan
number ex3(9; P5). We also find the Turdn number ex3(12; P3) and use
it to estimate R(P§;4).

1 Introduction

In this note we consider the problem of finding the 3-color Ramsey number for the
3-uniform loose path of length 3 and estimate the corresponding Ramsey number for
4 colors. A hypergraph H is a pair H= (V, E), where V is a finite nonempty set of
vertices and F is a collection of distinct nonempty subsets of V. A vertex v is of
degree © when it belongs to ¢ edges in a hypergraph H. We consider only k-uniform
hypergraphs in which all edges have size k, and call them k-graphs, for short.

The clique KF is a k-graph on n vertices and with (Z) edges. For a given k-graph
H, the Ramsey number R(H;r) is the least integer n such that in every r-coloring of
the edges of K* there is a monochromatic copy of H. If H itself is a clique, we are
dealing with classical Ramsey numbers, which are so hard to calculate that the only
known value for k > 3 is R(K3;2) = 13 ([7]). Instead of cliques, sometimes sparser
structures like cycles and paths have been studied.

There are several natural definitions of a cycle and a path in a uniform hyper-
graph. Here we focus only on loose cycles and loose paths. A k-uniform loose cycle
C* of length n is a k-graph whose edges form a cyclic list (fy, ..., f,) such that con-
secutive edges intersect in exactly one element and nonconsecutive ones are disjoint.
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By removing one edge from a loose cycle of length n+ 1, we obtain a k-uniform loose
path P* of length n. Note that |[V(C*)| = n(k — 1) and |V (P*)| =n(k — 1) + 1.

Further, a k-star with n arms is a k-graph with edges fi,..., f., n = 2, such
that (;_, fi # 0. A star S is called full if |E(S)| = (‘ng_)fl), that is, a vertex v

forms edges with all (k — 1)-element subsets of V(S)\{v}. For k = 2 we get the
usual graph definitions of the cycle C),,, the path P, with n edges, and the star
Ki,. Given a k-graph H and a k-element set e, we denote by H + e the k-graph
(V(H)Ue, E(H)U/{e}).

There are many results in graph Ramsey theory related to cycles and paths (see
[9]). For hypergraphs though, much less is known. First, it was proved in [5] that
R(P3?;2) and R(C3;2) are asymptotically equal to 57” Subsequently, Omidi and
Shahsiah in [8] proved that

R(P3:2) = R(C%2) +1 = {5” * 1J .

2

Gyérfas and Raeisi [4] found the values for R(P¥;2) and R(C¥;2) for n < 4 and
k > 3. They also determined the 3-color Ramsey number for C3,

R(C3;3) = 8.
In this note we prove two theorems about multicolored Ramsey numbers for P;.
Theorem 1.1. R(P$;3) =9
Theorem 1.2. 10 < R(P5;4) < 12

Turdan numbers may sometimes provide upper bounds on Ramsey numbers (see,
e.g. Prop. 13 in [4] and Proposition 3.2 below). Indeed, the proofs of Theorems 1.1
and 1.2 are based on the corresponding Turdn numbers. In Section 2, we will first
determine the Turdn numbers exz(9; P§) and ex3(12; P§), and then, in Section 3,
deduce Theorems 1.1 and 1.2.

2 Turan numbers

Given a k-graph H and a positive integer n, the k-graph Turdn number exy(n; H) is
the maximum number of edges in a k-graph F' on n vertices that does not contain
H as a subhypergraph.

The numbers exy(n; PF), for all fixed k and [, where k > 4 or [ > 4, and sufficiently
large n, are determined in [3] and [6]. There are, however, no corresponding results
for k = 1 = 3. The method of the proof used in [3] does not quite work for the case
k = 3. In turn, Kostochka, Mubayi and Verstraéte skipped this case, assuming that
it was determined in [3].

In order to determine ex3(9; P5) and ex3(12; P3), we will use the following result
for 3-cycles of length 3, proved by Csédkdny and Kahn (see also [2]).
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Theorem 2.1. [1] Forn > 6, exs3(n;C3) = (,'). Moreover, for n > 8, the only
extremal 3-graph is the full star.

We begin with a determination of ex3(9; Py).

Lemma 2.2. We have ex3(9; PJ) = 28. Moreover, the only extremal 3-graph is the
full star.

Before proving Lemma 2.2, we will show some useful facts. In these facts, e
always stands for a 3-element subset of a vertex set V. Let us consider a copy C
of C3 with V(C) C V. We partition V(C) = V; U V, where, for i = 1,2, V; stands
for the set of vertices of degree 7 in C', that is the vertices which belong to exactly ¢
edges of C.

We define two families of triples:

Ei ={ec (‘3/) tlenVi|=lenVal =1, and Vf € E(C):en f #0},

Ey={ee (}):Vi=0,lenV,| =2},

and El = E1 U EQ.

The edges in F; are formed by taking a vertex of degree 1 in ', then another one
of degree 2 in C' but which does not belong to the same edge as the first one, and
the third vertex belongs to the set V\V(C). Similarly the edges in Ey are formed

by taking two vertices of degree 2 in C' and one vertex from the set V\V(C) (see
Figures 1 and 2).

Figure 1: An edge from the family F; is shaded.

Figure 2: An edge from the family F5 is shaded.
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Fact 2.3. For everye € (g) such that either |eNV(C)| =1, or|lenV(C)| =2 but
e E', we have C +e D Pj.

Fact 2.3 says that the existence of edges listed therein implies the presence of
Pj. In particular, the family E’ consists of all triples e, with 1 < |[e N V(C)| < 2,
whose addition to C' does not create a copy of Pj. However, if we consider these
edges more carefully, we will notice that some of them, if occur together, do lead to
a formation of P3. This is formalized in Fact 2.4 below, for which, as well as for the
two subsequent facts, we introduce some further notation and assumptions.

For s > 2, let V=V (C)UW where V(C)NW =0 and |W| = s.

Fact 2.4. Let H be a P}-free 3-graph with V(H) =V and C C H. Then |E' N
E(H)| < 3s.

Proof. Ife € Ey, f € EyandeNf = ), then C+e+f D Py. We have |E;| = |Ey| = 3s.
Construct an auxiliary bipartite graph B = (Ej, Ey; £), where {e, f} € Eifenf = (.
It follows that if {e, f} € &, then |{e, f} NE(H)| < 1. Observe also that the graph B
is (s — 1)-regular, thus by Hall’s theorem it has a perfect matching M. At most one
edge of each pair {e, f} € M is in E(H), which implies that |[E' N E(H)| < 3s. O

As a further preparation toward the proof of Lemma 2.2, let us consider the set
of three edges E5 = {V(C)\e: e € C}. One edge of Ej is presented in Figure 3.

Figure 3: An edge from the family Fj is shaded.

Fact 2.5. Let H be a P3-free 3-graph with V(H) =V and C C H. Ife € E'NE(H),
then |EsNE(H)| < 1.

Proof. Let f € E3. If e € Ey, then C + e+ f D P}, and in view of the assumption
that H is Pj-free, we conclude that Fs N E(H) = 0. If e € Ey and e f # ), then
C +e+ f D Pj, and, as two of the three edges in F3 intersect e, we conclude that
|EsNE(H)| < 1. O

It turns out that we can ban some more edges from being present in H. Let us

set By = (V;/)
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Fact 2.6. Let H be a P3-free 3-graph with V(H) =V and C C H. Ife € F,
fE€E;, and fNe#0, then C+e+ f D P}. Consequently, only one of e and f may
belong to H. ]

We are now going to use Facts 2.3-2.6 to prove Lemma 2.2.

Proof of Lemma 2.2. Notice that the full star on 9 vertices has (2) = 28 edges and
contains no P3.

Consider a 3-graph H with 9 vertices and at least 28 edges which is not a star.

Based on Theorem 2.1, H contains a copy C' of C3. Suppose P3 ¢ H. Then, by
Fact 2.3,

IB(H)| < KV@) \ By

3 +|EsNE(H)|+ |EsNE(H)|+|E' NE(H)|.

Note that |(V{)\Es| = (§) =3 = 17, |Ey 0 E(H)| < |By| = 3, and |E; 0
E(H)| < |Ey] = 1. Hence, if E' N E(H) = () then |E(H)| < 17+3+1+0 =
21 < 28, a contradiction. Otherwise, if |E' N E(H)| > 1 then, by Fact 2.4 with
s =3, |E'NE(H)| <9. Moreover, by Fact 2.5, |E3 N E(H)| < 1, and by Fact 2.6,
E,;NE(H) = (. Consequently, |[E(H)| <17+ 140+ 9 = 27 < 28, a contradiction
again. U

Based on Lemma 2.2, we can determine ex3(12; P3).

Lemma 2.7. We have ex3(12; PJ) = 55. Moreover, the only extremal 3-graph is the
full star.

Proof. Notice that the full star on 12 vertices has (121) = 55 edges and contains no
Pj. Consider a 3-graph H with 12 vertices and at least 55 edges, which is not a
star. Tt follows from Theorem 2.1 that C3 C H. Let C be a copy of C3 in H, set
W = V(H)\V(C), and notice that |W| = 6. Assume that there is no copy of Pj in

H and consider two cases.
Case 1. (")) N E(H) # 0.
Let f € H[W]. By Facts 2.3 and 2.6, there is no edge e in H such that fNe # ()

and e NV(C) # 0. By Lemma 2.2, [H[V\ f]| < 27. Also |E(H) N (% )] < 20. Thus,
|E(H)| <27+ 20 = 47 < 55, a contradiction.

Case 2. (")) N E(H) = 0.
Partition the set W in two triples f; and f5 and define two induced subhypergraphs
H, = H[V\fi] and Hy, = H[V\ f5]. By Lemma 2.2, |E(H;)| < 28 and |E(H,)| < 28.
Moreover, |E(Hy) N E(Hy)| > |E(C)| = 3. Consequently |E(H)| < |E(Hy)| +
|E(Hs)| — |E(C)] =28 + 28 — 3 = 53 < 55, a contradiction again. O
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3 Proofs of Theorem 1.1 and Theorem 1.2

The derivation of the lower bounds in Theorems 1.1 and 1.2 is based on a construction
used already by Gyérfds and Raeisi in [4] to determine R(C%; 3). For future references
we state this result in a general form.

Proposition 3.1. Let r > 2. If a k-graph F is not a star, then
R(F;r)Zr+|V(F)| — 1.

Proof. Let us consider the following 7-coloring of the edges of the clique K* with
vertex set {1,2,...,n}, where n = r+ |V(F)| — 2. We color an edge e by color i, for
i€ {l,2,...,r — 1}, if the minimum vertex in e equals 4, that is min(e) = ¢, and by
color r otherwise. Hence, there is no monochromatic copy of F'in colors 1,2, ..., r—1,
because F' is not a star. We do not obtain a copy of F' in color r either, because the
edges of color r form a clique K%_ .|, while |[V(F)|=n—r+2. O

A relation between the Turdn and Ramsey numbers is captured by the following
simple observation.

Proposition 3.2. Letr > 2, k> 2, andn > r + k. If exy(n; F) = %(Z), but the

unique F-free k-graph with n vertices and %(Z) edges is a star, then R(F;r) < n.

Proof. Let us consider an r-coloring of the complete k-graph K*. If there are more
than %(Z) edges in one color, then, by the definition of exy(n; F), there is a copy of
F' in that color. Otherwise, there are exactly %(Z) edges in each color, but not all
the colors may form stars. Indeed, since n > r + k, there would be at least k vertices
which are not centers of any monochromatic star. But then an edge of K* would
have no color assigned, a contradiction. Thus, for some 7, the edges colored by 7 do
not form a star, which, by our assumption on exy(n; F'), implies that there is a copy

of F'in that color. O
Propositions 3.1 and 3.2, together with Lemma 2.2 quickly imply Theorem 1.1.

Proof of Theorem 1.1. From Proposition 3.1 we obtain the lower bound R(P};3) >
34 7—1=09. For the upper bound we use Proposition 3.2 with k£ = 3, r = 3, and

n = 9. Indeed, the assumptions of Proposition 3.2 follow by Lemma 2.2, and thus
R(P$;3) < 9. O

Similarly, Theorem 1.2 follows from Proposition 3.1, Proposition 3.2, and Lemma 2.7.

4 Concluding remarks

It would be interesting to determine the Turdn numbers exs(n; P3) for all n. As far
as the next Ramsey numbers are concerned, we conjecture that R(Pj;4) = 10. We
would also like to determine or estimate the Ramsey numbers R(PF;r) for at least
some cases where max{n, k,r} > 4.
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