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Abstract

A neighborhood total dominating set in a graph G is a dominating set
S of G with the property that the subgraph induced by N(S), the open
neighborhood of the set S, has no isolated vertex. The neighborhood
total domination number γnt(G) is the minimum cardinality of a neigh-
borhood total dominating set of G. Arumugam and Sivagnanam in-
troduced and studied the concept of neighborhood total domination in
graphs [S. Arumugam and C. Sivagnanam, Opuscula Math. 31 (2011)
519–531]. They proved that if G and G are connected, then γnt(G) +

γnt(G) ≤
{
dn
2
e+ 2 if diam(G) ≥ 3.

dn
2
e+ 3 if diam(G) = 2.

, where G is the complement of G.

The problem of characterizing graphs attaining equality in the previous
bounds was left as an open problem by the authors. In this paper, we
address this open problem by studying sharpness and strictness of the
above inequalities.
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1 Introduction

We consider finite, undirected, and simple graphs G with vertex set V = V (G) and
edge set E = E(G). The open neighborhood N(v) of a vertex v consists of the
vertices adjacent to v and its closed neighborhood is N [v] = N(v) ∪ {v}. The degree
of v, denoted by dG(v), is the cardinality of its open neighborhood. We denote by
∆(G) = ∆ and δ(G) = δ the maximum degree and the minimum degree of the graph
G, respectively. For a set S ⊆ V , the open neighborhood is N(S) = ∪v∈SN(v), the
closed neighborhood is N [S] = N(S) ∪ S, and 〈S〉 is the subgraph induced by the
vertices of S.

The distance between two vertices x and y, denoted by dG(x, y), is the length
of a shortest path from x to y. The diameter of G is the maximum distance among
all pairs of vertices of G, denoted by diam(G). The complement G of a graph G
is a graph with vertex set V (G) and two vertices x and y are adjacent in G if and
only if xy /∈ E(G). Clearly, if G and G are both connected, then G has order n ≥ 4,
min{diam(G),diam(G)} ≥ 2 and min{δ(G), δ(G)} ≥ 1. The corona of a graph G,
denoted by cor(G), is the graph formed from a copy of G by creating for each v ∈ V ,
a new vertex v′ and edge vv′. The Cartesian product of two graphs G and H, G�H
is a graph with vertex set V (G�H) = V (G) × V (H) and two vertices (u1, v1) and
(u2, v2) are adjacent if u1u2 ∈ E(G) and v1 = v2 or v1v2 ∈ E(H) and u1 = u2.

A set S ⊆ V (G) is a dominating set of G if every vertex of V − S is adjacent
to at least one vertex of S. The cardinality of the smallest dominating set of G is
the domination number γ(G) (see [4, 6]). A dominating set S of G is called a total
dominating set if the induced subgraph 〈S〉 has no isolated vertex. The cardinality
of the smallest total dominating set of G is the total domination number γt(G).

In [1], Arumugam and Sivagnanam introduced and studied the concept of neigh-
borhood total domination in graphs. A neighborhood total dominating set in a graph
G is a dominating set S of G with the property that the subgraph induced by N(S)
has no isolated vertex. The neighborhood total domination number γnt(G) is the
minimum cardinality of a neighborhood total dominating set of G. We note that
every total dominating set is a neighborhood total dominating set of G, while every
neighborhood total dominating set is a dominating set. Hence every graph G without
isolated vertices satisfies

γ(G) ≤ γnt(G) ≤ γt(G) (1)

It is worth mentioning that the previous inequality chain (1) may be strict as shown
by the graph G in Figure 1, where γ(G) = 4, γnt(G) = 5 and γt(G) = 6.
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Figure 1

Arumugam and Sivagnanam [1] established the following Nordhauss-Gaddum
type result for neighborhood total domination in graphs.

Theorem 1 (Arumugam and Sivagnanam [1] ) Let G be any graph such that
both G and G are connected. Then

γnt(G) + γnt(G) ≤
{
dn
2
e+ 2 if diam(G) ≥ 3.

dn
2
e+ 3 if diam(G) = 2.

The authors [1] concluded their paper with the following open problem.

Problem 2 Characterize graphs which attain the bounds given in Theorem 1.

In this paper, we consider sharpness and strictness of the inequalities in Theo-
rem 1. By symmetry, we may always assume that diam(G) ≥ diam(G).

2 Preliminary results

In this section, we recall some important results that will be useful in our investiga-
tions. We begin by the following well known classical result that can be found for
example in [3].

Observation 3 ([3]) If G is a graph with diam(G) ≥ 3, then diam(G) ≤ 3.

Observation 4 (Arumugam and Sivagnanam [1]) If G is a graph and diam(G)
= 2, then γnt(G) ≤ δ(G) + 1.

Theorem 5 (Hellwig and Volkmann [5]) If G is a graph of order n and diame-
ter 2, then γ(G) ≤ bn

4
c+ 1.

Restricted to graphs with minimum degree at least two, Dunbar et al. [2] gave
an upper bound for the sum γ(G) + γ(G). Moreover, they characterized graphs G
attaining this upper bound. Let K3�K3 be the Cartesian product of K3 by K3.
Also, the authors defined a family A of six graphs, each of order seven.



D.A. MOJDEH ET AL. /AUSTRALAS. J. COMBIN. 65 (1) (2016), 37–44 40

Theorem 6 (Dunbar et al. [2]) If G and G are connected, with δ(G) ≥ 2 and
δ(G) ≥ 2, then

γ(G) + γ(G) ≤ b2n/5c+ 3,

where equality holds if and only if G or G is in A ∪ {K3�K3}.

Since all graphs attaining equality in the upper bound of Theorem 6 have order
at most 9, the following corollary is immediate.

Corollary 7 (Dunbar et al. [2]) If G and G are connected of order n ≥ 10 such
that δ(G) ≥ 2 and δ(G) ≥ 2, then γ(G) + γ(G) ≤ b2n/5c+ 2.

The next result was first given by Dunbar et al. [2]. However, their proof con-
tained a mistake that has been corrected by Volkmann in [8].

Theorem 8 (Volkmann [8]) If G and G are connected graphs of order n 6= 10 and
n 6= 13 with δ(G) ≥ 3 and δ(G) ≥ 3 and with G,G different from K3�K3, then

γ(G) + γ(G) ≤ b3n/8c+ 2.

In [7], the authors defined two families of graphs: a family B of eight graphs
called bad graphs containing the five graphs B1, B2, . . . , B5 (see figure below), and a
family F , where F = {Fk : k ≥ 2}, and Fk is a graph of order 2k − 1 obtained from
the star K1,k−1 by subdividing each edge exactly once. In particular, F2 = P3 and
F3 = P5. The graph F5 is shown as follows:
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Figure 2

Theorem 9 (Henning and Jafari Rad [7]) Let G be a connected graph of order
n ≥ 3. Then γnt(G) ≤ n+1

2
, with equality if and only if G = C5 or G ∈ F .

Theorem 10 (Henning and Jafari Rad [7]) Let G 6= C5 be a connected graph
of order n ≥ 3 with δ(G) ≥ 2. Then γnt(G) ≤ n

2
, with equality if and only if

G ∈ {B1, B2, B3, B4, B5}.

Theorem 11 (Henning and Jafari Rad [7]) If G is a connected graph with δ ≥
1, then γnt(G) ≤ ( δ+1

δ
)γ(G).
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3 Graphs G with diameter two

In this section we show that the inequality γnt(G) + γnt(G) ≤ dn
2
e + 3 is strict for

all connected graphs G and G of order n with diameter two, except for the cycle C5.
By Theorem 9, if G = C5, then diam(G) = diam(G) = 2 and γnt(G) + γnt(G) = 6 =
d5
2
e+ 3. We first need the following useful observation.

Observation 12 If G and G are connected with diam(G) = diam(G) = 2, then
δ(G) ≥ 2 and δ(G) ≥ 2.

Proof. Suppose that δ(G) = 1 and let v be a vertex of degree one in G. Since
diam(G) = 2, the unique neighbor of v, say u, is adjacent to all the remaining vertices
of G. Hence u is isolated in G, a contradiction. Likewise we obtain δ(G) ≥ 2. �

We note that no graph of order at most 4 satisfies Observation 12.

Proposition 13 Let G and G be connected graphs of order n with diam(G) =
diam(G) = 2 such that γnt(G) + γnt(G) = dn

2
e+ 3. Then G = C5 or n ≥ 9.

Proof. Suppose that G 6= C5. By Observation 12, δ(G) ≥ 2 and δ(G) ≥ 2. By
Theorem 10, γnt(G) ≤ n

2
with equality if and only if G ∈ {B1, B2, B3, B4, B5}.

However, each of these graphs is excluded since B3, B4 and B5 have diameter three
and B1 is not connected. For the graph B2 we have γnt(B2) = 2, but then γnt(G) +
γnt(G) < dn

2
e + 3. Therefore γnt(G) < n

2
, implying that γnt(G) ≥ 4. Likewise, we

obtain γnt(G) < n
2

and γnt(G) ≥ 4. We deduce that n ≥ 9. �

Corollary 14 Let G and G be connected graphs of order n ∈ {6, 7, 8} with diam(G)
= diam(G) = 2. Then γnt(G) + γnt(G) < dn

2
e+ 3.

For the special case G = K3�K3, we note that diam(G) = 2 and G = K3�K3.
For this graph we have γnt(G) = γnt(G) = 3. Hence the following holds.

Observation 15 For the graph G = K3�K3, we have γnt(G) + γnt(G) < dn
2
e+ 3.

Theorem 16 Let G and G be connected graphs of order n ≥ 9 with diam(G) =
diam(G) = 2. Then γnt(G) + γnt(G) < dn

2
e+ 3.

Proof. Recall that by Observation 12, δ(G) ≥ 2 and δ(G) ≥ 2. If G or G = K3�K3,
then by Observation 15, the result is valid. So we can assume that neither G nor
G is K3�K3. Assume that δ(G) < (n + 2)/4 and δ(G) < (n + 2)/4. Then by
Observation 4,

γnt(G) + γnt(G) ≤ δ(G) + 1 + δ(G) + 1

< (n+ 2)/4 + (n+ 2)/4 + 2 = n/2 + 3.
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Hence we may assume, without loss of generality, that δ(G) ≥ (n + 2)/4. Note

that since n ≥ 9, δ(G) ≥ 3. By Theorem 11, γnt(G) ≤ ( δ(G)+1
δ(G)

)γ(G). Suppose first

that δ(G) = 2. Using Theorem 5 and the fact that δ(G) ≥ (n + 2)/4, we arrive at

γnt(G) ≤ ( δ(G)+1
δ(G)

)γ(G) ≤ n+6
n+2

γ(G) ≤ n+6
n+2

(bn/4c + 1). Now, applying Observation 4
on the complement of G and since n ≥ 9, we obtain

γnt(G) + γnt(G) ≤ n+ 6

n+ 2
(bn/4c+ 1) +

(
δ(G) + 1

)
< dn

2
e+ 3.

Next, we can assume that δ(G) ≥ 3. By Theorem 11, γnt(G) ≤ ( δ(G)+1

δ(G)
)γ(G). Since

δ(G) ≥ 3 and δ(G) ≥ 3, we have γnt(G) ≤ ( δ(G)+1
δ(G)

)γ(G) ≤ 4
3
γ(G) and likewise

γnt(G) ≤ 4
3
γ(G). Therefore γnt(G) + γnt(G) ≤ 4

3
(γ(G) + γ(G)). Since G and G are

different from K3�K3, by Theorem 8, we deduce that for all n ≥ 9 with n /∈ {10, 13}:

γnt(G) + γnt(G) ≤ 4

3
(γ(G) + γ(G)) ≤ 4

3
(b3n/8c+ 2)

< dn
2
e+ 3.

It remains to examine the cases n = 10 and 13, where δ(G) ≥ 3 and δ(G) ≥ (n+2)/4.

Assume that n = 13. Note that δ(G) ≥ (n + 2)/4 ≥ 4. If δ(G) = 3, then
Observation 4 implies that γnt(G) ≤ 4. Now, since γnt(G) ≤ n+6

n+2
(bn/4c + 1), it is

easy to check that γnt(G) + γnt(G) ≤ n+6
n+2

(bn/4c + 1) + 4 < dn
2
e + 3 = 10. Hence

we can assume that δ(G) ≥ 4. Then γnt(G) ≤ ( δ(G)+1

δ(G)
)γ(G) ≤ 5

4
γ(G) and likewise

γnt(G) ≤ 5
4
γ(G) since δ(G) ≥ 4. By Corollary 7 we obtain

γnt(G) + γnt(G) ≤ 5

4
(γ(G) + γ(G)) ≤ 5

4
(b2n/5c+ 2)

< dn
2
e+ 3.

Finally, assume that n = 10. Thus δ(G) ≥ (n + 2)/4 ≥ 3, and by Theorem 11,
γnt(G) ≤ 4

3
γ(G) and γnt(G) ≤ 4

3
γ(G). Moreover, Corollary 7 implies that γ(G) +

γ(G) ≤ b2n/5c+ 2 = 6. Now, if γnt(G) = γ(G), then

γnt(G) + γnt(G) ≤ γ(G) +
4

3
γ(G) <

4

3
(γ(G) + γ(G)) ≤ 8,

and so γnt(G) + γnt(G) < 8 = dn
2
e+ 3. Next, we can assume that γnt(G) ≥ γ(G) + 1.

If γ(G) + γ(G) ≤ 5, then γnt(G) + γnt(G) ≤ 4
3
(γ(G) + γ(G)) ≤ 20

3
< dn

2
e + 3. Thus

γ(G) + γ(G) ≥ 5 and by Corollary 7, γ(G) + γ(G) = 6. Without loss of generality,
we may assume that γ(G) ≤ 3. Let S be a minimum dominating set of G. Since
γnt(G) > γ(G), there must be an isolated vertex z in the subgraph induced by N(S).
Furthermore, since δ(G) ≥ 3 we obtain |S| = 3, z is adjacent to all S and S is
independent. Let x be any vertex of S. Then {z, x} dominates the complement of
G, implying that γ(G) + γ(G) < 6, a contradiction. This completes the proof of the
theorem. �



D.A. MOJDEH ET AL. /AUSTRALAS. J. COMBIN. 65 (1) (2016), 37–44 43

4 Graphs G with diameter at least three

Our aim in this section is to characterize connected graphs G of order n with diameter
at least three such that γnt(G) + γnt(G) = dn

2
e+ 2. Since diam(G) ≥ 3, according to

Observation 3, diam(G) ≤ 3. Let us first consider the case when diam(G) = 3.

Proposition 17 Let G and G be connected graphs with diam(G), diam(G) ≥ 3 such
that γnt(G) + γnt(G) = dn

2
e+ 2. Then G = P4 = G.

Proof. Since diam(G) ≥ 3, any two non-adjacent vertices of G at distance at least
three total dominates G. Hence γnt(G) ≤ γt(G) ≤ 2. The equality is obtained from
the connectedness of G and G. Thus γnt(G) = 2. Likewise, since diam(G) ≥ 3, we
obtain γnt(G) = 2. Therefore 4 = γnt(G) + γnt(G) = dn

2
e + 2 implies that dn

2
e = 2

and so n ∈ {3, 4}. The case n = 3 is excluded since G is not connected. It follows
that n = 4, implying that G is P4 and so is G. �

From now on, we focus on connected graphs G of diameter at least three whose
complement graphs are connected with diameter two.

Proposition 18 Let G and G be connected graphs of order n with diam(G) ≥ 3 and
diam(G) = 2 such that γnt(G) + γnt(G) = dn

2
e+ 2. Then:

i) if n is odd, then G ∈ F ;

ii) if n is even and δ(G) ≥ 2, then G ∈ {B3, B4, B5}.

Proof. As seen in the proof of Theorem 17, since diam(G) ≥ 3, we obtain γnt(G) = 2.
It follows that γnt(G) = dn

2
e. Now if n is odd, then γnt(G) = n+1

2
and so by

Theorem 9, G = C5 or G ∈ F . The case G = C5 is excluded since diam(C5) = 2.
Hence (i) follows.

Suppose now that n is even and δ(G) ≥ 2. Then γnt(G) = n
2
, and by Theorem 10,

G ∈ {C5, B1, B2, B3, B4, B5}. Since diam(B1) = diam(B2) = 2, we conclude that
G ∈ {B3, B4, B5} and (ii) is proved. �

According to Proposition 18 (ii), one can wonder whether there are connected
graphs G of even order n with minimum degree δ(G) = 1 such that γnt(G)+γnt(G) =
n
2

+2. We first give a positive answer to this question and then we provide a necessary
condition for such graphs.

Observation 19 For every even integer n ≥ 6, there is a connected graph G of order
n with δ(G) = 1, diam(G) ≥ 3 and diam(G) = 2 satisfying γnt(G)+γnt(G) = n

2
+2.

Proof. For every even integer n ≥ 6, we consider the graph G = cor(H), where H
is any connected graph of order n/2. It can be seen easily that γnt(G) = n/2 and
γnt(G) = 2. �

In the proof of Observation 19, we gave a family of graphs (coronas graphs) that
have the property given in the observation, but there may be many graphs other
than coronas with this property.
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Theorem 20 If G and G are connected graphs of even order n with δ(G) = 1,
diam(G) ≥ 3 and diam(G) = 2 such that γnt(G) + γnt(G) = n

2
+ 2, then n

4
≤ γ(G)

and ∆(G) ≤ 3n
4

.

Proof. Clearly γnt(G) = 2 since diam(G) ≥ 3. Hence γnt(G) = n/2 and by Theo-
rem 11, we obtain n

4
≤ γ(G). On the other hand, it is well known that γ(G) ≤ n−∆,

which implies that ∆ ≤ 3n
4

. �

We mention that the bounds in Theorem 20 are not necessarily the best bounds.
Finally, we end the paper with the following open problem:

Problem 21 Characterize the graph G where G and G are connected of even order
n with δ(G) = 1, diam(G) ≥ 3 and diam(G) = 2 such that γnt(G) + γnt(G) = n

2
+ 2.
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