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Abstract

Cavenagh and Wanless [Discrete Appl. Math. 158 no. 2 (2010), 136–146]
determined the possible intersection of any two transversals of the back
circulant latin square Bn, and used the result to completely determine
the spectrum for 2-way k-homogeneous latin trades. We generalize this
problem to the intersection of μ transversals of Bn such that the transver-
sals intersect stably (that is, the intersection of any pair of transversals is
independent of the choice of the pair) and show that these structures can
be used to construct μ-way k-homogeneous circulant latin trades of odd
order. We provide a number of basic existence and non-existence results
for μ transversals of Bn that intersect stably, as well as the results of a
computational search for small n. This is followed by the principal results
of this paper: a construction that covers a large portion of the spectrum
when n is sufficiently large, which requires certain base designs. These
base designs are provided in the cases μ = 3, 4, and were found by a
computational search. We use this result to find the existence of μ-way
k-homogeneous circulant latin trades of odd order, for μ = 3, 4.

1 Introduction

A natural question to ask in combinatorics is how may two distinct examples of
a certain combinatorial structure intersect, a question which has been investigated
for a large variety of different structures. An extension of this is to consider the
μ-way intersections of the structures, and work has been done taking the underlying
structure to be Steiner triple systems in [16], m-cycle systems in [2], and latin squares
in [1] and [3].

∗ The research for this paper was also supported in part by the Australian Research Council
(grant number DP1092868).
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There has been an investigation into the possible intersection size of two transver-
sals of the back circulant latin square [14], and so in a similar fashion we general-
ize from the intersection of two transversals to the intersection of a collection of μ
transversals.

The problem that this paper investigates is as follows:

Question 1.1. For what t does there exist a collection of μ transversals of the back
circulant latin square of order n, such that each pair of transversals intersect precisely
in the same t points?

These transversals can be used to construct 3-way k-homogeneous latin trades
of odd order, which will further extend our knowledge towards answering question 1
from [4].

1.1 Definitions

A partial latin square of order n is an n× n array of cells, each being either empty
or filled with one of n symbols such that each symbol appears at most once in each
row and in each column. A latin square is a partial latin square with no empty
cells. We are able to think of a (partial) latin square as a set of triples; if a (partial)
latin square, L, has the cell of row r and column c filled with symbol e, we will
write (r, c, e) ∈ L. This is commonly called the orthogonal array notation. In this
paper, we write an interval of integers as [a, b] = {a, . . . , b} and we index the rows,
columns and symbols of a latin square by [0, n − 1]. We will sometimes reference
rows, columns and symbols with indices that are greater than n − 1, by which we
will always mean the representation of this index modulo n.

A diagonal of a latin square L is a set of n cells of L such that each row and
each column is represented in the set of cells precisely once. A transversal of a latin
square is a diagonal that also has each symbol represented precisely once. See [18]
for a survey of transversals in latin squares.

A commonly studied latin square is the back circulant latin square, which is
defined as Bn = {(r, c, r + c) | r, c ∈ [0, n− 1]}. The latin squares Bn have a strong
connection to diagonally cyclic latin squares, and are often used to prove facts about
latin squares in general.

The back-circulant latin square Bn has many interesting connections to other
structures. Most relevant to this paper is that a transversal of Bn is equivalent to a
diagonally cyclic latin square of order n [17]. A transversal of Bn is also equivalent
to a complete mapping of the cyclic group of order n as well as an orthomorphism
of the cyclic group of order n [13]. (Other equivalences can be found in [14].)

Throughout this paper, we assume n is odd, as it is well known that Bn contains
no transversals for any even n. The possible intersection sizes of any two transversals
of Bn has been determined:

Theorem 1.2. [14] For each odd n, there exists a pair of transversals of Bn that
intersect in t cells, when n �= 5 for t ∈ {0, . . . , n − 3} ∪ {n}, and when n = 5 for
t ∈ {0, 1, 5}.
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We consider a generalization of such intersections of pairs of transversals to the
intersection of μ transversals.

Definition 1.3. A collection of μ transversals T1, . . . , Tμ intersect stably in t points
if there is a set S ⊆ [0, n− 1]2 such that Ti ∩ Tj = S for i �= j.

Informally, if there is a cell (i, j, k) ∈ S, then (i, j, k) appears in each transver-
sal T1, . . . , Tμ. If there is a cell (i′, j′, k′) ∈ Tα with (i′, j′, k′) /∈ S, then no other
transversal contain (i′, j′, k′).

Then Question 1.1 is asking for what values of t does there exist a collection of
μ transversals of Bn that intersect stably in t points. The main results of this paper
are the following two theorems:

Theorem 1.4. For odd n ≥ 33, let I, I ′, d and d′ be the unique integers such that
n = 18I + 9 + 2d and n = 22I ′ + 11 + 2d′, I, I ′ ≥ 1, 0 ≤ d < 9 and 0 ≤ d′ < 11.
Then there exist three transversals of Bn that intersect stably in t points for t ∈
[min(3 + d′, d), n] \ [n− 5, n− 1] except, perhaps, when:

• n = 51 and t = 29,

• n = 53 and t = 30.

Theorem 1.5. For odd n ≥ 33, let I, I ′, d and d′ be the unique integers such that
n = 18I + 9 + 2d and n = 22I ′ + 11 + 2d′, I, I ′ ≥ 1, 0 ≤ d < 9 and 0 ≤ d′ <
11. Then there exist four transversals of Bn that intersect stably in t points for
t ∈ [min(3 + d′, d), n] \ ({n− 15} ∪ [n− 7, n− 1]) except, perhaps, when:

• 33 ≤ n ≤ 43 and t ∈ [10 + d′, 11 + d′] ∪ [n− 14, n− 12],

• 45 ≤ n ≤ 53 and t ∈ [−1 + d′, 2 + d′] ∪ [10 + d′, 11 + d′] ∪ [18 + d′, 20 + d′],

• 63 ≤ n ≤ 75 and t ∈ [7 + d, 8 + d].

2 Results

2.1 Basic results

Lemma 2.1. For an odd integer n, there exists a collection of μ transversals of Bn

which intersect stably in n points, for any μ ≥ 1.

Proof. For odd n, the main diagonal’s cells (i, i, 2i) with i ∈ [0, n−1] form a transver-
sal of Bn, showing at least one transversal exists. A collection of μ identical transver-
sals intersects stably in n points.

Lemma 2.2. For an odd integer n, there exists a collection of μ transversals of Bn

which intersect stably in 0 points, for any 1 ≤ μ ≤ n.

Proof. Consider the μ transversals of Bn given by Tα = {(i, i+α, 2i+α | i ∈ [0, n−1]}
for α ∈ [0, μ− 1]. These μ transversals intersect stably in 0 points.
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Lemma 2.3. For odd μ, there exists a collection of μ transversals of Bn which
intersect stably in n− μ points if and only if μ | n.
Proof. Suppose there exists a collection of μ transversals of Bn which intersect stably
in n − μ points. Define R (resp. C) as the set of rows (columns) that have no
pair of transversals intersecting in those rows (columns). Then the cells of the set
H = {(r, c, e′) ∈ Tα | 1 ≤ α ≤ μ, r ∈ R and c ∈ C} can only be filled with one of μ
distinct symbols, as the other n− μ symbols appear in the stable intersection of the
transversals. So H forms a μ × μ subsquare of Bn. Theorem 3 of [8] tells us such
a subsquare implies the cyclic group of order n has a subgroup of order μ. Then μ
must divide n.

Now suppose μ | n, so n = m · μ for some integer m. Let T 1
α = {(mi,m(i +

α), m(2i + α)) | 0 ≤ i ≤ μ − 1} and T 2 = {i, i, 2i | 0 < i ≤ n − 1 and m � i}, for
α ∈ [1, μ]. Define transversals Tα = T 1

α ∪ T 2 for α ∈ [1, μ]. Then Tα ∩ Tβ = T 2, for
each 1 ≤ α < β ≤ μ, where |T 2| = n− μ.

Lemma 2.4. For odd integers n,m, if m | n and for integers q with 0 ≤ q ≤ n/m−1
there exists μ transversals of Bm that intersect stably in tq points, then there exists

μ transversals of Bn that intersect stably in
∑n/m−1

q=0 tq points.

Proof. We construct μ transversals of Bn by combining μ transversals chosen from
each of the subsquares Sq = {(mi+ q,m(i+ α) + q,m(2i+ α) + 2q) | 0 ≤ i ≤ μ− 1}
for 0 ≤ q ≤ n/m− 1. Each of these are subsquares of Bn that are equivalent to Bm,
and so for each Sq we use the μ transversals of Bm that intersect stably in tq points.
Combining these n/m collections of μ transversals of size m gives μ transversals of

Bn that intersect stably in
∑n/m−1

q=0 tq points.

Lemma 2.5. For an odd integer n, there does not exists a collection of μ transversals
of Bn that intersect stably in t points, for t ∈ {n− μ+ 1, . . . , n− 1}, for any μ ≥ 2.

Proof. Suppose that there exists a collection of μ transversals that intersect stably
in t points, for t ≥ 1. Let C ⊆ [0, n− 1] be the set of columns such that no pair of
transversals of our collection of μ transversal intersect in column c ∈ C. If row r has
no pair of transversals intersecting in row r, then the set {(r, c′, e′) ∈ Tα | 1 ≤ α ≤
μ and c′ ∈ C} has size μ. But this implies |C| ≥ μ, which means there can be at
most n− μ columns where the μ transversals meet. This implies the result.

2.2 Computer search

We performed a computer search for μ transversals of Bn when n is relatively small,
and μ = 3, 4. For n ∈ {5, 7, 9, 11, 13}, the program was able to exhaustively check
the search space for both μ = 3, 4, and also n = 15 for μ = 3. For the other odd
n ≤ 31, we were only able to obtain partial results, as the search space was quite
large. The results are summarized in Tables 1 and 2.
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n t
5 1
7 1,2
9 1,2,3,4,6
11 1,2,3,4,5,6
13 1,2,3,4,5,6,7
15 1,2,3,4,5,6,7,8,9,10,11,12

17 1,2,3,4,5,6,7,8,9,10,11
19 1,2,3,4,5,6,7,8,9,10,11,12,13
21 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,18
23 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
25 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,21
27 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21
29 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22
31 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24

Table 1: There exists a collection of μ = 3 transversals of Bn with stable intersection
size t.

n t
7 1
9 1,2
11 1,2,3
13 1,2,3,4

15 1,2,3,4,5,10
17 1,2,3,4,5,6
19 1,2,3,4,5,6,7
21 1,2,3,4,5,6,7,8
23 1,2,3,4,5,6,7,8,9
25 1,2,3,4,5,6,7,8,9,10
27 1,2,3,4,5,6,7,8,9,10,11
29 1,2,3,4,5,6,7,8,9,10,11,12
31 1,2,3,4,5,6,7,9,10,11,12,13

Table 2: There exists a collection of μ = 4 transversals of Bn with stable intersection
size t.

2.3 Principal construction

For this section, take n to be a fixed odd integer. Define Bn
i,j to be the j×j subsquare

of Bn at the intersection of rows and columns with indices i, i+ 1, . . . , i+ j − 1. We
will write Bi,j instead of Bn

i,j when the value of n is clear in the given context. The
cells of such a subsquare are filled with symbols from {2i, . . . , 2i + 2j − 2}. We
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consider a partial transversal within the j × j subsquare of cells Bi,j to be a set
of j triples {(rk, ck, ek) | rk − i, ck − i ∈ [0, j − 1] and 0 ≤ k ≤ j − 1} such that
|{rk | 0 ≤ k ≤ j − 1}| = |{ck | 0 ≤ k ≤ j − 1}| = |{ek | 0 ≤ k ≤ j − 1}| = j. We
further consider a set of subsquares Bi,j such that the subsquares partition the rows
and columns of Bn. Then finding certain collections of μ partial transversals within
each of these Bi,j that only use certain symbols will amount to finding a collection
of μ transversals of Bn.

Fix μ an integer and b an odd integer with 3 ≤ b ≤ n/3. For a given d̄ and t, we
write t ∈ Ωb

μ(b+ d̄) if there exists a collection of μ partial transversals of B0,b+d̄ within
Bn that intersect stably in t points, and only use symbols from {(b− 1)/2, . . . , 3(b−
1)/2+ 2d̄} \ {b+2j | 0 ≤ j < d̄}. Notice that Bi,j is just a relabeling of the symbols
of B0,j , and so the existence of a collection of μ partial transversals within B0,j is
equivalent to the existence of a collection of μ partial transversals within Bi,j.

Take I and d to be the unique integers with I ≥ 1, d ∈ [0, b−1], and n = 2Ib+b+
2d. We consider three types of subsquares; large subsquares B0,b+d, small subsquares
B(n+b)/2,d and base subsquares Bib+d,b and B(I+i)b+2d,b for 1 ≤ i ≤ I. Figure 1 shows
the layout of the subsquares. The symbols that fill the cells of the partial transversal
from each of these subsquares are restricted. In particular, the base subsquares
Bib+d,b use the symbols {2(ib + d) + (b − 1)/2, . . . , 2(ib + d) + 3(b − 1)/2} and the
base subsquares B(I+i)b+2d,b use the symbols {2(Ib+ ib+ 2d) + (b− 1)/2, . . . , 2(Ib+
ib + 2d) + 3(b − 1)/2} for 1 ≤ i ≤ I, the large subsquare B0,b+d use the symbols
{(b− 1)/2, . . . , 3(b − 1)/2 + 2d} \ {b + 2j | 0 ≤ j < d}, and the small subsquare
B(n+b)/2,d use the symbols {b+ 2j | 0 ≤ j < d}.

These symbols have been chosen so that the partial transversal of one of the
subsquares does not share any symbols in common with the partial transversal of
any other subsquare. We demonstrate the interleaving that occurs for the base
subsquares in Figure 2.

Theorem 2.6. Let n, b be odd integers, 3 ≤ b ≤ n/3, and μ an integer with μ ≥ 2.
Let I ≥ 1 and d ∈ [0, b− 1] be the unique integers such that n = 2bI + b+ 2d. There
exists μ transversals of Bn that intersect stably in t points with t = d+

∑2I
i=0 ti, where

t0 ∈ Ωb
μ(b+ d) and ti ∈ Ωb

μ(b), for 1 ≤ i ≤ 2I.

We provide the following construction, followed by a proof that demonstrates
that the construction yields Theorem 2.6.

Construction 2.7. Take μ ≥ 2 an integer and n, b odd integers, 3 ≤ b ≤ n/3 Let
I ≥ 1 and d ∈ [0, b− 1] be the unique integers such that n = 2bI + b+ 2d.

We will construct μ subsets of Bn, T1, . . . , Tμ by finding partial transversals se-
lected from a large subsquare B0,b+d, a small subsquare Bb(I+1)+d,d = B(n+b)/2,d, and
base subsquares Bbi+d,b and Bb(I+i)+2d,b for 1 ≤ i ≤ I.

For the large subsquare, as t0 ∈ Ωb
μ(b + d) there exists a collection of μ partial

transversals PL
1 , . . . , P

L
μ within B0,b+d that intersects stably in t0 points and using

each symbol of {(b− 1)/2, . . . , 2d+3(b− 1)/2} \ {b+2d′ | 0 ≤ d′ < d} precisely once
per partial transversal. We place the cells of PL

β into Tβ, 1 ≤ β ≤ μ.
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b+d b b d b b

large

base
1

base
I

small

base
I+1

base
2I

Figure 1: The positioning of the subsquares. By taking the union of partial transver-
sals of Bn in these subsquares, we find a transversal of Bn.

i+1

i

The same
b symbols

I+i+1

Figure 2: We choose partial transversal such that the symbols not used between the
ith and (i+ 1)th base subsquares are used in the (I + i+ 1)th base subsquare. The
darkened cells represent those cells that we do not allow in any partial transversal.
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For the small subsquare, a collection of μ partial transversals P S
1 , . . . , P

S
μ within

Bb(I+1)+d,d that intersect stably in d points can be defined by placing cells (r, r, 2r)
with r = b(I+1)+d+d′ into every partial transversal P S

β , 1 ≤ β ≤ μ and 0 ≤ d′ < d,
so that each of the μ partial transversals are identical. We place the cells of P S

β into
Tβ , 1 ≤ β ≤ μ.

For the first set of base subsquares, Bbi+d,b with 1 ≤ i ≤ I, as ti ∈ Ωb
μ(b) there

exists a collection of μ partial transversals P i
1, . . . , P

i
μ of B0,b that intersect stably in

ti points and using each symbol of {(b − 1)/2, . . . , 3(b − 1)/2} precisely once. For
every (r, c, e) ∈ P i

β, place the cells (r + a, c + a, e + 2a) with a = bi + d into Tβ,
1 ≤ β ≤ μ. The cells that were just filled are in the subsquare Bbi+d,b.

For the second set of base subsquares, Bb(I+i)+2d,b with 1 ≤ i ≤ I, as tI+i ∈ Ωb
μ(b)

there exists a collection of μ partial transversals P I+i
1 , . . . , P I+i

μ of B0,b that intersect
stably in tI+i points and using each symbol of {(b − 1)/2, . . . , 3(b − 1)/2} precisely
once. For every (r, c, e) ∈ P I+i

β , place the cells (r+a, c+a, e+2a) with a = b(I+i)+2d
into Tβ , 1 ≤ β ≤ μ. The cells that were just filled are in the subsquare Bb(I+i)+2d,b.

Proof. We begin by showing that T1, . . . , Tμ from Construction 2.7 are each diago-
nals. Consider any T ∈ {T1, . . . , Tμ}. As T is the union of partial transversals of
subsquares, each of which share no common row or column, clearly T is a selection
of n cells of L using each row (resp. column) once, and so T is a diagonal of Bn.

We will proceed to show that each diagonal T ∈ {T1, . . . , Tμ} is a transversal,

and that they intersect stably in d +
∑2I

i=0 ti points. The construction placed 2b
filled cells from the two base subsquares Bbi+d,b and Bb(I+i)+2d,b into T , for each
fixed i, 1 ≤ i ≤ I. This consisted of precisely one filled cell for each symbol of
{2bi+ 2d− (b+ 1)/2, . . . , 2bi+ 2d+ 3(b− 1)/2}.

Then collectively the 2I base subsquares were used to fill 2bI cells into T , placing
precisely one filled cell for each symbol of {2d+3(b−1)/2+1, . . . , 2bI+2d+3(b−1)/2}.

During the construction, (b+ d) + d filled cells were placed into T from the large
subsquare B0,b+d and the small subsquare Bb(I+1)+d,d, which had one filled cell for
each symbol of {(b− 1)/2, . . . , 2d+ 3(b− 1)/2}.

Combining the statements for the 2I base subsquares and the large and small
subsquare, each symbol of {(b−1)/2, . . . , 2bI+2d+3(b−1)/2} = {0, . . . , 2bI+b+2d−
1} appears in the diagonal T precisely once, after recalling that each symbol is taken
modulo 2bI+b+2d and noting that 2bI+2d+3(b−1)/2 = (2bI+b+2d)+(b−1)/2−1 ≡
(b− 1)/2− 1 (mod n).

This shows that T is indeed a transversal, and so the construction has indeed
formed μ transversals. Now we need to show that the μ transversals intersect stably
in d +

∑2I
i=0 ti points. Suppose the μ partial transversals we chose for the large

subsquare intersect stably in the set S0, the μ partial transversals we chose for the
base subsquare Bbi+d,b intersect stably in the set Si, and the μ partial transversals we
chose for the base subsquare Bb(I+i)+2d,b intersect stably in the set SI+i, for 1 ≤ i ≤ I.
Clearly the μ partial transversals we chose for the small subsquare intersect stably
in the points S−1 = {(r, r, 2r) | r = b(I + 1) + d+ d′ and 1 ≤ d′ ≤ d}. The size of Si

is |Si| = ti, for 0 ≤ i ≤ 2I, and |S−1| = d. The μ transversals then clearly intersect
stably in the d+

∑2I
i=0 ti points

⋃2I
i=−1 Si.
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Example 2.8. We consider the case when μ = 2, n = 17, b = 5, d = 1, I = 1,
t0 = 1, t1 = 1, t2 = 0. Note that n = 2bI + b+ 2d = 5 · 2 · 1 + 5 + 2 · 1 = 17.

For this example, we will represent the first transversal of Bi,j or Bn by under-
lining those entries, and the second transversal by adding a superscripted star. The
intersection of the two (partial) transversals are those entries that are both under-
lined and starred.

For the small subsquare, we require μ = 2 transversals of the small subsquare
B(I+1)b+d,d = B11,1 that intersect stably in d = 1 points. These transversals are
simply chosen as there is only one cell in B11,1.

For the large subsquare, we require μ = 2 transversals of the large subsquare
B0,b+d = B0,6 that intersect stably in t0 = 1 points using symbols {(b−1)/2, . . . , 2d+
3(b− 1)/2} \ {b+ 2d′ | 0 ≤ d′ < d} = {2, 3, 4, 6, 7, 8}, for example:

0 1 2 3∗ 4 5
1 2 3 4 5 6∗

2∗ 3 4 5 6 7
3 4∗ 5 6 7 8
4 5 6 7 8∗ 9
5 6 7∗ 8 9 10

For the first set of base subsquares (in this case the set contains only one sub-
square) we require μ = 2 transversals of the base subsquare B0,b = B0,5 that intersect
stably in t1 = 1 points and using symbols {(b− 1)/2, . . . , 3(b− 1)/2} = {2, 3, 4, 5, 6},
for example:

0 1 2 3∗ 4
1 2 3 4 5∗

2∗ 3 4 5 6
3 4∗ 5 6 7
4 5 6∗ 7 8

For the second set of base subsquares (in this case the set contains only one
subsquare), we require μ = 2 transversals of the base subsquare B0,b = B0,5 that
intersect stably in t2 = 0 points, for example:

0 1 2 3∗ 4
1 2∗ 3 4 5
2 3 4 5 6∗

3 4 5∗ 6 7
4∗ 5 6 7 8

Then we can obtain μ = 2 transversals of size n = 17 and stable intersection size
d+ t0+ t1+ t2 = 3 as (where we omit those entries not relevant to our construction):
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 0 1 2 3∗ 4 5
1 1 2 3 4 5 6∗

2 2∗ 3 4 5 6 7
3 3 4∗ 5 6 7 8
4 4 5 6 7 8∗ 9
5 5 6 7∗ 8 9 10
6 12 13 14 15∗ 16
7 13 14 15 16 0∗

8 14∗ 15 16 0 1
9 15 16∗ 0 1 2
10 16 0 1∗ 2 3
11 5∗

12 7 8 9 10∗ 11
13 8 9∗ 10 11 12
14 9 10 11 12 13∗

15 10 11 12∗ 13 14
16 11∗ 12 13 14 15

This concludes the example.

3 Application to μ = 3, 4

Our approach to finding 3 (resp. 4) transversals of Bn that intersect stably is to
find 3 (resp. 4) partial transversals of Bi,j that intersect stably for certain values of
i and j, and compose these into transversals of Bn. We will use Theorem 2.6 with
base sizes of b = 9, 11, 15. These sizes have been chosen based upon the results of a
computational search for partial transversals of base and large subsquares.

The appendix includes tables that contains a set of either three or four rows,
corresponding to μ = 3 and μ = 4 respectively, each row containing b + d symbols.
For the rth row, denote the ith symbol of the list in this row as ari , for 1 ≤ r ≤ μ
and 1 ≤ i ≤ b + d. The cells (i, ari ), 1 ≤ i ≤ b + d, form a partial transversal
of B0,b+d. The three (resp. four) rows give three (resp. four) partial transversals of
B0,b+d, each partial transversal having t cells that are common amongst all three
(resp. four) partial transversals, and b+ d− t cells which do not appear in the other
partial transversals. We call this representation a reduced form.

We take the addition and scalar multiplication of finite sets to be:

A+B = {a + b | a ∈ A, b ∈ B}

kA = {
k∑

i=1

ai | ai ∈ A}

Lemma 3.1. Let j, a, b be positive integers with 1 ≤ a < b. We have j([0, a]∪{b}) =
[0, jb] \⋃�(b−2)/a�

i=1 [jb− ib+ ia+ 1, jb− ib+ b− 1].

Proof. From definition, j([0, a]∪{b}) = {∑j
i=1 ai | ai ∈ [0, a]∪{b}} =

⋃j
i=0[i ·b, i ·b+

(j−i)a] =
⋃j

i=0[(j−i)b, (j−i)b+ia]. Then any value t ∈ [0, jb] with t /∈ j([0, a]∪{b})
must be between the two intervals [(j− i′)b, (j− i′)b+ i′a] and [(j− i′ +1)b, (j− i′ +
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1)b+(i′− 1)a] for some 1 ≤ i′ ≤ j, and hence t ∈ [(j− i′)b+ i′a+1, (j− i′+1)b− 1].
This proves the result, once we note that [(j − i′)b + i′a + 1, (j − i′ + 1)b − 1] is
non-empty only when i′a+ 1 ≤ b− 1, and so i′ ≤ (b− 2)/a.

3.1 Existence of partial transversals in subsquares

It is important to note that Ωb
4(b+d) ⊆ Ωb

3(b+d). Also, if there is at least one partial
transversal of B0,b+d using symbols {(b− 1)/2, . . . , 2d+ 3(b − 1)/2} \ {b+ 2d′ | 0 ≤
d′ < d} then b+ d ∈ Ωb

μ(b+ d) for any μ ≥ 2. This also tells us that if Ωb
μ(b+ d) �= ∅,

then b+ d ∈ Ωb
μ′(b+ d) for each μ′ ≥ μ.

Lemma 3.2. The following hold1:

1. Ω9
4(9) ⊇ {0, 1, 9}.

2. Ω11
4 (11) ⊇ {0, 1, 2, 3, 11}.

3. Ω15
4 (15) ⊇ {1, 2, 3, 4, 5, 15}.

4. Ω9
3(9) ⊇ {0, 1, 2, 3, 9}.

5. Ω11
3 (11) ⊇ {0, 1, 2, 3, 4, 5, 11}.

Proof. The corresponding partial transversals have been found by a computer search,
and have been written in reduced form in the Appendix, in, respectively, Table 3,
Table 6, Table 9, Tables 3 and 5, and Tables 6 and 8.

Lemma 3.3. The following hold:

1. 0 ∈ Ω9
4(9 + d), for all 0 ≤ d < 9.

2. 3 ∈ Ω11
4 (11 + d), for all 0 ≤ d < 11.

Proof. The corresponding partial transversals have been found by a computer search,
and have been written in reduced form in the Appendix, in, respectively, Tables 3
and 4, and Tables 6 and 7.

Lemma 3.4. The following hold:

1. 11 + d ∈ Ω11
4 (11 + d), for all 0 ≤ d < 11.

2. 15 + d ∈ Ω15
4 (15 + d), for all 0 ≤ d < 15.

Proof. Since the partial transversals required intersect stably in the same number
of points as the square size, we only need one partial transversal of B0,b+d, which
is repeated 4 times to form the 4 partial transversals that intersect stably in b + d
points. One partial transversal has been been found for each of the 26 cases by a
computer search, and these have been written in reduced form in the appendix, in
respectively Tables 6 and 7, and Table 10.

1In each case equality holds, but this strengthened statement is not needed.
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Lemma 3.5. The following set relations hold:

1. 2IΩ9
4(9) = [0, 18I] \ ∪7

i=1[18I − 8i+ 1, 18I − 9i+ 8];

2. 2IΩ11
4 (11) = [0, 22I] \ ({22I − 23} ∪ [22I − 15, 22I − 12] ∪ [22I − 7, 22I − 1]);

3. 2IΩ15
4 (15) = [2I, 30I] \ ({30I − 29} ∪ [30I − 19, 30I − 15] ∪ [30I − 9, 30I − 1]);

4. 2IΩ9
3(9) = [0, 18I] \ ({18I − 11, 18I − 10} \ [18I − 5, 18I − 1]); and

5. 2IΩ11
3 (11) = [0, 22I] \ [22I − 5, 22I − 1]}.

Proof. The sets Ω9
μ(9), Ω

11
μ (11) and Ω15

4 (15) = {1} + {0, 1, 2, 3, 4, 14} are given in
Lemma 3.2 for μ = 3, 4. For the case Ω9

μ(9) and Ω11
μ (11), Lemma 3.1 completes

the result for general J , however we will only be requiring the case when J is even,
and hence written J = 2I. For the case Ω15

4 (15), it can be seen that 2IΩ15
4 (15) =

2I{1, 2, 3, 4, 5, 15} = 2I({1}+ {0, 1, 2, 3, 4, 14}) = {2I}+2I{0, 1, 2, 3, 4, 14}. We can
apply Lemma 3.1 to find 2I{0, 1, 2, 3, 4, 14}, which gives the final result.

3.2 μ = 3

Theorem 3.6. For odd n ≥ 33, let I ′ and d′ be the unique integers such that n =
22I ′ + 11 + 2d′, I ′ ≥ 1 and 0 ≤ d′ < 11. Then there exist three transversals of Bn

that intersect stably in t points for t ∈ [11 + 2d′, n] \ [n− 5, n− 1].

Proof. Take the base size to be b = 11. Using Theorem 2.6, Lemma 3.4, and Lemma
3.5, we can conclude there exists the required collection of transversals for each
t ∈ {d′} + Ω11

3 (11 + d′) + 2I ′Ω11
3 (11), and hence for each t ∈ {d′} + {11 + d′} +

2I ′Ω11
3 (11) = [11 + 2d′, n] \ [n− 5, n− 1].

Lemma 3.7. For odd n ≥ 27, let I and d be the unique integers such that n = 18I+
9+ 2d, I ≥ 1 and 0 ≤ d < 9. Then there exist three transversals of Bn that intersect
stably in t points for t ∈ [d, 18I+d]\([18I−11+d, 18I−10+d]∪[18I−5+d, 18I−1+d]).

Proof. Take the base size to be b = 9. Using Theorem 2.6, Lemma 3.3, and Lemma
3.5, we can conclude there exists the required collection of transversals for each
t ∈ {d} + {0} + 2IΩ9

3(9) ⊆ {d} + Ω9
3(9 + d) + 2IΩ9

3(9), and hence for each t ∈
[d, 18I + d] \ ([18I − 11 + d, 18I − 10 + d] ∪ [18I − 5 + d, 18I − 1 + d]).

Lemma 3.8. For odd n ≥ 33, let I ′ and d′ be the unique integers such that n =
22I ′ + 11 + 2d′, I ′ ≥ 1 and 0 ≤ d′ < 11. Then there exist three transversals of Bn

that intersect stably in t points for t ∈ [3+d′, 22I ′+3+d′]\ [22I ′−2+d′, 22I ′+2+d′].

Proof. Take the base size to be b = 11. Using Theorem 2.6, Lemma 3.3, and Lemma
3.5, we can conclude there exists the required collection of transversals for each
t ∈ {d′} + {3} + 2IΩ11

3 (11) ⊆ {d′} + Ω11
3 (11 + d′) + 2IΩ11

3 (11), and hence for each
t ∈ [3 + d′, 22I ′ + 3 + d′] \ [22I ′ − 2 + d′, 22I + 2 + d′].
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Theorem 3.9. For odd n ≥ 33, let I, I ′, d and d′ be the unique integers such that
n = 18I + 9 + 2d and n = 22I ′ + 11 + 2d′, I, I ′ ≥ 1, 0 ≤ d < 9 and 0 ≤ d′ < 11.
Then there exist three transversals of Bn that intersect stably in t points for t ∈
[min(3 + d′, d), 11 + 2d′] except, perhaps, when:

• n = 51 and t = 29,

• n = 53 and t = 30.

Proof. We first show that we have three transversals of Bn that intersect stably in t
points for t ∈ [3 + d′, 11 + 2d′], except in the case n = 51 and t = 29, and the case
n = 53 and t = 30, 31. Lemma 3.8 gives the the cases when t ∈ [3 + d′, 22I ′ − 3+ d′].
Now if 11 + 2d′ ≤ 22I ′ − 3 + d′, then we are done. Otherwise d′ > 22I ′ − 14,
and since d′ ≤ 10, this implies I ′ = 1 and d′ ∈ {9, 10}. The case d′ = 9 gives
n = 51, and we do not have three transversals of Bn that intersect stably in t when
t ∈ [22I ′−2+d′, 11+2d′] = {29}. The case d′ = 10 gives n = 53, and we do not have
three transversals of Bn that intersect stably in t when t ∈ [22I ′ − 2+ d′, 11+ 2d′] =
{30, 31}. We note that the case n = 53 and t = 31 is covered by Lemma 3.7.

Second we show that we have those cases with t ∈ [d, 3+d′] when d < 3+d′. For
33 ≤ n ≤ 43, d = 3+ d′, so assume n ≥ 45, implying I ≥ 2. By Lemma 3.7, we have
those cases with t ∈ [d, 18I − 12 + d], and since 18I − 12 + d ≥ 24 > 3 + d′, we are
done.

Then Theorem 1.4 follows by Theorem 3.6 and Theorem 3.9.

3.3 μ = 4

Lemma 3.10. For odd n ≥ 33, let I ′ and d′ be the unique integers such that n =
22I ′ + 11 + 2d′, I ′ ≥ 1 and 0 ≤ d′ < 11. Then there exist four transversals of Bn

that intersect stably in t points for t ∈ [11 + 2d′, n] \ {n− 23, n− 15, . . . , n− 12, n−
7, . . . , n− 1}.
Proof. Take the base size to be b = 11. Using Theorem 2.6, Lemma 3.4, and Lemma
3.5, we can conclude there exists the required collection of transversals for each
t ∈ {d′}+Ω11

4 (11+d′)+2I ′Ω11
4 (11), and hence for each t ∈ {11+2d′}+2I ′Ω11

4 (11) =
[11 + 2d′, n] \ ({n− 23} ∪ [n− 15, n− 12] ∪ [n− 7, n− 1]).

Lemma 3.11. For odd n ≥ 45, let I ′′ and d′′ be the unique integers such that
n = 30I ′′ + 15 + 2d′′, I ′′ ≥ 1 and 0 ≤ d′′ < 15. Then there exist four transversals
of Bn that intersect stably in t points for t ∈ [2I ′′ + 15 + 2d′′, n] \ ({n − 29} ∪ [n −
19, n− 15] ∪ [n− 9, n− 1]).

Proof. Using Theorem 2.6, Lemma 3.4, and Lemma 3.5, we can conclude there exists
the required collection of transversals for each t ∈ {d′′}+Ω15

4 (15 + d′′) + 2I ′′Ω15
4 (15),

and hence for each t ∈ {15 + 2d′′} + 2I ′′Ω15
4 (15) = [2I ′′ + 15 + 2d′′, n] \ ({n− 29} ∪

[n− 19, n− 15] ∪ [n− 9, n− 1]).
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Theorem 3.12. For odd n ≥ 45, let I ′ and d′ be the unique integers such that
n = 22I ′ + 11 + 2d′, I ′ ≥ 1, 0 ≤ d′ < 11. Then there exist four transversals of Bn

that intersect stably in t points for t ∈ [11+2d′, n]\({n−15}∪ [n−7, n−1]). For odd
33 ≤ n ≤ 43 such that n = 33+2d′ and 0 ≤ d′ ≤ 5, there exists four transversal of Bn

that intersect stably in t points, for t ∈ [11+2d′, n]\ ([n−15, n−12]∪ [n−7, n−1]).

Proof. Define I ′′ and d′′ such that n = 30I ′′ + 15 + 2d′′, I ′′ ≥ 1 and 0 ≤ d′′ < 15.
This theorem is the union of the result from Lemma 3.10 and Lemma 3.11. The
case for I ′′ ≥ 1 requires the knowledge that {n − 23} ∪ [n − 14, n − 12] ⊆ [2I ′′ +
15 + 2d′′, n] \ ({n − 29} ∪ [n − 19, n − 15] ∪ [n − 9, n − 1]), which is easily seen as
2I ′′ + 15 + 2d′′ ≤ n − 23 = 30I ′′ + 15 + 2d′′ − 23 when I ′′ ≥ 1. Then the union of
[11 + 2d′, n] \ ({n− 23} ∪ [n − 15, n− 12] ∪ [n− 7, n− 1]) and [2I ′′ + 15 + 2d′′, n] \
({n− 29} ∪ [n− 19, n− 15]∪ [n− 9, n− 1]) gives the result as stated in the theorem
when n ≥ 45. The case for 33 ≤ n < 45 is covered by Lemma 3.10.

Lemma 3.13. For odd n ≥ 33, let I ′ and d′ be the unique integers such that n =
22I ′+11+2d′, I ′ ≥ 1 and 0 ≤ d′ < 11. Then there exist four transversals of Bn that
intersect stably in t points for t ∈ [3 + d′, 22I ′ + 3 + d′] \ ({22I ′ − 20 + d′} ∪ [22I ′ −
12 + d′, 22I ′ − 9 + d′] ∪ [22I ′ − 4 + d′, 22I ′ + 2 + d′]).

Proof. Using Theorem 2.6, Lemma 3.3, and Lemma 3.5, we can conclude there exists
the required collection of transversals for each t ∈ {d′} + {3} + 2I ′Ω11

4 (11) ⊆ {d} +
Ω11

4 (11+ d′) + 2I ′Ω11
4 (11), and hence for each t ∈ {3+ d′, . . . , 22I ′ +3+ d′} \ {22I ′ −

20 + d′, 22I ′ − 12 + d′, . . . , 22I ′ − 9 + d′, 22I ′ − 4 + d′, . . . , 22I ′ + 2 + d′}.
Lemma 3.14. For odd n ≥ 27, let I and d be the unique integers such that n =
18I + 9 + 2d, I ≥ 1 and 0 ≤ d < 9. Then there exist four transversals of Bn that
intersect stably in t points for t ∈ [d, . . . , 18I+d]\⋃7

i=1[18I−8i+1+d, 18I−9i+8+d].

Proof. Using Theorem 2.6, Lemma 3.3, and Lemma 3.5, we can conclude there exists
the required collection of transversals for each t ∈ {d}+{0}+2IΩ9

4(9) ⊆ {d}+Ω9
4(9+

d) + 2IΩ9
4(9), and hence for each t ∈ [d, 18I + d] \⋃7

i=1[18I − 8i+ 1 + d, 18I − 9i+
8 + d].

Theorem 3.15. For odd n ≥ 33, let I, I ′, d and d′ be the unique integers such
that n = 18I + 9 + 2d and n = 22I ′ + 11 + 2d′, I, I ′ ≥ 1, 0 ≤ d < 9 and 0 ≤
d′ < 11. Then there exist four transversals of Bn that intersect stably in t points for
t ∈ [min(3 + d′, d), 11 + 2d′] except, perhaps, when:

• 33 ≤ n ≤ 43 and t ∈ [10 + d′, 11 + d′],

• 45 ≤ n ≤ 53 and t ∈ [−1 + d′, 2 + d′] ∪ [10 + d′, 11 + d′] ∪ [18 + d′, 20 + d′],

• 63 ≤ n ≤ 75 and t ∈ [7 + d, 8 + d].

Proof. For 33 ≤ n ≤ 43, we have I ′ = I = 1 and min(3 + d′, d) = 3 + d′ =
d. Then we have the existance of four transversal of Bn that intersect stably in t
points by Lemma 3.13 for t ∈ [3 + d′, 25 + d′] \ ([10 + d′, 13 + d′] ∪ [18 + d′, 24 + d′])
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and by Lemma 3.14 for t ∈ [d, 18 + d] \ ([3 + d, 8 + d] ∪ [11 + d, 17 + d]) = [3 +
d′, 21 + d′] \ ([6 + d′, 11 + d′] ∪ [14 + d′, 20 + d′]). The union of the two result sets
is [3 + d′, 25 + d′] \ ([10 + d′, 11 + d′] ∪ [18 + d′, 20 + d′] ∪ [22 + d′, 24 + d′]). A
subset of this is [3 + d′, 16 + d′] \ [10 + d′, 11 + d′]. Noting that as d′ ≤ 5 for
the specified n, then 11 + 2d′ ≤ 16 + d′, and so this subset includes the range
[min(3+d′, d), 11+2d′]\[10+d′, 11+d′], which is the required result when 33 ≤ n ≤ 43.

For 45 ≤ n ≤ 53, we have I = 2, I ′ = 1 and as d′ = 6+d we have min(3+d′, d) = d.
Then we have the existence of four transversal of Bn that intersect stably in t points
by Lemma 3.13 for t ∈ [3+d′, 25+d′]\([10+d′, 13+d′]∪[18+d′, 24+d′]) and by Lemma
3.14 for [d, 36+d]\ ([5+d, 8+d]∪ [13+d, 17+d]∪ [21+d, 26+d]∪ [29+d, 35+d]) =
[−6+d′, 30+d′]\([−1+d′, 2+d′]∪ [7+d′, 11+d′]∪ [15+d′, 20+d′]∪ [23+d′, 29+d′]).
The union of the two result sets is [d, . . . , 30 + d′] \ ([−1 + d′, 2 + d′] ∪ [10 + d′, 11 +
d′] ∪ [18 + d′, 20 + d′] ∪ [23 + d′, 24 + d′] ∪ [26 + d′, 29 + d′]). A subset of this is
[d, 21 + d′] \ ([−1 + d′, 2 + d′] ∪ [10 + d′, 11 + d′] ∪ [18 + d′, 20 + d′]). Noting that
as d′ ≤ 10, then 11 + 2d′ ≤ 21 + d′, and so this subset includes the range [min(3 +
d′, d), 11 + 2d′] \ ([−1 + d′, 2 + d′] ∪ [10 + d′, 11 + d′] ∪ [18 + d′, 20 + d′]), which is the
required result when 45 ≤ n ≤ 53.

For n ≥ 55, we have I ′ ≥ 2. Then we have the existence of four transversal of Bn

that intersect stably in t points by Lemma 3.13 for t ∈ [3+d′, 21+d′]. This completes
the case when min(3+ d′, d) = 3+d′, as 11+2d′ ≤ 21+d′. When d < 3+d′, we still
need the cases t ∈ [d, . . . , 3 + d′]. As 3 + d′ ≤ 13, it is enough to show the statement
holds for those t with t ∈ [d, 13].

When I = 3, then 63 ≤ n ≤ 75, and we have the existance of four transversal
of Bn that intersect stably in t points by Lemma 3.14 for t ∈ [d, 13] \ [7 + d, 8 + d].
When I ≥ 4, we have the existence of four transversal of Bn that intersect stably in
t points by Lemma 3.14 for t ∈ [d, 13].

Then Theorem 1.5 follows by Theorem 3.12 and Theorem 3.15.

4 Application to latin trades

Let D represent a combinatorial design and assume there exists distinct sets S1, S2

with S1 a subdesign of D, such that D′ = (D \ S1) ∪ S2 forms a valid design. Then
the pair (S1, S2) forms a combinatorial bitrade. The original design D is immaterial,
and we can define a bitrade formally by taking the pair of sub-designs (S1, S2) that
fulfill certain properties. If our combinatorial design is a latin square, the bitrade
is called a latin bitrade. A good survey of latin bitrades is [10], and for trades in
general is [7].

Definition 4.1. A μ-way latin trade of volume s and order n is a collection of μ
partial latin squares (L1, . . . , Lμ), each of order n, such that:

1. Each partial latin square contains exactly the same s filled cells,

2. If cell (i, j) is filled then it contains a different entry in each of the μ partial
latin squares,
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3. Row i in each of the μ partial latin squares contains, set-wise, the same symbols,
and column j likewise.

A μ-way latin trade is circulant if each of the partial latin squares can be obtained
from the first row by simultaneously cycling the rows, columns, and symbols. For
example, the cell (r, c, e) ∈ L would imply (r + 1, c + 1, e + 1) ∈ L. We call the set
of first rows the base row, and can write it in the notation B = {(e1, . . . , eμ)cj | 1 ≤
j ≤ k}, where (0, cj, eα) ∈ Lα for 1 ≤ α ≤ μ.

A μ-way latin trade is k-homogeneous if in each partial latin square, L, each row
and each column contain k filled cells, and each symbol appears in filled cells of L
precisely k times. Clearly a circulant μ-way trade is k-homogeneous, where k is the
number of filled cells in the first row.

There has been much interest in 2-way k-homogeneous latin trades as demon-
strated by the work in [6], [5], [9], [11], [12], and [15], and more recently there has
been an extension to μ-way k-homogeneous latin trades in [4].

Theorem 4.2. If there exists a collection of μ transversals of Bn that intersect stably
in t points, then there exists a circulant μ-way (n − t)-homogeneous latin trade of
order n.

Proof. Consider a collection of μ transversals of Bn, T1, . . . , Tμ, that intersect stably
in the t points S. Consider the partial latin squares Qα = {(i, c + i, r + c + i) |
0 ≤ i ≤ n− 1 and (r, c, r + c) ∈ Tα \ S}. It is clear that each corresponding row of
the Qα contain setwise the same symbols. As the cells of the first column of Qα are
(−c, 0, r) ∈ Qα, each column contain setwise the same symbols. Then it is clear that
the collection of μ partial latin squares satisfy the conditions of a μ-way latin trade.
They are also circulant by definition, and hence are clearly (n− t)-homogeneous.

Example 4.3. Consider B5 with the following transversals:

0∗ 1 2 3 4
1 2 3∗ 4 0
2 3 4 0 1∗

3 4∗ 0 1 2
4 0 1 2∗ 3

Here, the transversals intersect stably in the 1 point S = {(0, 0, 0)}. The cell
(1, 2, 3) is in the starred transversal, and not in S, so Construction 4.2 places the
cell (0, 2, 3) into the resulting first row of a circulant latin square. Construction 4.2
gives the first row of a circulant latin squares to be:

· 4 3 2 1 · 2 4 1 3

Writing these latin squares out completely:
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· 4 3 2 1
2 · 0 4 3
4 3 · 1 0
1 0 4 · 2
3 2 1 0 ·

· 2 4 1 3
4 · 3 0 2
3 0 · 4 1
2 4 1 · 0
1 3 0 2 ·

The two partial latin squares form a 2-way 4-homogeneous circulant latin trade
of order 5. This completes the example.

Theorem 4.4. For odd n ≥ 33, let I, I ′, d and d′ be the unique integers such that
n = 18I + 9 + 2d and n = 22I ′ + 11 + 2d′, I, I ′ ≥ 1, 0 ≤ d < 9 and 0 ≤ d′ < 11.
Then there exists a cyclic (n − t)-homogeneous 3-way latin trade of order n, for
t ∈ [min(3 + d′, d), n] \ [n− 5, n− 1], except, perhaps, when:

• n = 51 and t = 29,

• n = 53 and t = 30.

Proof. Follows by Theorem 1.4 and Theorem 4.2.

Theorem 4.5. For odd n ≥ 33, let I, I ′, d and d′ be the unique integers such that
n = 18I + 9 + 2d and n = 22I ′ + 11 + 2d′, I, I ′ ≥ 1, 0 ≤ d < 9 and 0 ≤ d′ < 11.
Then there exists a cyclic (n − t)-homogeneous 4-way latin trade of order n, for
t ∈ [min(3 + d′, d), n] \ ({n− 15} ∪ [n− 7, n− 1]), except, perhaps, when:

• 33 ≤ n ≤ 43 and t ∈ [10 + d′, 11 + d′] ∪ [n− 14, n− 12],

• 45 ≤ n ≤ 53 and t ∈ [−1 + d′, 2 + d′] ∪ [10 + d′, 11 + d′] ∪ [18 + d′, 20 + d′],

• 63 ≤ n ≤ 75 and t ∈ [7 + d, 8 + d].

Proof. Follows by Theorem 1.5 and Theorem 4.2.

5 Conclusion and future work

We have been able to show, with a number of exceptions, that there exist three (resp.
four) transversals of Bn that intersect stably in t points when n is odd and n ≥ 33.
With only a few unsolved cases, it appears that future work may be able to answer
Question 1.1 completely for μ = 3, 4.

Theorems 4.4 and 4.5 fill in a large portion of the spectrum of 3/4-way k-
homogeneous latin trades of odd order, which is a significant advancement on what
was previously known. There are a number of constructions for μ-way k-homogeneous
latin trades [4], and it seems that further work may result in the spectrum being com-
pleted.
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Appendix A Base b = 9

b+ d intersect result

9 0 8 6 7 2 0 1 5 3 4
7 8 6 1 2 0 4 5 3
5 3 4 8 6 7 2 0 1
4 5 3 7 8 6 1 2 0

9 1 7 8 6 2 0 1 4 5 3
8 5 3 7 0 6 1 2 4
6 4 5 8 0 7 3 1 2
5 7 8 3 0 2 6 4 1

10 0 8 9 5 2 0 1 6 7 3 4
7 5 8 1 9 0 2 4 6 3
6 4 2 9 7 3 8 0 5 1
5 3 4 7 8 9 1 6 0 2

11 0 10 7 5 2 0 1 9 6 8 3 4
7 9 6 1 2 0 10 8 4 5 3
8 4 2 10 3 9 0 5 7 1 6
6 3 10 7 1 2 8 9 0 4 5

12 0 10 7 5 2 0 1 9 11 8 3 4 6
7 11 6 1 2 0 10 3 9 5 8 4
8 9 2 4 1 11 0 5 10 6 7 3
5 3 4 11 6 10 1 9 0 8 2 7

13 0 12 7 5 2 0 1 11 3 8 10 4 9 6
8 6 12 1 2 0 4 11 9 3 10 5 7
10 11 2 4 1 3 0 7 12 9 6 8 5
5 3 4 11 12 7 2 0 10 1 9 6 8

14 0 12 7 5 2 0 1 13 3 8 11 4 10 6 9
8 6 12 1 2 0 4 11 13 3 9 5 10 7
10 13 2 4 1 3 0 5 12 9 6 11 7 8
5 3 4 7 12 9 2 0 10 13 11 1 8 6

15 0 14 7 5 2 0 1 12 3 4 13 6 10 8 11 9
8 6 14 1 2 0 4 7 13 3 12 9 11 5 10
12 9 2 4 1 3 0 13 8 5 14 11 6 10 7
5 3 4 9 10 11 2 0 14 1 13 7 12 8 6

16 0 14 7 5 2 0 1 12 3 4 15 6 11 8 13 9 10
8 6 14 1 2 0 4 7 15 3 12 9 13 5 10 11
12 9 2 4 1 3 0 13 8 5 14 15 6 10 11 7
5 3 4 11 12 7 2 0 10 1 15 13 14 9 6 8

Table 3: μ = 4 and b = 9.
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b+ d intersect result
17 0 16 7 5 2 0 1 8 3 4 15 12 9 6 13 14 10 11

8 6 16 1 2 0 4 7 14 3 10 5 15 11 12 13 9
14 9 2 4 1 3 0 5 16 13 6 7 8 15 11 12 10
5 3 4 15 10 7 2 0 8 1 14 16 13 9 6 11 12

Table 4: μ = 4 and b = 9.

b+ d intersect result
9 2 8 6 7 2 0 1 5 3 4

7 5 8 2 0 3 6 4 1
6 8 5 2 0 7 4 1 3

9 3 7 5 8 2 0 3 6 4 1
6 3 8 2 4 7 5 0 1
4 7 8 2 3 6 0 5 1

Table 5: μ = 3 and b = 9.

Appendix B Base b = 11

b+ d intersect result
11 0 10 8 9 5 2 0 1 6 7 3 4

9 10 6 7 1 2 0 8 4 5 3
8 9 10 2 7 1 3 0 6 4 5
7 5 3 10 8 9 4 2 0 6 1

11 1 10 8 9 5 2 0 1 6 7 3 4
9 7 5 3 10 0 6 8 2 4 1
8 9 4 10 3 0 5 7 1 6 2
7 5 10 8 4 0 9 2 6 1 3

11 2 10 8 9 5 2 0 1 6 7 3 4
9 7 10 4 2 0 5 8 6 1 3
8 9 5 10 2 0 3 7 4 6 1
7 10 6 9 2 0 8 3 1 4 5

11 3 8 9 10 4 2 0 5 7 1 6 3
8 10 5 2 9 7 0 3 1 6 4
8 5 3 10 7 9 4 0 1 6 2
8 4 9 3 10 2 7 5 1 6 0

Table 6: μ = 4 and b = 11.
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b+ d intersect result
12 3 9 11 6 7 2 0 1 10 8 5 3 4

8 5 7 2 9 11 1 10 6 3 0 4
6 9 3 11 5 8 1 10 0 7 2 4
5 7 11 3 8 9 1 10 2 0 6 4

13 3 12 9 7 5 2 0 1 10 11 6 8 3 4
7 9 6 3 1 12 10 2 11 5 8 4 0
6 9 12 2 4 10 3 0 11 7 8 1 5
5 9 10 4 12 1 2 7 11 0 8 6 3

14 3 12 13 7 5 2 0 1 3 11 9 10 6 4 8
10 13 6 4 2 0 11 12 1 3 8 5 9 7
8 13 5 9 2 0 3 11 12 1 6 10 7 4
7 13 8 6 2 0 12 1 4 10 11 9 5 3

15 3 14 11 7 5 2 0 1 3 12 13 8 10 4 6 9
8 9 14 6 2 0 1 13 11 3 4 12 10 5 7
10 8 6 11 2 0 1 5 14 12 13 9 7 3 4
9 7 8 13 2 0 1 14 4 11 12 3 6 10 5

16 3 14 15 7 5 2 0 1 3 4 13 11 9 6 12 10 8
12 8 6 7 2 0 1 15 13 14 10 3 4 5 11 9
9 7 8 13 2 0 1 14 6 3 15 12 10 11 4 5
8 9 14 6 2 0 1 5 12 15 4 11 13 10 7 3

17 3 16 13 7 5 2 0 1 3 4 14 15 9 6 11 8 12 10
12 8 6 7 2 0 1 16 14 15 10 3 4 5 13 11 9
9 7 8 15 2 0 1 13 16 3 4 5 11 14 12 10 6
8 9 12 6 2 0 1 5 15 7 14 16 10 13 11 3 4

18 3 16 13 7 5 2 0 1 3 4 17 15 9 6 11 8 14 12 10
12 8 6 7 2 0 1 17 14 16 10 3 4 5 15 13 11 9
9 7 8 17 2 0 1 11 16 3 4 5 15 13 14 10 6 12
8 9 12 6 2 0 1 5 10 15 16 14 17 3 13 7 4 11

19 3 18 13 7 5 2 0 1 3 4 17 6 16 8 9 10 14 15 11 12
12 8 6 7 2 0 1 15 16 18 10 3 4 5 17 13 14 9 11
9 7 8 17 2 0 1 11 18 3 4 5 12 16 13 15 6 14 10
8 9 12 6 2 0 1 5 14 15 18 7 17 3 16 11 4 10 13

20 3 18 13 7 5 2 0 1 3 4 19 6 15 8 9 10 17 14 16 11 12
12 8 6 7 2 0 1 19 14 11 18 3 4 5 17 9 16 13 15 10
9 7 8 17 2 0 1 15 16 3 4 5 6 19 12 18 13 14 10 11
8 9 12 6 2 0 1 5 18 15 10 7 19 3 16 14 17 11 4 13

21 3 20 13 7 5 2 0 1 3 4 9 6 19 16 11 8 18 10 17 14 12 15
12 8 6 7 2 0 1 19 20 13 10 3 4 5 18 9 15 16 17 11 14
9 7 8 19 2 0 1 17 12 3 4 5 6 18 20 11 14 15 10 16 13
8 9 12 6 2 0 1 5 14 11 18 15 19 3 4 20 17 7 16 13 10

Table 7: μ = 4 and b = 11.
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b+ d intersect result

11 4 9 10 8 5 2 0 1 6 7 3 4
10 6 7 8 2 0 9 1 5 3 4
7 9 6 10 2 0 5 8 1 3 4

11 5 10 8 6 9 2 0 1 4 7 5 3
10 7 9 4 2 0 6 8 1 5 3
10 6 7 8 2 0 9 1 4 5 3

Table 8: μ = 3 and b = 11.

Appendix C Base b = 15

b+ d intersect result
15 1 14 12 13 9 7 5 2 0 1 10 11 6 8 3 4

13 14 12 8 5 3 11 0 10 1 2 9 4 6 7
12 13 11 14 4 10 3 0 2 9 1 5 7 8 6
11 9 14 5 8 4 13 0 6 12 10 7 1 2 3

15 2 14 12 13 9 7 5 2 0 1 10 11 6 8 3 4
13 14 10 11 12 4 2 0 3 1 9 7 5 8 6
12 13 14 7 5 8 2 0 10 11 1 4 9 6 3
11 9 12 6 14 10 2 0 13 8 3 1 4 7 5

15 3 14 12 13 9 7 5 2 0 1 10 11 6 8 3 4
13 14 12 8 6 7 2 0 1 11 9 10 4 5 3
11 13 10 7 14 12 2 0 1 4 6 9 3 8 5
12 10 8 13 11 14 2 0 1 5 3 7 9 4 6

15 4 14 12 13 9 7 5 2 0 1 10 11 6 8 3 4
13 11 14 8 10 5 2 0 1 12 9 7 3 4 6
12 14 9 10 13 5 2 0 1 11 8 3 4 6 7
11 13 10 12 14 5 2 0 1 4 6 9 7 8 3

15 5 14 12 13 9 7 5 2 0 1 10 11 6 8 3 4
13 11 14 8 10 5 2 0 1 12 7 9 3 6 4
12 14 9 10 13 5 2 0 1 11 6 3 7 8 4
11 13 10 14 12 5 2 0 1 6 3 8 9 7 4

Table 9: μ = 4 and b = 15.
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b+ d intersect result
15 15 14 12 13 9 7 5 2 0 1 10 11 6 8 3 4
16 16 14 12 15 13 7 5 2 0 1 3 11 9 10 6 4 8
17 17 14 15 16 10 7 5 2 0 1 3 13 11 12 8 6 4 9
18 18 16 17 12 10 7 5 2 0 1 3 15 13 11 14 8 6 4 9
19 19 16 17 18 10 7 5 2 0 1 3 . . .

4 15 13 11 14 8 6 12 9
20 20 18 19 14 10 7 5 2 0 1 3 . . .

4 17 15 16 12 9 6 8 13 11
21 21 20 17 14 10 7 5 2 0 1 3 4 . . .

18 19 15 13 9 6 16 8 11 12
22 22 20 21 14 10 7 5 2 0 1 3 4 . . .

19 6 16 18 13 8 9 17 15 11 12
23 23 22 19 14 10 7 5 2 0 1 3 4 21 . . .

6 20 17 13 8 9 18 11 15 16 12
24 24 22 23 14 10 7 5 2 0 1 3 4 9 6 . . .

21 19 15 20 11 8 18 12 17 13 16
25 25 24 21 14 10 7 5 2 0 1 3 4 9 6 22 . . .

23 15 20 11 8 19 12 13 18 16 17
26 26 24 25 14 10 7 5 2 0 1 3 4 9 6 23 8 . . .

22 18 11 12 13 20 21 17 15 19 16
27 27 26 23 14 10 7 5 2 0 1 3 4 9 6 25 8 . . .

24 18 11 12 13 22 15 19 21 16 20 17
28 28 26 27 14 10 7 5 2 0 1 3 4 9 6 11 8 25 . . .

22 17 12 13 24 15 23 20 18 16 21 19
29 29 28 25 14 10 7 5 2 0 1 3 4 9 6 11 8 27 . . .

24 17 12 13 26 15 16 22 20 18 23 21 19

Table 10: μ = 4 and b = 15 (Only one partial transversal is needed in each case).
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