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Abstract

A graph G is said to be k-γt-critical if the total domination number
γt(G) = k and γt(G + uv) < k for every uv /∈ E(G). A k-γc-critical
graph G is a graph with the connected domination number γc(G) = k
and γc(G + uv) < k for every uv /∈ E(G). Further, a k-tvc graph is a
graph with γt(G) = k and γt(G− v) < k for all v ∈ V (G), where v is not
a support vertex (i.e. all neighbors of v have degree greater than one). A
2-connected graph G is said to be k-cvc if γc(G) = k and γc(G− v) < k
for all v ∈ V (G). In this paper, we prove that connected k-γt-critical
graphs and k-γc-critical graphs are the same if and only if 3 ≤ k ≤ 4.
For k ≥ 5, we concentrate on the class of connected k-γt-critical graphs
G with γc(G) = k and the class of k-γc-critical graphs G with γt(G) = k.
We show that these classes intersect but they do not need to be the same.
Further, we prove that 2-connected k-tvc graphs and k-cvc graphs are the
same if and only if 3 ≤ k ≤ 4. Similarly, for k ≥ 5, we focus on the class of
2-connected k-tvc graphs G with γc(G) = k and the class of 2-connected
k-cvc graphs G with γt(G) = k. We finish this paper by showing that
these classes do not need to be the same.
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1 Introduction

Let G be a finite simple undirected graph with a vertex set V (G) and an edge
set E(G). Denote the complement of G by G. A graph H is a subgraph of G if
V (H) ⊆ V (G) and E(H) ⊆ E(G). An induced subgraph G[H ] of a graph G is a
subgraph H for which uv ∈ E(H) if and only if uv ∈ E(G) where u, v ∈ V (H). The
neighborhood NG(v) of a vertex v in G is {u ∈ V (G)|uv ∈ E(G)}. Further, the closed
neighborhood NG[v] of a vertex v in G is NG(v) ∪ {v}. We let NG(S) = ∪v∈SNG(v)
where S ⊆ V (G). The degree of a vertex v is |NG(v)|. An end vertex of G is a vertex
of degree one and a support vertex of G is a vertex which is adjacent to an end
vertex. A tree is a connected graph with no cycle. A star K1,n is a tree containing
one support vertex and n end vertices.

For subsets D,X ⊆ V (G), D dominates X if every vertex of X is either in D
or adjacent to a vertex of D. If D dominates X, then we write D � X . Further,
if X = V (G), then D is a dominating set of G and we write D � G instead of
D � V (G). A total dominating set of a graph G is a subset Dt of vertices of G such
that every vertex of G is adjacent to some vertex ofDt. The total domination number
γt(G) of G is the minimum cardinality of a total dominating set. Note that γt(G) ≥ 2
and every vertex in V (G) is totally dominated by Dt. If Dt totally dominates G,
then we write Dt �t G. A smallest total dominating set of a graph G is called a
γt-set of a graph G. A connected dominating set of a graph G is a dominating set
Dc of G such that G[Dc] is connected. If Dc is a connected dominating set of G, we
then write Dc �c G. The minimum cardinality of a connected dominating set of G
is called the connected domination number of G and is denoted by γc(G). A smallest
connected dominating set of a graph G is called a γc-set of a graph G. Note that
if S is a γc-set of G and |S| ≥ 2, then S is also a total dominating set of G. Thus
γt(G) ≤ γc(G) when γc(G) ≥ 2.

A graph G is said to be k-total domination edge critical, or k-γt-critical, if
γt(G) = k and for every uv /∈ E(G), γt(G + uv) < k. A graph G is said to be
k-connected domination edge critical, or k-γc-critical, if γc(G) = k and for every
uv /∈ E(G), γc(G+ uv) < k.

In the context of vertex removal, a graph G is said to be k-total domination
vertex critical, or k-tvc, if γt(G) = k and for every vertex which is not a support
vertex v ∈ V (G), γt(G − v) < k. A graph G is said to be k-connected domination
vertex critical, or k-cvc if γc(G) = k and for every vertex v ∈ V (G), γc(G − v) < k.
It is easy to see that a disconnected graph cannot contain a connected dominating
set. Thus, we may assume that all graphs are connected in the study on k-γc-critical
graphs. Moreover, we assume also that all graphs are 2-connected in the study on
k-cvc graphs.

The study on total domination critical graphs was started by van der Merwe et
al. [9] and continued by a number of researchers (for example, Goddard et al. [4],
Henning and van der Merwe [6] and van der Merwe and Loizeaux [8]).

The connected domination critical graphs was introduced by Chen et al. [3] and
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continued in Ananchuen [1] and Kaemawichanurat and Ananchuen [7]. Chen et
al. [3] completely characterized 2-γc-critical graphs and gave many properties of 3-
γc-critical graphs. Kaemawichanurat and Ananchuen [7] gave a characterization of
4-γc-critical graphs with cut vertices and proved that such graphs contain a perfect
matching.

Chen et al. [3] showed that a graph G is 2-γc-critical if and only if G = ∪n
i=1K1,ni

for ni ≥ 1 and n ≥ 2. Henning and van der Merwe [6] established that a graph
G is 2-γt-critical if and only if G is a complete graph. Ananchuen [1] noted that
3-γc-critical graphs and 3-γt-critical graphs are the same. The problem that arises is
whether there is a k ≥ 4 such that the class of k-γc-critical graphs and the class of
connected k-γt-critical graphs are the same.

In this paper, we show, in Section 3, that a connected graph G is 4-γc-critical if
and only if it is 4-γt-critical. For k ≥ 5, there exists a k-γc-critical graph which is
not k-γt-critical. For example, Chen et al. [3] showed that Cn is an (n−2)-γc-critical
graph while Goddard et al. [4] referred from Henning [5] that γt(Cn) = 	n

2

+�n

4
�−	n

4



which is less than n−2 for n ≥ 7. Clearly, Cn is not an (n−2)-γt-critical graph. We
then concentrate on the class Gk of graphs G such that γc(G) = γt(G) = k and let

Te
k : class of connected k-γt-critical graphs G with G ∈ Gk and,

Ce
k : class of connected k-γc-critical graphs G with G ∈ Gk.

We show that Te
k 
= Ce

k. We finish this section by showing that Te
k ∩ Ce

k 
= ∅.
For vertex removal, Ananchuen et al. [2] noted that 2-connected 3-tvc graphs

and 2-connected 3-cvc graphs are the same. We might ask similarly whether there
is a k ≥ 4 such that 2-connected k-cvc graphs and 2-connected k-tvc graphs are the
same. Our results in Section 4 show that a 2-connected graph G is 4-cvc if and only
if it is 4-tvc. Similarly, for k ≥ 5, we focus on the class Gk and let

Tv
k : class of 2-connected k-tvc graphs G with G ∈ Gk and,

Cv
k : class of 2-connected k-cvc graphs G with G ∈ Gk.

We prove that Tv
k 
= Cv

k.

2 Preliminary results

In this section, we state some results that we use in establishing our results in the
next two sections. In what follows, for a pair of non-adjacent vertices u and v of G,
Dt

uv and Dc
uv denote a γt-set of G+ uv and a γc-set of G+ uv, respectively. Further,

for a vertex v of G, Dt
v and Dc

v denote a γt-set of G − v and a γc-set of G − v,
respectively. Van der Merwe et al. [8] and [9] established fundamental properties of
4-γt-critical graphs described in the following propositions.

Proposition 2.1. [8] Let G be a 4-γt-critical graph and let u and v be a pair of
non-adjacent vertices of G. Then either

(1) {u, v} � G, or
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(2) for either u or v, without loss of generality, say u, {w, u, v} � G for some
w ∈ NG(u) and w /∈ NG(v), or

(3) for either u or v, without loss of generality, say u, {x, y, u} � G − v and
G[{x, y, u}] is connected.

Proposition 2.2. [9] For any graph G with γt(G) = 3 and a γt-set Dt, either
G[Dt] = P3 or G[Dt] = K3.

Goddard et al. [4] provided some results on k-tvc graphs.

Lemma 2.3. [4] Let G be a k-tvc graph and v ∈ V (G). Then

(1) Dt
v ∩NG[v] = ∅,

(2) |Dt
v| = k − 1.

On connected domination critical graphs, Chen et al. [3] established the following
result for k-γc-critical graphs.

Lemma 2.4. [3] Let G be a k-γc-critical graph and let u and v be a pair of non-
adjacent vertices of G. Then

(1) k − 2 ≤ |Dc
uv| ≤ k − 1,

(2) Dc
uv ∩ {u, v} 
= ∅.

In the concept of vertex deletion, Ananchuen et al. [2] provided some properties
of k-cvc graphs as follows.

Lemma 2.5. [2] Let G be a k-cvc graph and v ∈ V (G). Then

(1) Dc
v ∩NG[v] = ∅,

(2) |Dc
v| = k − 1.

3 Edge critical graphs

In this section, we show that connected k-γt-critical graphs and k-γc-critical graphs
are the same if and only if 3 ≤ k ≤ 4. We first establish the following theorem.

Theorem 3.1. Let G be a connected graph. Then G is a 4-γt-critical graph if and
only if G is a 4-γc-critical graph.

Proof. Suppose that G is a 4-γc-critical graph. Thus γt(G) ≤ γc(G) = 4. Suppose
that γt(G) < 4. Hence, there exists a γt-set Dt of G of size less than 4. Because
|Dt| < 4, G[Dt] is connected by Proposition 2.2. Therefore, Dt is a connected
dominating set of G of size less than 4, a contradiction. Hence, γt(G) = 4.

Consider G+uv for uv /∈ E(G). Because G is 4-γc-critical, there exists by Lemma
2.4(1) a γc-set D

c
uv of G+ uv with |Dc

uv| < 4. Clearly, Dc
uv is a total dominating set
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of G + uv. Thus γt(G + uv) ≤ |Dc
uv| = γc(G + uv) < γc(G) = γt(G). Hence, G is

4-γt-critical.

Conversely, suppose G is a 4-γt-critical graph. We first show that γc(G) = 4.
Claim : There exists a connected dominating set of size 4 of G.

Consider G+uv for uv /∈ E(G). Let Dt
uv be a γt-set of G+uv. Because |Dt

uv| < 4,
(G+ uv)[Dt

uv] is connected. Therefore, D
t
uv �c G + uv. We distinguish 2 cases.

Case 1 : |Dt
uv ∩ {u, v}| = 1.

By Proposition 2.1(3), |Dt
uv| = 3. We may suppose without loss of generality

that Dt
uv ∩ {u, v} = {v}. Since Dt

uv �c G + uv and G is connected, it follows that
there exists w ∈ V (G) − Dt

uv such that wu ∈ E(G) and w must be adjacent to at
least one vertex in Dt

uv. Because |Dt
uv| = 3, Dt

uv ∪ {w} is a connected dominating
set of size 4 of G.
Case 2 : |Dt

uv ∩ {u, v}| = 2.
We then distinguish 2 subcases according to Proposition 2.1(1) and (2).

Subcase 2.1 : Dt
uv = {u, v}.

If there is w ∈ NG(u) ∩ NG(v), then {u, v, w} is a total dominating set of size
3 of G, a contradiction. Hence, NG(u) ∩ NG(v) = ∅. Because G is connected and
{u, v} � G, there exist x, y such that x ∈ NG(u), y ∈ NG(v) and xy ∈ E(G). Thus
{u, v, x, y} is a connected dominating set of size 4 of G.
Subcase 2.2 : Dt

uv = {u, v, z} for some z ∈ V (G).
Thus z is adjacent to exactly one of u or v, say v. If there is y ∈ NG({z, v}) ∩

NG(u), then {u, v, y, z} is a connected dominating set of size 4 of G. Suppose that
NG({z, v}) ∩ NG(u) = ∅. We partition set V (G) − {u, v, z} as A1 = NG(u) and
A2 = NG({v, z}). If v � A2, then {u, v} � G + uv. This contradicts the fact that
Dt

uv = {u, v, z} is a smallest total dominating set of G+ uv. Hence, there is w ∈ A2

such that zw ∈ E(G) but vw /∈ E(G). Consider G+ vw. If |Dt
vw ∩{v, w}| = 1, then,

by similar arguments as in the proof of Case 1, G contains a connected dominating
set of size 4. Thus, we now suppose |Dt

uv ∩ {v, w}| = 2. If Dt
vw = {v, w}, then

no vertex in Dt
vw dominates u because w ∈ A2 and A1 ∩ A2 = ∅, a contradiction.

Therefore, Dt
vw = {a, v, w} for some a ∈ V (G). In fact a ∈ A1. Thus a is adjacent to

w because A1 ∩A2 = ∅. Since vz, wz ∈ E(G), {a, v, w, z} is a connected dominating
set of size 4 of G and we settle our claim.

If γc(G) < 4, then γt(G) ≤ γc(G) < 4, a contradiction. Hence, γc(G) = 4.

We finally prove the criticality by considering G+ uv for uv /∈ E(G). Because G
is 4-γt-critical, there exists a γt-set D

t
uv of size less than 4 of G+uv. Since |Dt

uv| < 4,
(G + uv)[Dt

uv] is connected by Proposition 2.2. Thus Dt
uv �c G + uv. Therefore,

γc(G+ uv) ≤ |Dt
uv| < 4 = γc(G). This completes the proof of our theorem.

By Theorem 3.1, we have Te
4 = Ce

4. We next show that Te
k 
= Ce

k for k ≥ 5.

Theorem 3.2. Te
k 
= Ce

k when k ≥ 5.

Proof. We prove the theorem by providing a graph G ∈ Te
k/C

e
k when k ≥ 5. We

distinguish our proof by the parity of k.
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Case 1 : k is even.
Let k = 2q for some positive integer q ≥ 3. Construct the graph G from q

different paths of length 2, say P i = xi
1x

i
2x

i
3 for i = 1, . . . , q and then forms a clique

on {xi
1|1 ≤ i ≤ q} (see Figure 1(a)).

We first show that γt(G) = γc(G) = k = 2q. Note that {xi
1, x

i
2|1 ≤ i ≤ q} �c G.

Hence, γc(G) ≤ 2q. For i = 1, .., q, we need at least two vertices to totally dominate
each of the P i, implying that γt(G) ≥ 2q. Therefore, 2q ≤ γt(G). Thus 2q ≤ γt(G) ≤
γc(G) ≤ 2q. Hence, γt(G) = γc(G) = 2q.

We next consider the total domination number of G + uv where uv /∈ E(G). If
{u, v} = {xi

m, x
j
p} where i 
= j and 2 ≤ m, p ≤ 3, then {xi

m, x
j
p} ∪ {xl

1, x
l
2|l 
= i, j} �t

G + uv. Hence, γt(G + uv) ≤ 2q − 2 < γt(G). If {u, v} = {xi
1, x

j
p} where i 
= j

and p ∈ {2, 3}, then {xi
1, x

i
2, x

j
p} ∪ {xl

1, x
l
2|l 
= i, j} �t G + uv. Hence, γt(G + uv) ≤

2q − 1 < γt(G). Finally, if {u, v} = {xi
1, x

i
3}, then {xi

1} ∪ {xl
1, x

l
2|l 
= i} �t G + uv.

Thus γt(G+ uv) = 2q − 1 < γt(G). Therefore, G is k-γt-critical and G ∈ Te
k.

We then consider the connected domination number of G + uv. If {u, v} =
{x1

3, x
2
3}, then by Lemma 2.4(2), Dc

uv ∩ {x1
3, x

2
3} 
= ∅. Without loss of generality,

we may suppose x1
3 ∈ Dc

uv. Since (G + uv)[Dc
uv] is connected, we need at least

2 vertices xi
1, x

i
2 to dominate P i for i 
= 1, 2. If x2

3 ∈ Dc
uv, then x2

1, x
2
2 ∈ Dc

uv or
x1
1, x

1
2 ∈ Dc

uv by the connectedness of (G+uv)[Dc
uv]. Therefore |Dc

uv| ≥ 2q = k. Thus
G is not critical. Then x2

3 /∈ Dc
uv and thus x1

1, x
1
2, x

1
3 ∈ Dc

uv by the connectedness of
(G+ uv)[Dc

uv]. Further, x
2
1 ∈ Dc

uv to dominate x2
2. Therefore, |Dc

uv| ≥ 2q = k and G
is not a k-γc-critical graph. Thus G /∈ Ce

k.
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Figure 1(a) Figure 1(b)

Case 2 : k is odd.
Let k = 2q + 1 for some positive integer q ≥ 2. Constructed the graph G from

q different paths of length 2, say P i = xi
1x

i
2x

i
3 for i = 1, . . . , q and a path of length

1, say P q+1 = xq+1
1 xq+1

2 and then forms a clique on {xi
1|1 ≤ i ≤ q + 1} (see Figure

1(b)).

By similar arguments as in Case 1, we have γt(G) = γc(G) = 2q + 1. To show
the criticality of G + uv where uv /∈ E(G), we can apply similar arguments as in
the proof of Case 1 when {u, v} ⊆ {xi

l|1 ≤ i ≤ q, 1 ≤ l ≤ 3}. We now suppose that
{u, v} ∩ V (P q+1) 
= ∅. Because |V (P q+1)| = 2, |{u, v} ∩ V (P q+1)| = 1. Without loss
of generality, assume that u ∈ V (P q+1) and v ∈ V (P j) for some j ∈ {1, . . . , q}. If
u ∈ {xq+1

1 , xq+1
2 } and v ∈ {xj

2, x
j
3}, then {u, v}∪{xl

1, x
l
2|l 
= j, q+1} �t G+uv. Thus

γt(G+ uv) ≤ 2q ≤ γt(G). Finally if u = xq+1
2 and v = xj

1, then {xl
1, x

l
2|l 
= q + 1} �t
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G+ uv. Therefore, γt(G+ uv) ≤ 2q < γt(G) and G ∈ T
e
k. By considering G+ x1

3x
2
3,

we can show that a graph G is not a k-γc-critical graph by similar arguments as in
Case 1.

Hence, G ∈ Te
k but G /∈ Ce

k. Therefore, T
e
k 
= Ce

k when k ≥ 5. This completes the
proof of our theorem.

Chen et al. [3] characterized that a graph G is 2-γc-critical if and only if G =
∪n
i=1K1,ni

for ni ≥ 1 and n ≥ 2 while Henning and van der Merwe [6] proved that
a graph G is 2-γt-critical if and only if G is a complete graph. Thus Te

2 
= Ce
2.

Ananchuen [1] pointed out that 3-γt-critical graphs and 3-γc-critical graphs are the
same. That is Te

3 = Ce
3. By Theorems 3.1 and 3.2, we have the following corollary.

Corollary 3.3. Te
k = C

e
k if and only if 3 ≤ k ≤ 4.

Our next result shows that there exists a graph belonging to Te
k and Ce

k.

Theorem 3.4. For k ≥ 5, Te
k ∩ Ce

k 
= ∅.
Proof. Let G ∈ Ce

k. For all uv /∈ E(G) and a γc-set D
c
uv of G + uv, we have Dc

uv is
also a total dominating set of G+uv. Since G is a k-γc-critical graph and γt(G) = k,
it follows that γt(G+ uv) ≤ |Dc

uv| < k = γt(G). Therefore, G ∈ T
e
k and C

e
k ⊆ T

e
k. To

prove the theorem, it suffices to establish a graph G in the class Ce
k. We distinguish

2 cases according to the parity of k.

Case 1 : k is even.
Let k = 2m for some positive integer m ≥ 3. For 1 ≤ i ≤ k, let Kni

be a complete
graph of order ni andKk a complete graph of order k where V (Kk) = {x1, x2, . . . , xk}.
Then we join every vertex in V (Kn2i

) to every vertex in V (Kn2i−1
) for 1 ≤ i ≤ m.

Further, we join xi to every vertex in Kni
for 1 ≤ i ≤ 2m. Finally, for 1 ≤ i ≤ m,

we join x2i to every vertex in V (Kn2i−1
) except one vertex, say u2i−1, and join x2i−1

to every vertex in V (Kn2i
) except one vertex, say u2i (see Figure 2(a)).
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Figure 2(a)

We next show that a graph G ∈ Ce
k. Clearly, {x1, x2, . . . , xk} �c G. Thus

γt(G) ≤ γc(G) ≤ k. By the construction, we need at least 2 vertices to totally
dominate Kn2i

∪ Kn2i−1
for 1 ≤ i ≤ m. It follows that γt(G) ≥ k. Hence, k ≤

γt(G) ≤ γc(G) ≤ k. Therefore, γc(G) = γt(G) = k.
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For establishing the criticality, we consider G+ uv where uv /∈ E(G). If {u, v} =
{x2i, u2i−1}, then Dc

uv = {xi | i = 1, 2, . . . , k} − {x2i−1}. Similarly, if {u, v} =
{x2i−1, u2i}, then i Dc

uv = {xi | i = 1, 2, . . . , k} − {x2i}. If {u, v} = {x2i, q} when q is
any vertex in Kn2j−1

or Kn2j
for 1 ≤ i 
= j ≤ m, then Dc

uv = ({xi | i = 1, 2, . . . , k} ∪
{q}) − {x2j , x2j−1}. We can show that γc(G) < k when {u, v} = {x2i−1, q} such
that q is a vertex in Kn2j−1

or Kn2j
for 1 ≤ i 
= j ≤ m by a similar argument.

Further, if {u, v} = {p, q} when p ∈ V (Kn2i
) and q ∈ V (Kn2j

) for 1 ≤ i 
= j ≤ m,
we have Dc

uv = ({xi|i = 1, 2, . . . , k} ∪ {p, q}) − {x2i−1, x2j , x2j−1}. Moreover, when
p ∈ V (Kn2i

) and q ∈ V (Kn2j−1
) or p ∈ V (Kn2i−1

) and q ∈ V (Kn2j
) or p ∈ V (Kn2i−1

)
and q ∈ V (Kn2j−1

) for 1 ≤ i 
= j ≤ m, we can prove the criticality by similar
arguments. Therefore, G ∈ Ce

k.

Case 2 : k is odd.
Let k = 2m + 1 for some positive integer m ≥ 2. For 1 ≤ i ≤ k − 1, let Kni

be a complete graph of order ni, Knk
= K1 and Kk a complete graph of order k

such that V (Kk) = {x1, x2, . . . , xk}. Then we join every vertex in V (Kn2i
) to every

vertex in V (Kn2i−1
) for 1 ≤ i ≤ m. Further, we join xi to every vertex in Kni

for
1 ≤ i ≤ 2m + 1. Finally, for 1 ≤ i ≤ m, we join x2i to every vertex in V (Kn2i−1

)
except one vertex and x2i−1 to every vertex in V (Kn2i

) except one vertex (see Figure
2(b)). It is worth noting that, in these two constructions of Cases 1 and 2, the graphs
G ∈ Te

k ∩ Ce
k when ni = 1 for 1 ≤ i ≤ k were found earlier by Henning and van der

Merwe [6].
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Figure 2(b)

We can show that γc(G) = k by similar arguments as in Case 1. We then show
the criticality of G. Let {a} = V (Knk

). Consider G + uv where uv /∈ E(G). If
{u, v} ⊆ ∪k−1

i=1 (V (Kni
)∪ {xi}), we then establish the criticality by similar arguments

as k is even. We now consider when {u, v}∩{a, xk} 
= ∅. If {u, v} = {xk, p} for some
p ∈ V (Kn2i

) or p ∈ V (Kn2i−1
), i = 1, 2, . . . , m, then Dc

uv = ({xi|i = 1, 2, . . . , k} ∪
{p}) − {x2i, x2i−1}. If {u, v} = {a, p} for some p ∈ V (Kn2i

) or p ∈ V (Kn2i−1
), i =

1, 2, . . . , m, then Dc
uv = ({xi|i = 1, 2, . . . , k} ∪ {p}) − {x2i−1, xk} or Dc

uv = ({xi|i =
1, 2, . . . , k}∪{p})−{x2i, xk}, respectively. Finally, if {u, v} = {a, xi} for 1 ≤ i ≤ k−1,
then Dc

uv = {xi|i = 1, 2, . . . , k−1}. In either case, γc(G+uv) < k. Therefore, G ∈ Ce
k

and this completes the proof of our theorem.
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4 Vertex critical graphs

In this section, we show that 2-connected k-tvc graphs and k-cvc graphs are the same
if and only if 3 ≤ k ≤ 4. We first give the following theorem.

Theorem 4.1. Let G be a 2-connected graph. Then G is a 4-tvc graph if and only
if G is a 4-cvc graph.

Proof. Note that for any v ∈ V (G), v is not a support vertex and G− v is connected
since G is 2-connected. Let G be a 4-cvc graph. Hence, γt(G) ≤ γc(G) = 4. If
γt(G) < 4, then there exists a γt-set D

t of size less than 4 of G. Therefore, G[Dt] is
connected by Proposition 2.2. Thus Dt �c G and we have γc(G) ≤ 3, a contradiction.
Hence, γt(G) = 4.

We next show the criticality. For any v ∈ V (G), γt(G − v) ≤ γc(G − v) = 3 by
Lemma 2.5(2) and because G is 4-cvc. Thus γt(G− v) < γt(G) as required.

Conversely, suppose G is 4-tvc. We first show that γc(G) = 4. Let v ∈ V (G).
Consider G−v. Since G is 4-tvc, there exists a γt-set D

t
v of G−v. By Lemma 2.3(2),

|Dt
v| = 3. By Proposition 2.2, (G − v)[Dt

v] is connected. Thus Dt
v �c G − v. By

Lemma 2.3(1), there is no vertex of Dt
v adjacent to v. Since G is connected, there

exists w ∈ V (G)−Dt
v such that vw ∈ E(G) and w is adjacent to at least one vertex

of Dt
v. Thus Dt

v ∪ {w} is a γc-set of size 4 of G. We now have γc(G) ≤ 4. Suppose
there exists Dc which is a γc-set of size less than 4. Since G[Dc] is connected, there
is no isolated vertex in G[Dc]. Thus Dc �t G. Therefore, γt(G) ≤ |Dc| < 4 =
γt(G), a contradiction. Thus γc(G) = 4. In the proof of criticality, since |Dt

v| = 3,
(G−v)[Dt

v] is connected. Hence, D
t
v is a connected dominating set ofG−v. Therefore,

γc(G− v) ≤ |Dt
v| = 3 < 4 = γc(G) and this completes the proof of our theorem.

Recall that
Tv
k : class of 2-connected k-tvc graphs G with G ∈ Gk and,

Cv
k : class of 2-connected k-cvc graphs G with G ∈ Gk.

By Theorem 4.1, we have Tv
4 = Cv

4. However, we next show that Tv
k and Cv

k when
k ≥ 5 are different.

Theorem 4.2. Tv
k 
= Cv

k when k ≥ 5.

Proof. We prove this theorem by giving a construction of a graph G such that G ∈ T
v
k

but G /∈ Cv
k when k ≥ 5. We distinguish 2 cases according to the parity of k.

Case 1 : k is even.
Let k = 2m + 2 where m ≥ 2. Let P i = ai1a

i
2a

i
3a

i
4 for 1 ≤ i ≤ m. Let V (G) =

∪m
i=1V (P i) ∪ {x, y} and E(G) = {xy} ∪ {xai1|1 ≤ i ≤ m} ∪ {yai4|1 ≤ i ≤ m} (see

Figure 3(a)).
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Figure 3(a)

Clearly, {x, y}∪{ai1, ai4|1 ≤ i ≤ m} �c G. Thus γc(G) ≤ 2m+2. Since a γc-set of
G is also a γt-set ofG, γt(G) ≤ γc(G) ≤ 2m+2. To show that γt(G) = γc(G) = 2m+2,
we need only show that 2m+ 2 ≤ γt(G). Let Dt be a γt-set of G. We next establish
the following claim.

Claim 1 : For 1 ≤ i ≤ m, |Dt ∩ V (P i)| ≥ 2.
Suppose first that ai2 ∈ Dt. Thus ai3 ∈ Dt or ai1 ∈ Dt. It follows that ai3, a

i
2 ∈ Dt

or ai1, a
i
2 ∈ Dt. We then suppose that ai2 /∈ Dt. If ai3 ∈ Dt, then ai4 ∈ Dt. Finally,

consider when ai3 /∈ Dt. Thus ai1, a
i
4 ∈ Dt to dominate ai2, a

i
3 and we settle Claim 1.

Suppose first that {x, y} ⊆ Dt. By Claim 1, |Dt| ≥ 2m+ 2.

We next suppose that |{x, y} ∩Dt| = 1. Without loss of generality, assume that
{x, y} ∩Dt = {x}. Since x ∈ Dt, x is adjacent to some vertex in Dt. Thus ai1 ∈ Dt

for some i ∈ {1, . . . , m}. Without loss of generality, a11 ∈ Dt. We first suppose that
a14 /∈ Dt. Since Dt �t a

1
4 and y /∈ Dt, a13 ∈ Dt. Because a13 ∈ Dt and a14 /∈ Dt, it

follows that a12 ∈ Dt. Hence, {x, a11, a12, a13} ⊆ Dt. By Claim 1, |Dt ∩ V (P i)| ≥ 2
for 2 ≤ i ≤ m. Therefore, |Dt| ≥ 2(m − 1) + 4 = 2m + 2. We then consider
when a14 ∈ Dt. Since y /∈ Dt, a13 ∈ Dt. Hence, {x, a11, a14, a13} ⊆ Dt. Similarly,
|Dt| ≥ 2(m− 1) + 4 = 2m+ 2.

We finally suppose that {x, y}∩Dt = ∅. Since Dt �t {x, y}, ai1, aj4 ∈ Dt for some
i, j ∈ {1, . . . , m}. Suppose first that i = j. With out loss of generality, i = j = 1.
Since x, y /∈ Dt, a11, a

1
4 ∈ Dt and a11a

1
4 /∈ E(G), it follows that a12, a

1
3 ∈ Dt and

thus {a11, a12, a13, a14} ⊆ Dt. By Claim 1, |V (P i) ∩ Dt| ≥ 2 for 2 ≤ i ≤ m. Thus
|Dt| ≥ 2(m − 1) + 4 = 2m + 2. We now consider j 
= i. Without loss of generality,
let i = 1, j = 2. Since {x, y} ∩ Dt = ∅ and a11, a

2
4 ∈ Dt, it follows that we need at

least 3 vertices in Dt ∩ V (P l) to totally dominate P l for l ∈ {1, 2}. Therefore, by
Claim 1, |Dt| ≥ 2(m− 2) + 3 + 3 = 2m+ 2.

Hence, 2m + 2 ≤ γt(G) ≤ γc(G) ≤ 2m + 2 and we have that γt(G) = γc(G) =
2m + 2. We next establish the total domination criticality. Consider G − v where
v ∈ V (G). We have to show that |Dt

v| = 2m + 1. Suppose first that v = ai1. Thus
Dt

v = {ai3, ai4, y}∪{aj2, aj3|1 ≤ i 
= j ≤ m} and |Dt| = 2(m−1)+3 = 2m+1. We then
suppose that v = ai2. Hence, Dt

v = {x, y, ai4} ∪ {aj2, aj3|1 ≤ j 
= i ≤ m} and |Dt
v| =

2(m− 1)+ 3 = 2m+1. When v = x, we have Dt
v = {a12, a13, a14} ∪ {ai2, ai3|2 ≤ i ≤ m}
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and |Dt
v| = 2(m− 1) + 3 = 2m+1. We can prove the criticality when v = ai4, v = ai3

and v = y where i ∈ {1, . . . , m} by the same arguments as when v = ai1, v = ai2 and
v = x, respectively. Hence, G ∈ Tv

k. The graph G is not a k-cvc because when we
consider G − x, by Lemma 2.5(1), y /∈ Dc

x and it follows that (G − x)[Dc
x] is not

connected. Therefore, G /∈ Cv
k.

Case 2 : k is odd.
Let k = 2m+ 1 when m ≥ 2. Let P i = ai1a

i
2a

i
3a

i
4 for 2 ≤ i ≤ m and P 1 = a11a

1
2a

1
3.

Let V (G) = ∪m
i=1V (P i)∪{x, y} and E(G) = {xy, a13y}∪{xai1|1 ≤ i ≤ m}∪{yai4|2 ≤

i ≤ m} (see Figure 3(b)).
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Figure 3(b)

We see that {x, y, a11} ∪ {ai1, ai4|2 ≤ i ≤ m} �c G. Thus γc(G) ≤ 2(m− 1) + 3 =
2m+1. To show that γt(G) = γc(G) = 2m+1, we need only show that γt(G) ≥ 2m+1.
Let Dt be a γt-set of G. We also establish the following claim.

Claim 2 : For 2 ≤ i ≤ m, |Dt ∩ V (P i)| ≥ 2.
By applying the same arguments as in the proof of Claim 1, |Dt∩V (P i)| ≥ 2 for

all i such that |V (P i)| = 4.

We first suppose that {x, y} ⊆ Dt. To dominate a12, a
1
1 ∈ Dt or a13 ∈ Dt. Hence,

{a11, x, y} ⊆ Dt or {a13, x, y} ⊆ Dt. By Claim 2, |Dt ∩ V (P i)| ≥ 2 for 2 ≤ i ≤ m.
Thus |Dt| ≥ 2(m− 1) + 3 = 2m+ 1.

Suppose |{x, y} ∩Dt| = 1. Without loss of generality, assume that {x, y} ∩Dt =
{x}. Since x ∈ Dt and y /∈ Dt, it follows that ai1 ∈ Dt for some i ∈ {1, . . . , m}.
We first suppose that i > 1, without loss of generality i = 2. Thus a21 ∈ Dt.
Since y /∈ Dt and Dt �t P

1, it follows that |Dt ∩ V (P 1)| ≥ 2. Because Dt �t a
2
4,

{x, a21, a22, a23} ⊆ Dt when a24 /∈ Dt and {x, a21, a23, a24} ⊆ Dt when a24 ∈ Dt. Hence,
by Claim 2, γt(G) = |Dt| ≥ 2(m − 2) + 2 + 4 = 2m + 2 > 2m + 1 = γc(G), a
contradiction. Therefore, i = 1. Since y /∈ Dt, Dt �t a

1
3 and a11a

1
3 /∈ E(G), it follows

that |Dt ∩ V (P 1)| ≥ 2. By Claim 2, |Dt ∩ V (P j)| ≥ 2 for j ∈ {2, . . . , m}. Hence,
|Dt| ≥ 2(m− 1) + 2 + 1 = 2m+ 1.

Suppose {x, y}∩Dt = ∅. To totally dominate {x, y}, {ai1, a13} ⊆ Dt or {ai1, aj4} ⊆
Dt for some 1 ≤ i ≤ m, 2 ≤ j ≤ m.

We first consider the case when {ai1, aj4} ⊆ Dt for some 1 ≤ i ≤ m, 2 ≤ j ≤ m.
Since x, y /∈ Dt, |Dt ∩ V (P 1)| ≥ 2. We first suppose that i > 1. If i 
= j, then
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|Dt∩V (P i)| = |Dt∩V (P j)| = 3 to dominate ai4 and aj1 because x, y /∈ Dt. By Claim 2,
γt(G) = |Dt| ≥ 2(m−3)+3+3+2 = 2m+2 > 2m+1 = γc(G), a contradiction. Hence,
i = j. Since ai1, a

i
4 ∈ Dt, x, y /∈ Dt and ai1a

i
4 /∈ E(G), it follows that ai2, a

i
3 ∈ Dt.

Thus, by Claim 2, γt(G) = |Dt| ≥ 2(m − 2) + 2 + 4 = 2m + 2 > 2m + 1 = γc(G),
again a contradiction. Hence, i = 1. Therefore, {a11, a12} ⊆ Dt and {aj2, aj3, aj4} ⊆ Dt

to totally dominate aj1. Thus |Dt| ≥ 2(m− 2) + 2 + 3 = 2m+ 1.

We now consider when {ai1, a13} ⊆ Dt for some 1 ≤ i ≤ m. If i = 1, then
Dt ∩ V (P 1) = {a11, a12, a13} because a11a

1
3 /∈ E(G). Thus, by Claim 2, |Dt| ≥ 2(m −

1) + 3 = 2m+ 1. If i > 1, without loss of generality let i = 2, then a12 ∈ Dt because
a13 ∈ Dt and y /∈ Dt. Since a21 ∈ Dt and x, y /∈ Dt, it follows that |Dt ∩ V (P 2)| = 3
to totally dominate a24. By Claim 2, |Dt| ≥ 2(m − 2) + 2 + 3 = 2m + 1. Hence,
2m+ 1 ≤ γt(G) ≤ γc(G) ≤ 2m+ 1. Therefore, γt(G) = γc(G) = 2m+ 1.

We finally establish the criticality of a graph G. Consider G−v where v ∈ V (G).
We have to show that |Dt

v| = 2m. Suppose first that v = x, thenDt
v = {ai2, ai3|2 ≤ i ≤

m}∪{a12, a13} and |Dt
v| = 2(m−1)+2 = 2m. Similarly, |Dt

y| = 2m. We then suppose
v = a11. Thus Dt

v = {ai2, ai3|2 ≤ i ≤ m} ∪ {a13, y} and |Dt
v| = 2(m − 1) + 2 = 2m.

We also show that |Dt
a13
| = 2m by a similar argument as v = a11. If v = a12, then

Dt
v = {ai2, ai3|2 ≤ i ≤ m} ∪ {x, y} and |Dt

v| = 2(m − 1) + 2 = 2m. If v = ai1 for
2 ≤ i ≤ m, then Dt

v = {aj2, aj3|2 ≤ j 
= i ≤ m} ∪ {ai3, ai4} ∪ {a11, a12}. It follows that
|Dt

v| = 2(m−2)+2+2 = 2m. Further, if v = ai4 for 2 ≤ i ≤ m, then Dt
v = {aj2, aj3|2 ≤

j 
= i ≤ m} ∪ {ai1, ai2} ∪ {a13, a12}. It follows that |Dt
v| = 2(m − 2) + 2 + 2 = 2m.

If v = ai2 for 2 ≤ i ≤ m, then Dt
v = {aj2, aj3|2 ≤ j 
= i ≤ m} ∪ {a11, ai4, x, y}. It

follows that |Dt
v| = 2(m− 2) + 4 = 2m. Finally, if v = ai3 for 2 ≤ i ≤ m, then Dt

v =
{aj2, aj3|2 ≤ j 
= i ≤ m}∪{a11, ai1, x, y}. It also follows that |Dt

v| = 2(m−2)+4 = 2m.
Hence, G ∈ T

v
k.

We can show that G is not a k-cvc graph by the same arguments as in Case 1.
Hence, G /∈ Cv

k and this completes the proof of our theorem.

Goddard et al. [4] mentioned that K2 is a 2-tvc graph while Ananchuen et al.
[2] claimed that a 2-cvc graph is K2n delete a perfect matching where n ≥ 2. Thus
Tv
2 
= Cv

2. Ananchuen et al. [2] also pointed out that 2-connected 3-tvc graphs and
2-connected 3-cvc graphs are the same. Therefore, Tv

3 = Cv
3. By Theorems 4.1 and

4.2, we can conclude the following corollary.

Corollary 4.3. Tv
k = Cv

k if and only if 3 ≤ k ≤ 4.
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