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Abstract

Let G be a graph of order n. Let W be a subset of V(G) with |[W| > 6.
We show that if d(x) > 2n/3 for each © € W, then for any partition
|W| = ny + ny with ny > 3 and ny > 3, G contains two vertex-disjoint
cycles C; and C5 such that C contains n; vertices of W and C5 contains
ngy vertices of W.

1 Introduction

Let G be a graph of order n. A set of subgraphs of G is said to be independent if
no two of them have any common vertex in G. Corradi and Hajnal [3] investigated
the maximum number of independent cycles in a graph. They proved that if G is
a graph of order at least 3k with minimum degree at least 2k, then G contains k
independent cycles. In particular, when the order of GG is exactly 3k, then G contains
k independent triangles. El-Zahar [4] proved that if G is a graph of order n; + ng
with n; > 3 and ny > 3 and the minimum degree of G is at least [ny/2] + [n2/2],
then G contains two independent cycles of orders n; and ns, respectively. Sauer and
Spencer in their work [5] conjectured that if the minimum degree of G is at least 2n/3
then G contains every graph of order n with maximum degree of at most 2. This
conjecture was proved by Aigner and Brandt [1]. In [7], we proposed the following
conjecture:

Conjecture [7] Let G be a graph of order n > 3. Let W be a subset of V(G) with
|W| > 3k where k is a positive integer. Suppose that d(x) > 2n/3 for each x € W.
Then for any integer partition |W| = nq+- - -+ny withn;, > 3(1 < i < k), G contains
k independent cycles C4,...,Cy such that |V (C;) " W| =n; for all 1 < i <k.

This conjecture is supported by the following theorem:

Theorem A [7] Let G be a graph of order n > 3. Let W be a subset of V(G) with
|W| > 3k where k is a positive integer. Suppose that d(x) > 2n/3 for each x € W.
Then G contains k independent cycles such that each of the k cycles contains at least
three vertices of W'.
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Our work is also motivated by the work of Ronghua Shi [6], who showed that if
G is 2-connected and d(x) > n/2 for each # € U then G contains a cycle passing
through all the vertices of U, where U is a subset of V(G).

In this paper, we prove the following:

Theorem B Let G be a graph of order n. Let W be a subset of V(G) with |W| > 6.
If d(x) > 2n/3 for each x € W, then for any partition |W| = ny + ny with ny > 3
and ny > 3, G contains two independent cycles Cy and Cy such that Cy contains nq
vertices of W and Cy contains ny of W.

We discuss only finite simple graphs and use standard terminology and notation
from [2] except as indicated. Let G be a graph and u be a vertex of G. If H is a
subgraph of G or a subset of V(G) or a sequence of vertices of G, we define N(u, H)
to be the set of neighbors of u contained in H. Let e(u, H) = |N(u, H)|. Thus e(u, G)
is the degree of u in G. If each of X7, ..., X} is a subgraph of G or a subset of V (G)
or a sequence of vertices of G, we use [X1, Xo, ..., X}] to denote the subgraph of G
induced by the set of all the vertices x i that belongs to some of X;, Xs,..., X;. If
each of X and Y is a subgraph of G or a subset of V(&) or a sequence of vertices of
G, we define e(X,Y) = > _e(z,Y) where z runs over X. The length of a cycle or a
path L is denoted by I(L). If W is a subset of V(G), then the W-length of L is the
number of vertices of L that are contained in W. We denote the W-length of L by
lw(L). i If we list V(L) = {uy,ug,...,ux}, then operations in the subscripts of u;’s
will be taken modulo k in {1,2,..., k}.

A chord of a cycle C in G is an edge of G — E(C') that joins two vertices of C. If
we write C' = x1x5...1,,71, we assume that an orientation of C' is given such that
T is the successor of x1. Moreover, we use z;” and z; to denote the successor and
predecessor of x;, respectively. We use C|[z;, ;] to represent the path of C' from z;
to x; along the orientation of C'. We adopt the notation C(xz;, z;| = Clz;, x;] — ;,
Clxi, x;) = Cla;, x;] — xj and C(x;, x;) = Cla;, xj] — x; — x;. We use C'~ to denote
the cycle C' with its opposite orientation.

If x and y are two vertices of G and H is a subgraph of GG or a subset of V', we
define I(zy, H) = N(xz, H)N N(y, H). Let i(xy, H) = |I(zy, H)|. For a subset W of
V, let 0w (G) = min{e(z, G)|x € W}.

2 Lemmas

Let G = (V, E) be a graph of order n and W a subset of V. Lemma 2.1 is an easy
observation.

Lemma 2.1 If P =y ...x is a path of G and u is a vertex in V — V (P) such that
e(u, P) > (k+1)/2, then [P,u] has a hamiltonian path from xy to xy or k is odd and
N(u, P) = {xy, 23,25, ..., 21}

Lemma 2.2 [f P =y ...x is a path of G and u is a vertex in V — V (P) such that
e(uxy, P) > k + 1, then [P, u] has a hamiltonian path from x to u.
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Proof. The condition implies that for some i € {1,...,k — 1}, {zpz;,uz;i1} CFE
and so Xy ...%;TkTk_1 ... T u is a required path. I

Lemma 2.3 If P = x1...x is a path of G and u and v are two vertices in V —V (P)
such that e(uv, P) > k + 2, then [P, u,v] has a hamiltonian path from x1 to xj or
e(uv, P) =k + 2 and e(uv, v1x)) = 4.

Proof. Let X = {z;1|ux; € E,1 <i < k}and Y = {a;_|ux; € E,1 < i <k},
where 41 = x; and 29 = x,. Then |X| = e(u,P). Thus e(uv, P) = |X| +
e(v, P) > k + 2. Therefore N(v, P) N X contains at least two distinct vertices x;41
and z;41 with ¢ < j. Let ;4 and z;;1 be chosen with j minimal. If j < k, then
Ty ... TUT;Tj_1 ... Tit1VT 41 - . . T 1s a required path. If j =k, then [N (v, P)NX| =
2, e(uv, P) = k + 2 and {uxy,vx;} C E. Applying a similar argument with Y in
place of X, we obtain {uxy, vz} C E. |

Lemma 2.4 Let C be a cycle of order k in G with a given direction and V(C) 2 W.
Let x and y be two vertices on C. Let x' be the first vertex of W that succeeds x and
y' the first vertex of W that succeeds y. If e(z'y',C) > k + 1, then [C] contains an
x-y path P such that W C V(P).

Proof. The condition implies that either there exists u on Cf[z’,y’) such that
{y/u=,2’'u} C E or there exists v on C[y',2’) such that {z'v=,y'v} C E. If
e(x',C(y,y']) > 0 or e(y/,C(z,2']) > 0, then we readily see that there is a required
path. So assume that e(a’,C(y,y']) = 0 and e(y’, C(z,2']) = 0. Thus either u is
on C(2',y] or v is on C(y',x]. Say without loss of generality that the former holds.
Then zC~ [z, y'JuC~[u~, 2'|JuC[u, yly is a required path. |

Lemma 2.5 Let C be a cycle of order k in G with a given direction and V (C) 2 W.
Let \ be a nonnegative integer. Suppose that for each pair x and y of vertices in W,
if [C] has an x-y path containing W then e(zy,C) > k + A. Then e(uv,C) >k + A
for all {u,v} CW with u # v.

Proof. On the contrary, say e(uv,C) < k+ A — 1 for some {u,v} C W with u # v.
Let x be the first vertex of W that succeeds u and y the first vertex of W succeeds v.
Then e(zu,C) > k+ X and e(yv,C) > k+A. Thus e(zy, C) > 2(k+A)—(k+A—1) =
k+ A+ 1. By Lemma 2.4, [C] has a u-v path containing W and so e(uv,C') > k+
a contradiction. 1

Lemma 2.6 Let W be a subset of V with |W| > 3. Ife(x,G) > n/2 for allx € W,
then G has a cycle C' such that V(C) 2O W.

Proof. Let P be a path with its two endvertices in W such that ly (P) is as large as
possible. Say P = x; ...xy. If there exists y € W — V(P), then e(yxy, G — V(P)) <
n — k — 1. This would yield that e(yxy, P) > n—(n—k —1) = k+ 1 and so
[P,y] contains a hamiltonian path from z; to y by Lemma 2.2, contradicting the
maximality of P. Thus V(P) 2O W. The lemma holds if I(z,z, G — V(P)) # 0. If
I(z12%, G — V(P)) = 0 then e(xi2,, G — V(P)) < n—k and so e(xyzy, P) > k and

consequently, [P] is hamiltonian. 1
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3 Proof of the Theorem

Let G = (V, E) be a graph of order n. Let W be a subset of V' such that |W| > 6
and e(x,G) > 2n/3 for each x € W. Suppose, for a contradiction, that G does
not contain two independent cycles of W-lengths n; and ns, respectively for some
partition |W| = ny 4+ ny with ny > 3 and ny > 3. Then n; + ny < n by El-Zahar’s
result mentioned in the introduction and n; + ny > 7 by Theorem A. Thus n > 8.
The degree condition is still maintained when the edges of G — W are removed from
G. So we may assume that G — W has no edges.

We need some special terminology and notation. A W-path of G is a path with
its endvertices in W. Let H denote the set of all the subgraphs H such that H has a
cycle C' with V(C) D V(H) N W. Let P denote the set of all the subgraphs H such
that H has a path P with V(P) 2D V(H)NW.

By Lemma 2.6, G € H and so G conatins two independent W-paths P, and Ps
such that

lw(Py) =ny and ly (P2) = no. (1)
Subject to (1), we choose P; and P, in G such that
[(Py) 4 I(P,) is minimal. (2)
Let Gy = [P1] and G2 = [P,]. Subject to (1) and (2), choose P, and P, such that
e(G1) + e(G3) is maximal. (3)

Say R=V(G) -V (G1UGy), P, = x125...25, Po =119 ... 4y and |R| = r. Thus R
is an independent set of G and n = r + s+ t. Note that [2n/3] > [n/2] + 1.

Lemma 3.1 FEither I(zix,, R) =0 or I(y1y:, R) = 0.

Proof. On the contrary, say I(zixs, R) # 0 and I(y1y:, R) # . As G does not
contain two required cycles, there exists u € R such that I(z1z5, R) = I(y1y:, R) =
{u}. Moreover, G; ¢ H and G5 & H. It follows that e(z1z5, R) < r+1, e(y1ys, R) <

r+1, e(x1zs,G1) < s—1, and e(y1y;, G2) < t—1. Thus e(x125, G2) > 4n/3—(r+s) =
t+n/3>t+2and e(y1y, G1) > 4n/3 — (r+t) =s+n/3 > s+ 2. By Lemma 2.3,
Gi—r1—zs+y1+y: € Pand Gy —y; —yy + 21 + x5 € P. In the meantime, we have

e(Gi—m—as+y1+uy) +e(Ge —y1 — Y + 71+ 2)
= e(G1) — e(v175, G1) + e(y1yr, G1) + e(G2) — e(y1yr, Ga) + e(2175, G2)
—2e(21T5, Y1)
e(Gh) —(s—=1)+(s+3)+e(Ga) = (t—1)+ (t+ 3) — 2e(z125, y1Y1)
= e(Gy) + e(Gy) + 8 — 2e(z1ms, y1y:) > e(Gy) + e(Ga).
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By (1), (2) and (3), we see the equality must holds in these inequalities and
e(r1xs,y1y:) = 4. On the other hand, we see that

e(x1,Gq) + e(y1, G1) — e(x1, G1) — e(y1, Ga)
+e(xs, Go) + ey, Gh) — e(xs, G1) — e(y, Go) > 8.

Thus either e(z1, G2) + e(y1, G1) — e(x1, G1) —e(y1, G2) > 4 or e(zs, G2) +e(y, G1) —
e(xs, Gh) —e(yr, G2) > 4. Say without loss of generality that the former holds. Then

e(Gr —x1+y1) +e(Ga — y1 + 71)
= e(Gy) —e(x1,Gr) + e(yr, Gh) + e(Ga) — e(yr, Ga) + e(x1, G2) — 2e(z1,91)
> e(Gy) +e(Ge) +4 —2e(z1,y1) > e(Gy) + e(Ge) + 2.

This contradicts (3) since G; —x; +y; € P and Gy —y; + x1 € P. [
Lemma 3.2 FEither G1 € H and I(xyx,, R) =0 or Go € H and I(y1y:, R) = 0.

Proof. Since either G; € H or Gy € H, say without loss of generality G; ¢ H. If
I(z125, R) = 0, we are done. Otherwise, I(x1xz,, R) # (), and so Go ¢ H. Moreover,
by Lemma 3.1, I(y1y:, R) = 0. |

By Lemma 3.2, we may assume without loss of generality that G; ¢ H and
I(z125, R) = (). Thus

e(r125,G1 + R) <s—1+r. (4)
Therefore 2t > e(z125,Gs) > 4n/3 — (r+s—1) =t +n/3 + 1 and this implies
t>[n/3]+ 1. (5)

We shall divide our proof of the theorem into two parts: r < [n/3] —1 or r > [n/3].
Part I: r < [n/3] — 1

Let H=G—Randp = |V(H)|. Then éw(H) > [2n/3]—r = [p/2+(p—2r)/6] >
(p+1)/2. As e(x125,G1) < s — 1, we may assume that e(z1,G) < e(xs, G1). Thus
e(x1,G1) < (s—1)/2 and so e(z1,Ga) > [(p+1)/2] —[(s—1)/2] > t/2+1. We claim
that if u is an endvertex of a hamiltonian path of Go, then either e(u, Go) > (t+1)/2
or e(u,Gy) = t/2 and z1u € E. To see this, say without loss of generality that
e(u,Gy) < t/2. Then e(u,G1) > [(p+1)/2] — [t/2] > (s +1)/2. By Lemma 2.1,
Gi—x14+u€Pand Gy —u+x; €P. By (3), we have

e(Gh) + e(Gs)

e(Gy —x1+u)+e(Gy —u+x)

e(G1) —(s—=1)/24+ (s +1)/2+e(Ga) —t/2+1/2+ 1 — 2e(z1, 1)
= e(Gy) +e(Ge) +2 —2e(zy,u)

e(G1) + e(Gy).

(AVARAYS

v
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This implies that e(u,G2) = t/2 and xyu € E. Therefore the claim holds. Thus
Go € H and so Gy + o1 € H by Lemma 2.1. By (2), ny = t. Say without loss of
generality that y,ys . .. y:y; is a hamiltonian cycle of Gy. For each y;, if Gy, —y; € H,
then Gy — y; + 1 € H because e(x1,Gy — y;) > t/2, and if Gy — y; € H then
e(yi—1,G2) = e(yir1,Go) = t/2 and so Gy — y; + x1 € H since e(x1, y;_1Yit1) = 2 in
this situation.

Say Hy = Gy — x; and Hy = Go + 1. Then H; + R+ v ¢ H for all v € V(Hy).
Thus for any z-y W-path P of H, with P € P, e(v,zy) < 1 for all v € V(H,)
and so e(xy, H)) > p+1—e(zy,Hy) > p+1—(t+1) = (s—1)+ 1. It follows
that H; € H. Let C be a cycle of H; such that if H; is hamiltonian then C is a
hamiltonian cycle of H; and otherwise x5 € W, x3 € W and C' is a hamiltonian cycle
of Hy — x5. Let u and v be any two vertices in V(H;) N W. We claim that H; has
a u-v path containing V(H,) N W and e(uv, Hy) > (s — 1) + 1. To see this, let x
be the first vertex of W that succeeds v and y the first vertex of W that succeeds v
on C. If I(zy, Hy — V(C)) # 0, we readily see that H; has u-v path P € P and so
e(uv, Hy) > (s — 1) + 1. So assume I(zy, H; — V(C)) = (. By Lemma 2.4, we may
also assume that e(zy, C) < |V(C)|. Thus e(zy, H;) < s—1 and so H; does not have
an z-y path containing V/(H;) N W. This implies that e(uv, C) < |V(C)| by Lemma
2.4 and I(uv, H; —V(C)) = 0. Thus e(uv, H;) < s—1. Since e(uzx, H;) > (s—1)+1
and e(vy, Hy) > (s —1)+1, either e(xy, Hy) > (s—1)+1 or e(uv, H1) > (s —1)+1,
a contradiction. Therefore the claim holds.

Label C' = ¢icy...ceq with [ = [V(C)| such that if C' is a hamiltonian cycle of
H; then ¢; = x5 and otherwise C'is a hamiltonian cycle of Hy — xy with xo € W and
we let ¢; = x3. Then G has an z1-co hamiltonian path and an z;-¢; hamiltonian
path. By (2), we see that {cq,¢;} € W. Suppose that there exists ¢ € {3,...,1 — 1}
such that ¢; ¢ W. Let ¢; be chosen with ¢ maximal. Then e(cacit1, Hy) > (s—1)+1.
Notice that if C' is not a hamiltonian cycle of H; then coxe & E and ¢z & E. By
Lemma 2.4, [C] contains a ¢;-¢; path containing V (C')NW. Thus G; has x1-¢; path P’
containing V(G1)NW. By (2), ¢; € W, a contradiction. Therefore {ca,...,¢;} CW.
Thus either ny = s or ny = s — 1 with zo € W. Since G| € H, we also see, from this
argument, that e(x;,C’) < 1 and so e(xy, Hy) < 2.

As e(cocy, He) < t+ 1, we may assume without loss of generality that e(c¢;, Hy) <
(t +1)/2. Clearly, I(x1¢;, R) = (). Let a be a rational number such that e(z1, R) =
r/2+ a. Then e(¢, R) < r/2 —a. Clearly, t > e(x1,G2) > 2n/3 —r/2 —a—2 =
t/2+s/2+n/6 —a—2and s —2 > e(c,H) >2n/3—(t+1)/2—1r/24+a =
s/24+mn/6 —1/2 4 a. It follows that ¢ > s +n/3 —2a — 4 and s > n/3 + 2a + 3.
Consequently, n = s+t+r > s+2n/3—1+r > n+2a+2+r > n+2, a contradiction.

Part II: r > [n/3]
Sincen >8,7>3. By (5),n=s+r+t>3+[n/3]+ [n/3] +1 and it follows
that n > 12. We claim

ny > 4,no >4 and n > 15. (6)

If this is not true, say min{n;,no} = 3. Let C be a cycle of G containing at least
three vertices of W with [y (C) as small as possible and subject to this, we choose
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C with [(C) as small as possible. Suppose that Iy (C') > 4. Then e(z,C) = 2 for
all z € V(C)NW. Thus e(zy, G —V(C)) >4n/3 —4=n—-1(C)+n/3+1(C)—-4
and so i(zy, G — V(C)) > n/3+1(C) — 4 for all {z,y} C V(C)NW with z # y.
By the mimimality of C, we see that [y (C) = [(C) = 4. Say C = wjwowswawy.
Then I(w;w;y1,G—V(C))NW = () and I(w;w;12,G—V(C)) C W by the minmality
of ly(C) for all i € {1,2,3,4}. Clearly, i(wjwy, G — V(C)) + e(ws, G — V(C)) >
n/3+2n/3 -2 >n—1(C) and so I(w;w;,1,G — V(C)) N N(ws, G — V(C)) # 0,
a contradiction. Therefore Iy (C) = 3 and so G — V(C) ¢ H. Moreover, we see
e(x,C) < 3forallz € W—V(C) by the minimality of [(C') and so e(z, G-V (C)) >
2n/3 —3 > (n —1(C))/2 for all x € W — V(C'). Consequently, G — V(C) € H, a
contradiction. So ny >4 and ny > 4. Sincen =s+r+t >4+ [n/3] + [n/3] + 1,
it follows that n > 15. Hence (6) holds.

We claim that for each y € V(G2) N W, e(y,Ga + R) > (r +t+ 1)/2. If this
is not true, say e(y,Gs + R) < (r +t)/2 for some y € V(Gy) N W. Then s >
e(y,G1) > 2n/3 — (r +1)/2 = s/2+n/6. Thus s > n/3. With (5), we obtain
n=r+s+t>n/3+n/3+n/3+1=n+1, acontradiction. Hence the claim holds.
Thus either Gy is hamiltonian and so V' (G3) € W by (2) or G2+ u is hamiltonian for
some u € R. Let C' be a hamiltonian cycle of G5 if GG5 is hamiltonian and otherwise
let C' be a hamiltonian cycle of G+ yo for some yo € I(y1y;, R). Clearly, [(C') =t or
[(C) = t+1. Rename the vertices of V/(C)NW as by, b, . .., by, along the direction of
C. Moreover, we may assume that if [(C)) = ¢ + 1 then b, = yo. Let by,,11 = by and
bo = by,. Let Z; = Clb;, biyq) for all i € {1,...,ns}. As V(G)—W is an independent
set, Z; has at most two vertices for all i € {1,...,ny}. Set R = R — V(C). Clearly,
either R = R or " = R — {yo}. We may assume without loss of generality that
e(r1,G1 + R) < e(xzs,Gy + R). Thus by (4),

e(r1,Gy) >2n/3 — (r+s—1)/2=1t/2+n/6+1/2. (7

~—

Lemma 3.3 For each i € {1,2,...,ny} there exists a cycle L; with W NV (C) —
{b;} C V(L;) such that either V(L;) C V(C) =V (Z;) and L; + x1 € H or V(L;) C
(V(C) = V(Z;))U{vi} for somev; € R and L; + 1 € H.

Proof. Let i € {1,2,...,n3}. By (7), we have

First, assume that b; 11 = b". Then Z; = b;. If b} | = b;, then e(b;_1b; 11, Go+ R—
b)) >r+t+1—2=1t+r—1. Thus either [V(C —b;)] is hamiltonian or there exists
v; € R’ such that e(v;, b;_1b;y1) = 2. Thus either there is a hamiltonian cycle L; of
[V(C'—=1b;)] or Ly = C —b; +v;b;_1 +v;b;41 is a hamiltonian cycle of [V/(C —b;) U{v;}]
for some v; € R'. By (7), e(x1,L;) > [(t+1)/2] + 1 and so L; + x; is hamiltonian.

Next, assume that b;y; = b} and b/ = b;. By (2) and the assumption on C,
bibi_1 € E. If [V(C —b;—b; )] is hamiltonian, then there is a hamiltonian cycle L; of
[V(C=b;—bj )] and e(zy, L;) > e(x1, Go) —e(z1,bbf ) > (t—1)/2 and so L; +z; is
hamiltonian. So assume that [V (C'—b;—b;" )] is not hamiltonian. Then b;y1b; | & E.
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Similarly, we may assume that [V (C — b;)] is not hamiltonian and so b;,1b; | & E.
Then e(b;_1b;y1,b:b1 ) < 2 as bb;_y & E. Hence e(b_1b;11,Go + R —b; — b ;) >
r+t+1-2=1t+r—1. Thus I(bi—lbi+1a R/) 7é @ Let Lz = C-{b;’;l, bi}+vibi—1+vibi+1
with v; € R'. Clearly, |V(L;)| < t. For the proof, we may assume that x; is not
adjacent to two consecutive vertices of L;. Then e(xy, L;) < ¢/2 by Lemma 2.1. By
(7), we obtain that 2 > e(zy, b b;) > t/2+n/6+1/2 —e(xy, L;) > n/6+1/2 > 3,
a contradiction.

Next, assume that b " = b;; and b} ;| = b;. Then Z; = b;b;". The proof is similar
as above.

Finally, assume that b/ " = b;;; and b/Y = b;. Then Z; = bb/. As above,
we may assume that none of b;11b;, b;11b; and b;_1b; is an edge of G. Moreover,
[V(C) — {b;,b},b; }] is not hamitonian. Thus I(b;_1b;11, R') # 0. Let L; = C —
{b;,b;, b} + ;0,1 + ;b1 with v; € R, For the proof, we may assume that z; is not
adjacent to two consecutive vertices of L;. Thus e(zy,C — {b; ,b;, b }) < (t —1)/2.
Then by (7), 3 > e(zy,b; bib}) > e(x1,Ge) — [(t — 1)/2] > n/6+1 > 21/6, a
contradiction. I

By Lemma 3.3,
Gi—x1+V(Z)gHoralli e {1,... ,ny}. 9)

Let H =Gy — xy. Let 2" = x5 if x5 € W and otherwise x5 ¢ W and x* = x3 with
x3 € W. By (9), e(z*zs, Z;) < |V(Z;)| for all i € {1,2,...,ny}. Thus e(ax*z,, C) <
[(C') and so

e(x*r,, Gy + R') > 2[2n/3] — 1(C) > s+ |R'| + [n/3]. (10)

Thus if H € H then e(a*z,, H) < s—2 and so e(x*zs, R') > s+|R/|+[n/3]—(s—1) =
|R'| + [n/3] + 1. Consequently, |R'| > [n/3] + 1 and i(z*zs, R') > [n/3] + 1 > 6.
If H is a hamiltonian, let () be a hamiltonian cycle of H. If H is not hamiltonian
but H — x5 is hamiltonian with zo & W let ) be a hamiltonian cycle of H — x5.
Otherwise let @ = wP[z*, x;Jw with w € I(z*z,, R'). Fix a direction of @ and
rename the vertices of V(Q) N W as aq,as, ..., a,, -1 along the direction of Q). Let
a,, = a;. Note that we have at least [n/3] 4+ 1 different candidates for w since

i(x*zs, R') > [n/3] +1 > 6.
Lemma 3.4 For each j € {1,...,n1 — 1}, we have e(ajaj11,C) < (C).

Proof. On the contrary, say e(a;a;j+1,C) > [(C) + 1 for some j € {1,...,n; — 1}.
Then e(ajaji1,Z;) > |V(Z;)| + 1 for some ¢ € {1,...,n9}. Thus [Q,V(Z;)] € H. If
@ is a cycle of H, then we have two required cycles by Lemma 3.3. If @) is not a
cycle of H, we may choose w so that w ¢ V(L;), where L; is as described in Lemma
3.3, and so there are two required cycles. 1

With Lemmas 2.4 and 3.4, we now generalize Lemma 3.4 to Lemma 3.5 in the
following.
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Lemma 3.5 For all {j,k} C{1,...,ny — 1} with j < k, we have e(ajar, G+ R') >
s+ |R'|+n/3.

Proof. By Lemma 3.4, we see that e(a;ja;41,G1 + R') > 2[2n/3] —(C) > s +
|R'|+n/3 for all j € {1,...,n; — 1}. For the proof, assume that e(ajar, G; + R') <
s+ |R'|+ [n/3] — 1 for some j < k. Then e(ajai, C) > I(C) + 1. Thus e(a;ax, Z;) >
|V (Z;)] + 1 for some i € {1,...,n2}. Since e(a;a;+1,G1 + R') > s+ |R'| + n/3 and
e(agars1, G1 + R') > s+ |R'| +n/3, it follows that

e(ajrae1, Gr+ R) = 2(s +|R| + [n/3]) = (s + [R| + [n/3] = 1)
= s+ |R'|+ [n/3] + 1.

If @ contains a vertex of R/, i.e. w, we choose w so that w ¢ V(L;), where L;
is as described in Lemma 3.3. If e(aj11ak41,Q) > (Q) + 1, then [Q] contains a
path P from a; to a; with ly(P) = ny — 1 by Lemma 2.4, and so [Q,Z;] € H
as e(ajag, Z;) > |V(Z;)] + 1, a contradiction since Ly + x; € H by Lemma 3.3.
Hence e(ajr1a541,Q) < U(Q). If I(aj11ak41,G1 + R') — V(Q) contains a vertex u
not belonging to V(L;) U {x1,w}, then @ + u contains a path P’ from a; to ay
and V(Q)NW C V(P') and so [P',Z;] € H, again a contradiction since L; +
r1 € H. Therefore I(aj11ak4+1,G1 + R') — V(Q) does not contain a vertex not
belonging to V(L;) U {x;,w}. From Lemma 3.3, we see that |V (L;) N R'| < 1.
Therefore |I(aj11a5+1, G1+ R') —V(Q)| < 3 and e(aj1a54+1, G1 + R') < s+ |R'| + 3,
a contradiction. I

Lemma 3.6 For any {v,v'} C R' and any {z,y} C V(Q) — R withx # vy, [H,R' —
{v,v'}| has an z-y path P such that V(P)NV(H) C V(Q), {a1,a2,...,an,1} C
V(P) and |V(P)NR| < 2.

Proof. Let a; be the first vertex of W that succeeds = and a; the first vertex of W
that succeeds y on Q. Then e(ajar, G1 + R') > s+ |R'| + n/3 by Lemma 3.5. If
contains a vertex of R/, i.e., w, we choose w so that w & {v,v'}. By Lemma 2.4, if
e(ajar, Q) > 1(Q)+1, then [Q] contains an z-y path P with V(P) D V(Q)NW and we
are done. So we may assume that e(ajay, Q) < (Q). Then I(aar, Gi+R -V (Q)) >
n/3 > 5. Therefore I(ajar, G1 + R — V(Q)) contains a vertex u of R' — {v, v, w}
and so () + u contains a required x-y path. 1

By Lemma 3.3 and Lemma 3.6, we see that e(a;jax, Z;) < |V(Z;)| for all ¢ €
{1,...,ne} and {j,k} C {1,...,ny — 1} with 5 # k, for otherwise G contains two
required cycles. Thus e(ajay, C) < I(C) for all {j,k} C{1,...,ny — 1} with j # k.
Let v and v’ be two given arbitrary vertices of R’. Choose w so that w & {v,v'}. As
ny > 4 and by Lemma 3.6, there exists {j,k} C {1,...,n; — 1} with j # k such that
G1+ R — {v,v'} has an x1-a; path P’ and an x;-a; path P” such that ly (P') = ny
and ly (P") = ny. As e(ajar, C) < (C), we may assume that e(ay, C') < [(C)/2.

We claim that I(ziag, R — V(Q)) = 0. If this is not true, we choose v/ €
I(zyag, R — V(Q)). If 23 € V(Q), we apply Lemma 3.6 with x5 and aj in place
of z and y and see that G; + R’ € H, a contradiction. Hence zo ¢ V(@) and
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x9 ¢ W. Then apply Lemma 3.6 with x3 and a; in place of x and y and see that
G1 + R € H, a contradiction. Hence i(ziax, R — V(Q)) = (. By Lemma 3.6,
e(x1, H) < 2 for otherwise G + R’ € H. Let ' = |R'| and ¢ a rational number such
that e(zq, R') =1"/2 4 c¢. Then e(ax, R') < v — (r'/2+¢)+1=1r"/2 —c+ 1. Note
that xiax € E. Thus

1(C) >e(x1,C) > [2n/3] —1"/2 —c—e(x1, H)
> 1(C)/24n/6+5/2 —c—2; (11)
>

s —2>e(ag, Gq) 2n/3] — (r' +1(C)/2+c—1=5/2+n/6+c—1.(12)

By (11), I(C) > n/3+s—2c—4. By (12), s > n/3+4+2c¢+2 and so [(C) > 2n/3 — 2.
Since ' > [n/3] —1 and n > 15, we obtain that n = s+ 1(C) + 7' > n+2c+71r' > n,
a contradiction. This proves the theorem. 1

References

[1] M. Aigner and S. Brandt, Embedding arbitrary graphs of maximum degree two,
J. London Math. Soc. (2) 48 (1993), 39-51.

[2] B. Bollobés, Extremal Graph Theory, Academic Press, London (1978).

[3] K. Corradi and A. Hajnal, On the maximal number of independent circuits in a
graph, Acta Math. Acad. Sci. Hungar. 14 (1963), 423-439.

[4] M.H. El-Zahar, On circuits in graphs, Discrete Math. 50 (1984), 227-230.

[5] N. Sauer and J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory
Ser. B 25 (1978), 295-302.

[6] Ronghua Shi, 2-neighborhoods and hamiltonian conditions, J. Graph Theory (3)
16 (1992), 267-271.

[7] H. Wang, Partial degree conditions and cycle coverings, J. Graph Theory 78
(2015), 295-304.

(Received 15 Mar 2015; revised 1 Oct 2015, 8 Dec 2015)



