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Abstract

A (K1,3, λ)-frame of type gu is a K1,3-decomposition of a complete u-
partite graph with u parts of size g into partial parallel classes each of
which is a partition of the vertex set except for those vertices in one
of the u parts. In this paper, we completely solve the existence of a
(K1,3, λ)-frame of type gu.

1 Introduction

In this paper, the vertex set and edge set (or edge-multiset) of a graph G (or multi-
graph) are denoted by V (G) and E(G) respectively. For a graph G, we use λG to
represent the multi-graph obtained from G by replacing each edge of G with λ copies
of it. A graph G is called a complete u-partite graph if V (G) can be partitioned into
u parts Mi, 1 ≤ i ≤ u, such that two vertices of G, say x and y, are adjacent if and
only if x ∈ Mi and y ∈ Mj with i �= j. We use λK(m1, m2, . . . , mu) for the λ-fold of
the complete u-partite graph with mi vertices in the group Mi.

Given a collection of graphs H, an H-decomposition of a graph G is a set of sub-
graphs (blocks) of G whose edge sets partition E(G), and each subgraph is isomorphic
to a graph from H. When H = {H}, we write H-decomposition as H-decomposition
for the sake of brevity. A parallel class of a graph G is a set of subgraphs whose
vertex sets partition V (G). A parallel class is called uniform if each block of the
parallel class is isomorphic to the same graph. An H-decomposition of a graph G
is called (uniformly) resolvable if the blocks can be partitioned into (uniform) par-
allel classes. Recently, a lot of results have been obtained on uniformly resolvable
H-decompositions of Kv, especially on uniformly resolvable H-decompositions with
H = {G1, G2} ([6, 7, 11, 15, 18–21, 23–26]) and with H = {G1, G2, G3} ([8]). For
the graphs related to this paper, the reader is referred to [3, 17].
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A (resolvable) H-decomposition of λK(m1, m2, . . . , mu) is called a (resolvable)
group divisible design, denoted by (H, λ)-(R)GDD. When λ = 1, we usually omit λ
in the notation. The type of an H-GDD is the multiset of group sizes |Mi|, 1 ≤ i ≤ u,
and we usually use the “exponential” notation for its description: type 1i2j3k . . .
denotes i occurrences of groups of size 1, j occurrences of groups of size 2, and so on.
In this paper, we will use K1,3-RGDDs as input designs for recursive constructions.
There are some known results on the existence of K1,3-RGDDs. For example, K1,3-
RGDDs of types 24 and 44 have been constructed in [17], and the existence of a
K1,3-RGDD of type 12u for any u ≥ 2 has been solved in [3].

Let K be a set of positive integers. If H = {K1, K2, . . . , Kt} with |V (Ki)| ∈ K
(1 ≤ i ≤ t), then H-GDD is also denoted by K-GDD, and an K-GDD of type 1v

is called a pairwise balanced design, denoted by (K, v)-PBD. It is usual to write k
rather than {k} when K = {k} is a singleton.

A set of subgraphs of a complete multipartite graph covering all vertices except
those belonging to one part M is said to be a partial parallel class missing M . A
partition of an (H, λ)-GDD of type gu into partial parallel classes is said to be a
(H, λ)-frame. Frames were firstly introduced in [1]. Frames are important combi-
natorial structures used in graph decompositions. Stinson [27] solved the existence
of a (K3, 1)-frame of type gu. For the existence of a (K4, λ)-frame of type gu, see
[10, 12–14, 22, 28, 29]. Cao et al. [5] started the research of a (Ck, 1)-frame of type
gu. Buratti et al. [2] have completely solved the existence of a (Ck, λ)-frame of type
gu recently. Here we focus on the existence of a (K1,3, λ)-frame of type gu which can
be used in uniformly resolvable H-decompositions with K1,3 ∈ H in [3]. It is easy to
see that the number of partial parallel classes missing a specified group is 2gλ

3
. So

we have the following necessary conditions for the existence of a (K1,3, λ)-frame of
type gu.

Theorem 1.1. The necessary conditions for the existence of a (K1,3, λ)-frame of
type gu are λg ≡ 0 (mod 3), g(u− 1) ≡ 0 (mod 4), u ≥ 3 and g ≡ 0 (mod 4) when
u = 3.

Not many results have been known for the existence of a (K1,3, λ)-frame of type gu.

Theorem 1.2. [3] There exists a K1,3-frame of type 12u for u ≥ 3.

In this paper, we will prove the following main result.

Theorem 1.3. The necessary conditions for the existence of a (K1,3, λ)-frame of type
gu are also sufficient with the definite exception of (λ, g, u) = (6t+ 3, 4, 3), t ≥ 0.

2 Recursive constructions

For brevity, we use Ik to denote the set {1, 2, . . . , k}, and use (a; b, c, d) to denote the
3-star K1,3 with vertex set {a, b, c, d} and edge set {{a, b}, {a, c}, {a, d}}. Now we
state two basic recursive constructions for (K1,3, λ)-frames. Similar proofs of these
constructions can be found in [9] and [27].
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Construction 2.1. If there exists a (K1,3, λ)-frame of type gu1
1 gu2

2 . . . gut
t , then there

is a (K1,3, λ)-frame of type (mg1)
u1(mg2)

u2 . . . (mgt)
ut for any m ≥ 1.

Construction 2.2. If there exist a (K, v)-GDD of type gt11 g
t2
2 . . . gtmm and a (K1,3, λ)-

frame of type hk for each k ∈ K, then there exists a (K1,3, λ)-frame of type
(hg1)

t1(hg2)
t2 . . . (hgm)

tm .

Definition 2.1. Let G be a λ-fold complete u-partite graph with u groups M1,M2, . . . ,
Mu such that |Mi| = g for each 1 ≤ i ≤ u. Suppose Ni ⊂ Mi and |Ni| = h for any
1 ≤ i ≤ u. Let H be a λ-fold complete u-partite graph with u groups (called holes)
N1, N2, . . . , Nu. An incomplete resolvable (K1,3, λ)-group divisible design of type gu

with a hole of size h in each group, denoted by (K1,3, λ)-IRGDD of type (g, h)u, is a

resolvable (K1,3, λ)-decomposition of G−E(H) in which there are 2λ(g−h)(u−1)
3

parallel

classes of G and 2λh(u−1)
3

partial parallel classes of G−H.

Lemma 2.3. There exists a (K1,3, 3)-IRGDD of type (12, 4)2.

Proof: Let the vertex set be Z16∪{a0, a1, a2, a3}∪{b0, b1, b2, b3}, and let the two groups
be {0, 2, . . . , 14} ∪ {a0, a1, a2, a3} and {1, 3, . . . , 15} ∪ {b0, b1, b2, b3}. The required 8
partial parallel classes can be generated from two partial parallel classes Q1, Q2 by
+4j (mod 16), j = 0, 1, 2, 3. The required 16 parallel classes can be generated from
four parallel classes Pi, i = 1, 2, 3, 4, by +4j (mod 16), j = 0, 1, 2, 3. The blocks in
Q1, Q2 and Pi are listed below.
Q1 (4; 1, 3, 5) (9; 0, 6, 8) (12; 7, 11, 15) (13; 2, 10, 14)
Q2 (0; 5, 7, 11) (3; 6, 10, 14) (12; 1, 9, 15) (13; 2, 4, 8)
P1 (0; 3, 7, 15) (1; 2, 10, 14) (a0; 5, 9, 13) (b0; 4, 8, 12) (11; a1, a2, a3) (6; b1, b2, b3)
P2 (6; 3, 7, 15) (9; 2, 10, 12) (a1; 1, 5, 13) (b1; 0, 4, 8) (11; a0, a2, a3) (14; b0, b2, b3)
P3 (14; 3, 7, 15) (1; 6, 8, 10) (a2; 5, 9, 13) (b2; 0, 4, 12) (11; a0, a1, a3) (2; b0, b1, b3)
P4 (4; 5, 11, 15) (3; 2, 6, 14) (a3; 1, 9, 13) (b3; 0, 8, 12) (7; a0, a1, a2) (10; b0, b1, b2)

A k-GDD of type nk is called a transversal design, denoted by TD(k, n). A
TD(k, n) is idempotent if it contains a parallel class of blocks. A resolvable TD(k, n)
is denoted by RTD(k, n). If we can select a block from each parallel class of an
RTD(k, n), and all these n blocks form a new parallel class, then this RTD(k, n) is
denoted by RTD*(k, n).

Construction 2.4. Suppose there exist an RTD*(u, n), a (K1,3, λ)-IRGDD of type
(g + h, h)u, a (K1,3, λ)-RGDD of type gu, and a (K1,3, λ)-RGDD of type (g + h)u,
then there exists a (K1,3, λ)-RGDD of type (gn+ h)u.

Proof: We start with an RTD*(u, n) with n parallel classes Pi = {Bi1, Bi2, . . . , Bin},
1 ≤ i ≤ n, and a parallel class Q = {B11, B21, . . . , Bn1}. Give each vertex weight g.

For each block Bij in Pi \ Q, place a (K1,3, λ)-RGDD of type gu whose t = 2λg(u−1)
3

parallel classes are denoted by F s
ij , 1 ≤ s ≤ t. For each block Bi1 in Q with 1 ≤ i ≤

n−1, place a (K1,3, λ)-IRGDD of type (g+h, h)u on the vertices of the weighted block
Bi1 and hu new common vertices (take them as u holes). Denote its t parallel classes

by F s
i1, 1 ≤ s ≤ t, and its w = 2λh(u−1)

3
partial parallel classes by Qs

i1, 1 ≤ s ≤ w.
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Further, place on the vertices of the weighted block Bn1 and these hu new vertices
a (K1,3, λ)-RGDD of type (g + h)u whose t + w parallel classes are denoted by F s

n1,
1 ≤ s ≤ t+ w.

Let F s
i = ∪n

j=1F
s
ij , 1 ≤ s ≤ t, 1 ≤ i ≤ n, and Tj = F t+j

n1 ∪ (∪n−1
i=1 Q

j
i1), 1 ≤ j ≤ w.

It is easy to see F s
i and Tj are parallel classes of the required (K1,3, λ)-RGDD of type

(gn+ h)u.

Construction 2.5. If there is a (K1,3, λ)-RGDD of type g2, then there exists a
(K1,3, λ)-frame of type g2u+1 for any u ≥ 1.

Proof: We start with a K2-frame of type 12u+1 in [4]. Suppose its vertex set is I2u+1.
Denote its 2u + 1 partial parallel classes by Fi (i ∈ I2u+1) which is with respect to
the group {i}. The required (K1,3, λ)-frame of type g2u+1 will be constructed on
I2u+1 × Ig. For any B = {a, b} ∈ Fi, place on B × Ig a copy of a (K1,3, λ)-RGDD
of type g2, whose 2λg

3
parallel classes are denoted by Pj(B), 1 ≤ j ≤ 2λg

3
. Let

P j
i =

⋃

B∈Fi

Pj(B), i ∈ I2u+1, 1 ≤ j ≤ 2λg
3
. Then each P j

i is a partial parallel class with

respect to the group {i}× Ig. Thus we have obtained a (K1,3, λ)-frame of type g2u+1

for any u ≥ 1.

Note that if there exists a (K1,3, λ)-frame of type g3, then it is easy to see that
these 2λg/3 partial parallel classes missing the same group form a (K1,3, λ)-RGDD
of type g2. Combining with Construction 2.5, we have the following conclusion.

Lemma 2.6. The existence of a (K1,3, λ)-frame of type g3 is equivalent to the exis-
tence of a (K1,3, λ)-RGDD of type g2.

Construction 2.7. If there exist a (K1,3, λ)-frame of type (m1g)
u1(m2g)

u2 . . . (mtg)
ut

and a (K1,3, λ)-frame of type gmi+ε for any 1 ≤ i ≤ t, then there exists a (K1,3, λ)-

frame of type g
∑t

i=1 miui+ε, where ε = 0, 1.

Proof: If there exists a (K1,3, λ)-frame of type (m1g)
u1(m2g)

u2 . . . (mtg)
ut, there are

2λ|Gj |
3

partial parallel classes missing Gj, 1 ≤ j ≤ u1+u2+. . . ut. Add gε new common
vertices (if ε > 0) to the vertex set ofGj and form a new vertex set G′

j . Then break up

G′
j with a (K1,3, λ)-frame of type g|Gj|/g+ε with groups G1

j , G
2
j , . . . , G

|Gj |/g
j ,M , where

the gε common vertices (if ε > 0) are viewed as a new group M . It has
2λ|Gj |

3
+ 2λgε

3

partial parallel classes.

Next match up the
2λ|Gj |

3
partial parallel classes missing Gj with

2λ|Gi
j |

3
partial

parallel classes missing Gi
j to get the required partial parallel classes with respect to

the group Gi
j (note that

2λ|Gj |
3

=
∑|Gi

j |/g
i=1

2λ|Gi
j |

3
), 1 ≤ i ≤ |Gj |/g.

Finally, combine these 2λgε
3

partial parallel classes (if ε > 0) from all the groups

to get 2λgε
3

partial parallel classes missing M .
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3 λ = 1

By Theorem 1.1, it is easy to see that the two cases λ = 1 and λ = 3 are crucial for
the whole problem. In this section we first consider the case λ = 1.

Lemma 3.1. For each u ≡ 1 (mod 4), u ≥ 5, there exists a K1,3-frame of type 3u.

Proof: For u = 5, 9, let the vertex set be Z3u, and let the groups be Mi = {i, i +
u, i+ 2u}, 0 ≤ i ≤ u− 1. The required 2 partial parallel classes with respect to the
group Mi are {Q1 + i, Q1 + i+ u,Q1 + i+ 2u} and {Q2 + i, Q2 + i+ u,Q2 + i+ 2u}.
The blocks in Q1 and Q2 are listed below.

u = 5 Q1 (1; 2, 3, 4) Q2 (2; 6, 8, 9)

u = 9 Q1 (1; 2, 3, 4) (5; 15, 16, 17) Q2 (1; 5, 6, 7) (4; 11, 12, 17)

For u ≥ 13, we start with a K1,3-frame of type 12(u−1)/4 from Theorem 1.2 and
apply Construction 2.7 with ε = 1 to get the required K1,3-frame of type 3u, where
the input design, a K1,3-frame of type 35, is constructed above.

Lemma 3.2. For each u ≡ 1 (mod 2), u ≥ 5, there exists a K1,3-frame of type 6u.

Proof: For u ≡ 1 (mod 4), apply Construction 2.1 with m = 2 to get a K1,3-frame
of type 6u, where the input design a K1,3-frame of type 3u exists by Lemma 3.1.

For u ≡ 3 (mod 4), when u = 7, 11, 15, let the vertex set be Z6u, and let the
groups be Mi = {i + ju : 0 ≤ j ≤ 5}, 0 ≤ i ≤ u − 1. Three of the four required
partial parallel classes P0, P1, P2 with respect to the group M0 can be generated from
an initial partial parallel class P by +i (mod 6u), i = 0, 2u, 4u. The last partial
parallel class missing M0 is P3 = Q∪{Q+2u}∪{Q+4u}. All these required partial
parallel classes can be generated from P0, P1, P2, P3 by +2j (mod 6u), 0 ≤ j ≤ u−1.
For each u, the blocks in P and Q are listed below.
u = 7 P (1; 2, 3, 4) (5; 9, 10, 11) (6; 8, 12, 15) (13; 22, 23, 24) (16; 17, 19, 20)

(18; 29, 34, 36) (25; 33, 37, 41) (26; 31, 38, 39) (40; 27, 30, 32)
Q (1; 16, 19, 23) (3; 20, 22, 26) (10; 25, 27, 32)

u = 11 P (41; 60, 61, 65) (5; 9, 10, 12) (6; 7, 8, 13) (14; 17, 18, 19) (15; 21, 23, 24)
(16; 25, 26, 28) (20; 34, 35, 36) (27; 37, 39, 40) (29; 43, 45, 46) (30; 38, 47, 48)
(31; 52, 54, 56) (3; 1, 50, 51) (32; 53, 57, 59) (42; 2, 4, 62) (64; 49, 58, 63)

Q (1; 4, 27, 28) (2; 15, 25, 38) (7; 36, 39, 43) (18; 42, 52, 53) (19; 54, 56, 57)
u = 15 P (66; 79, 83, 86) (2; 1, 58, 70) (69; 11, 67, 74) (73; 8, 10, 12) (14; 17, 18, 19)

(16; 23, 24, 25) (26; 36, 37, 38) (27; 39, 40, 41) (28; 42, 44, 46) (29; 47, 48, 49)
(31; 52, 53, 54) (32; 51, 55, 56) (33; 43, 50, 57) (34; 59, 61, 62) (35; 63, 71, 81)
(3; 64, 77, 89) (4; 6, 87, 88) (13; 5, 7, 82) (20; 9, 68, 84) (21; 72, 78, 85)
(22; 65, 76, 80)

Q (1; 4, 10, 32) (3; 36, 37, 38) (5; 42, 43, 53) (9; 48, 49, 50) (14; 51, 52, 58)
(16; 17, 56, 57) (24; 55, 59, 71)

For u = 19, apply Construction 2.1 with m = 3 to get a K1,3-frame of type
363, where the input design a K1,3-frame of type 123 exists by Lemma 1.2. Further,
applying Construction 2.7 with ε = 1 and a K1,3-frame of type 67 constructed above,
we can obtain a K1,3-frame of type 619.
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For u = 23, start with a TD(4, 3) in [16]. Delete a vertex from the last group to
obtain a {3, 4}-GDD of type 3321. Give each vertex weight 12, and apply Construc-
tion 2.2 to get a K1,3-frame of type 363241. Applying Construction 2.7 with ε = 1,
we can obtain a K1,3-frame of type 623.

For u = 35, apply Construction 2.1 with m = 5 to obtain a K1,3-frame of type
307. Then apply Construction 2.7 with ε = 0 to get a K1,3-frame of type 635.

For u = 47, start with a TD(5, 5) in [16]. Delete two vertices from the last
group to obtain a {4, 5}-GDD of type 5431. Give each vertex weight 12, and apply
Construction 2.2 to get a K1,3-frame of type 604361. Applying Construction 2.7 with
ε = 1, we can obtain a K1,3-frame of type 647.

For all other values of u, we can always write u as u = 2t+6n+1 where 0 ≤ t ≤ n,
t �= 2, n ≥ 4 and n �= 6. From [16], there is an idempotent TD(4, n) with n blocks
B1, B2, . . . , Bn in a parallel class. Delete n − t vertices in the last group that lie in
Bt+1, Bt+2, . . . , Bn. Taking the truncated blocks B1, B2, . . . , Bn as groups, we have
formed a {t, n, 3, 4}-GDD of type 4t3n−t when t ≥ 3, or a {n, 3, 4}-GDD of type
4t3n−t when t = 0, 1. Then give each vertex weight 12, and use Construction 2.2 to
get a K1,3-frame of type 48t36n−t. Further, we use Construction 2.7 with ε = 1 to
obtain a K1,3-frame of type 6u. The proof is complete.

4 λ = 3

In this section we continue to consider the case λ = 3.

Lemma 4.1. For each u ≡ 1 (mod 4), u ≥ 5, there is a (K1,3, 3)-frame of type 1u.

Proof: For u = 5, 9, 13, 17, 29, 33, let the vertex set be Zu, and let the groups be
Mi = {i}, i ∈ Zu. The two partial parallel classes are P1 + i and P2 + i with respect
to the group Mi. The blocks in P1 and P2 are listed below.
u = 5 P1 (1; 2, 3, 4)

P2 (2; 1, 3, 4)
u = 9 P1 (1; 2, 3, 4) (5; 6, 7, 8)

P2 (1; 2, 4, 6) (3; 5, 7, 8)
u = 13 P1 (1; 2, 3, 4) (5; 6, 7, 8) (9; 10, 11, 12)

P2 (1; 5, 7, 9) (2; 8, 10, 11) (12; 3, 4, 6)
u = 17 P1 (1; 2, 3, 4) (5; 6, 7, 8) (9; 10, 12, 14) (11; 13, 15, 16)

P2 (1; 5, 6, 7) (2; 8, 9, 10) (3; 11, 13, 16) (4; 12, 14, 15)
u = 29 P1 (1; 2, 3, 4) (5; 6, 7, 8) (9; 10, 11, 12) (13; 17, 18, 19)

(14; 20, 21, 22) (15; 23, 24, 25) (16; 26, 27, 28)
P2 (1; 5, 6, 7) (2; 9, 10, 11) (3; 8, 13, 16) (4; 19, 20, 21)

(12; 23, 24, 26) (18; 22, 25, 27) (28; 14, 15, 17)

u = 33 P1 (1; 2, 3, 4) (5; 6, 7, 8) (9; 10, 11, 12) (13; 17, 18, 19)
(14; 20, 21, 22) (15; 23, 24, 25) (16; 27, 28, 29) (26; 30, 31, 32)

P2 (1; 5, 6, 8) (2; 9, 10, 11) (3; 12, 13, 14) (4; 17, 21, 22)
(7; 23, 24, 26) (15; 25, 29, 30) (16; 27, 28, 31) (32; 18, 19, 20)

For all other values of u, apply Construction 2.2 with a ({5, 9, 13, 17, 29, 33}, u)-
PBD from [4] to obtain the conclusion.
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Lemma 4.2. For each u ∈ {7, 11, 15, 23, 27}, there is a (K1,3, 3)-frame of type 2u.

Proof: Let the vertex set be Z2u, and let the groups be Mi = {i, i+u}, 0 ≤ i ≤ u−1.
The 4 partial parallel classes missing the group Mi are Pj + i, 1 ≤ j ≤ 4. For each
u, the blocks in Pj are listed below.

u = 7 P1 (1; 2, 3, 4) (5; 6, 8, 9) (10; 11, 12, 13)
P2 (1; 2, 3, 4) (5; 9, 10, 11) (8; 6, 12, 13)
P3 (1; 3, 5, 6) (2; 4, 10, 12) (8; 9, 11, 13)
P4 (2; 5, 10, 11) (9; 1, 3, 4) (12; 6, 8, 13)

u = 11 P1 (1; 2, 3, 4) (5; 6, 7, 8) (9; 10, 12, 13) (14; 15, 16, 17) (18; 19, 20, 21)
P2 (1; 3, 5, 6) (2; 4, 7, 8) (9; 13, 14, 15) (10; 16, 17, 18) (12; 19, 20, 21)
P3 (1; 6, 7, 8) (2; 3, 5, 9) (4; 12, 17, 19) (14; 10, 18, 20) (21; 13, 15, 16)
P4 (1; 8, 9, 13) (3; 12, 16, 20) (6; 10, 15, 18) (7; 17, 19, 21) (14; 2, 4, 5)

u = 15 P1 (1; 2, 3, 4) (5; 6, 7, 8) (9; 10, 11, 12) (13; 17, 18, 19) (14; 16, 20, 21)
(22; 23, 24, 25) (26; 27, 28, 29)

P2 (1; 5, 6, 7) (2; 3, 8, 9) (4; 10, 11, 12) (13; 17, 18, 19) (14; 22, 23, 24)
(16; 21, 26, 27) (20; 25, 28, 29)

P3 (1; 8, 9, 10) (2; 5, 6, 7) (3; 11, 12, 13) (4; 14, 22, 23) (16; 20, 25, 27)
(17; 24, 26, 28) (29; 18, 19, 21)

P4 (1; 8, 11, 12) (2; 6, 14, 16) (5; 17, 18, 19) (9; 21, 22, 26) (10; 23, 24, 28)
(13; 25, 27, 29) (20; 3, 4, 7)

u = 23 P1 (18; 8, 21, 38) (19; 24, 39, 44) (14; 2, 7, 20) (4; 29, 37, 45) (15; 31, 34, 41)
(36; 1, 17, 28) (33; 11, 22, 32) (13; 9, 10, 40) (30; 6, 26, 27) (16; 3, 5, 42)
(43; 12, 25, 35)

P2 (8; 29, 40, 43) (22; 6, 20, 36) (2; 26, 28, 45) (25; 11, 39, 42) (21; 10, 13, 31)
(17; 15, 27, 32) (12; 5, 16, 30) (4; 33, 38, 44) (35; 9, 18, 41) (7; 19, 24, 37)
(3; 1, 14, 34)

P3 (24; 16, 37, 45) (12; 11, 30, 34) (18; 5, 8, 9) (27; 3, 20, 39) (6; 22, 38, 42)
(41; 28, 32, 35) (44; 7, 40, 43) (21; 25, 29, 33) (2; 14, 15, 17) (19; 1, 4, 10)
(31; 13, 26, 36)

P4 (31; 6, 14, 41) (33; 3, 26, 42) (28; 1, 27, 36) (4; 7, 22, 43) (21; 16, 24, 25)
(17; 12, 19, 39) (10; 8, 11, 40) (32; 13, 34, 38) (9; 2, 15, 30) (37; 5, 18, 20)
(44; 29, 35, 45)

u = 27 P1 (35; 13, 18, 24) (52; 40, 46, 49) (28; 11, 17, 26) (41; 15, 31, 47) (42; 3, 6, 48)
(10; 2, 8, 34) (7; 19, 30, 32) (4; 12, 16, 29) (45; 14, 25, 38) (36; 1, 50, 51)
(44; 22, 23, 37) (20; 5, 9, 43) (39; 21, 33, 53)

P2 (35; 32, 36, 42) (19; 10, 12, 52) (9; 13, 34, 39) (1; 20, 21, 48) (25; 11, 14, 43)
(45; 8, 44, 46) (2; 38, 47, 50) (40; 6, 24, 53) (3; 23, 26, 31) (15; 16, 17, 37)
(49; 28, 30, 33) (5; 7, 22, 29) (18; 4, 41, 51)

P3 (39; 17, 23, 52) (28; 29, 44, 50) (19; 6, 18, 30) (43; 5, 34, 53) (2; 31, 32, 46)
(22; 13, 14, 33) (1; 9, 42, 47) (24; 20, 36, 38) (37; 25, 41, 51) (7; 3, 4, 12)
(11; 16, 21, 40) (10; 8, 15, 49) (48; 26, 35, 45)

P4 (16; 13, 36, 39) (50; 12, 37, 46) (51; 15, 25, 32) (20; 1, 10, 35) (33; 9, 40, 41)
(5; 3, 11, 42) (48; 18, 52, 53) (8; 34, 43, 47) (31; 6, 19, 22) (44; 7, 23, 49)
(24; 4, 14, 45) (2; 28, 30, 38) (26; 17, 21, 29)

Lemma 4.3. There exists a (K1,3, 3)-frame of type 2u for each u ≡ 1 (mod 6) and
u ≥ 19.

Proof: For each u, we start with a K1,3-frame of type 12
u−1
6 by Lemma 1.2, and
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apply Construction 2.7 with ε = 1 to get a (K1,3, 3)-frame of type 2u, where the
input design a (K1,3, 3)-frame of type 27 comes from Lemma 4.2.

Lemma 4.4. There exists a (K1,3, 3)-RGDD of type g2, g = 8, 20, 52.

Proof: Let the vertex set be Z2g, and let the groups be {0, 2, . . . , 2g − 2} and
{1, 3, . . . , 2g − 1}. The required 2g parallel classes can be generated from P by
+1 (mod 2g). The blocks in P are listed below.

g = 8 (0; 1, 3, 5) (2; 7, 9, 13) (11; 4, 8, 10) (15; 6, 12, 14)
g = 20 (0; 1, 3, 5) (2; 7, 9, 11) (4; 13, 15, 17) (6; 19, 21, 23) (8; 25, 27, 29)

(31; 10, 18, 20) (33; 22, 24, 26) (35; 28, 30, 32) (37; 12, 34, 36) (39; 14, 16, 38)
g = 52 (89; 68, 84, 102) (15; 14, 46, 96) (37; 56, 60, 72) (26; 59, 67, 77) (4; 3, 61, 73)

(43; 0, 6, 10) (12; 19, 51, 57) (50; 1, 7, 53) (86; 11, 99, 101) (74; 9, 25, 69)
(16; 71, 93, 103) (23; 30, 44, 82) (95; 32, 52, 90) (62; 5, 33, 81) (34; 41, 47, 85)
(87; 42, 88, 98) (58; 29, 31, 35) (39; 22, 36, 92) (91; 8, 18, 76) (2; 49, 65, 97)
(24; 13, 21, 63) (55; 20, 40, 80) (75; 38, 66, 100) (45; 28, 64, 78) (79; 48, 54, 70)
(94; 17, 27, 83)

Lemma 4.5. There exists a (K1,3, 3)-frame of type l3 for any l > 4 and l ≡ 0
(mod 4).

Proof: We distinguish two cases.

1. l ≡ 0 (mod 8). Applying Construction 2.5 with a (K1,3, 3)-RGDD of type 82

from Lemma 4.4, we can obtain a (K1,3, 3)-frame of type 83. Then apply Construc-
tion 2.1 with m = l/8 to get a (K1,3, 3)-frame of type l3.

2. l ≡ 4 (mod 8). Let l = 8k + 4, k ≥ 1. For l = 12, take a K1,3-frame of type
123 from Theorem 1.2 and repeat each block 3 times to get a (K1,3, 3)-frame of type
123. For l = 20, 52, the conclusion comes from Lemmas 2.6 and 4.4. For all other
values of l, applying Construction 2.4 with u = 2, n = k, g = 8 and h = 4, we can
obtain a (K1,3, 3)-RGDD of type (8k + 4)2, where the input designs an RTD*(2, k)
can be obtained from an idempotent TD(3, k) in [16], a (K1,3, 3)-IRGDD of type
(12, 4)2 exists by Lemma 2.3, a (K1,3, 3)-RGDD of type 82 comes from Lemma 4.4,
and a K1,3-RGDD of type 122 comes from Lemma 1.2. Then apply Construction 2.5
to get a (K1,3, 3)-frame of type (8k + 4)3.

Lemma 4.6. For any t ≥ 0, a (K1,3, 6t+ 3)-frame of type 43 can not exist.

Proof: By Lemma 2.6 we only need to prove there doesn’t exist a (K1,3, 6t+3)-RGDD
of type 42. Assume there exists a (K1,3, 6t + 3)-RGDD of type 42. Without lose of
generality, we suppose the vertex set is Z8, and the two groups are {0, 2, 4, 6} and
{1, 3, 5, 7}. There are 16t + 8 parallel classes. For each vertex v, suppose there are
exactly x parallel classes in which the degree of v is 3. Then we have 3x+(16t+8−
x) = 4(6t+ 3). So x = 4t+ 2.

Now we consider two vertices 0 and 1. The edge {0, 1} appears exactly in 3 + 6t
parallel classes. Suppose there are exactly a parallel classes in which the degree of 0
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is 3, and b parallel classes in which the degree of 0 is 1. Then the vertex 1 has degree
3 in the later b parallel classes. So there are 4t+2− b parallel classes in which 0 and
1 are not adjacent and the degree of 1 is 3. Thus in these 4t + 2− b parallel classes
the degree of 0 is 3. So we have 4t+ 2− b+ a ≤ 4t+ 2. That is a ≤ b. Similarly, we
can prove b ≤ a. Now we have a = b. Note that a + b = 6t + 3. Thus we obtain a
contradiction.

Lemma 4.7. There exists a (K1,3, 6t)-frame of type 43, t ≥ 1.

Proof: We first construct a (K1,3, 6)-RGDD of type 42. Let the vertex be Z8, and
let the two groups be {0, 2, 4, 6} and {1, 3, 5, 7}. The required 16 parallel classes are
Pij = {(0 + i; 1 + j, 3 + j, 5 + j), (7 + j; 2 + i, 4 + i, 6 + i)}, i = 0, 2, 4, 6, j = 0, 2, 4, 6.
By Lemma 2.6 there exists a (K1,3, 6)-frame of type 43. Repeat each block t times
to get the conclusion.

Lemma 4.8. For each u ≥ 4, there exists a (K1,3, 3)-frame of type 4u.

Proof: For u = 5, 9, apply Construction 2.1 with m = 4 to get a (K1,3, 3)-frame of
type 4u, where the input design a (K1,3, 3)-frame of type 1u exists by Lemma 4.1.

For u = 7, 11, 15, 19, 23, apply Construction 2.1 with m = 2 to get a (K1,3, 3)-
frame of type 4u, where the input designs (K1,3, 3)-frames of type 2u exist by Lem-
mas 4.2 and 4.3.

When u = 4, 6, 8, 10, 14, let the vertex set be 4u, and let the groups be Mi =
{i, i+ u, i+2u, i+3u}, 0 ≤ i ≤ u− 1. With respect to the group Mi, 0 ≤ i ≤ u− 1,
the 8 partial parallel classes are Pj + i + uk, j = 1, 2, 0 ≤ k ≤ 3. The blocks in P1

and P2 are listed below.
u = 4 P1 (1; 2, 3, 6) (5; 7, 10, 11) (14; 9, 13, 15)

P2 (1; 7, 10, 14) (2; 5, 9, 15) (13; 3, 6, 11)
u = 6 P1 (1; 2, 3, 4) (5; 7, 8, 9) (10; 11, 13, 14) (15; 19, 20, 22) (16; 17, 21, 23)

P2 (1; 3, 8, 9) (2; 7, 10, 11) (4; 14, 15, 17) (13; 21, 22, 23) (5; 16, 19, 20)
u = 8 P1 (1; 2, 3, 4) (5; 6, 7, 9) (10; 11, 12, 13) (14; 17, 18, 19)

(15; 20, 21, 26) (23; 28, 29, 30) (31; 22, 25, 27)
P2 (1; 10, 11, 12) (2; 9, 13, 14) (3; 15, 17, 18) (4; 19, 22, 23)

(6; 25, 28, 31) (7; 21, 26, 27) (20; 5, 29, 30)
u = 10 P1 (1; 2, 3, 4) (5; 6, 7, 8) (9; 11, 12, 13) (14; 15, 18, 19) (16; 21, 22, 23)

(17; 24, 25, 26) (27; 31, 33, 36) (29; 35, 37, 38) (39; 28, 32, 34)
P2 (1; 9, 12, 13) (2; 14, 15, 16) (3; 17, 18, 19) (4; 21, 22, 23) (5; 24, 26, 28)

(6; 29, 31, 34) (8; 32, 35, 37) (11; 27, 33, 36) (25; 7, 38, 39)

u = 14 P1 (4; 19, 38, 52, ) (5; 27, 32, 36) (10; 33, 34, 55) (11; 6, 9, 18) (13; 7, 12, 17)
(21; 15, 25, 26) (23; 8, 16, 20) (24; 37, 51, 54) (39; 29, 45, 49) (40; 22, 31, 35)
(46; 1, 30, 48) (47; 2, 3, 50) (53; 41, 43, 44)

P2 (2; 1, 11, 36) (3; 18, 19, 20, ) (4; 21, 22, 23) (5; 24, 25, 26) (6; 27, 29, 30)
(7; 31, 32, 33) (8; 34, 35, 45) (9; 17, 52, 53) (12; 47, 48, 55) (13; 15, 46, 49)
(41; 10, 40, 44) (43; 39, 50, 51) (54; 16, 37, 38)

For u = 12, 18, apply Construction 2.1 with m = u
6
and a (K1,3, 3)-frame of type

83 from Lemma 4.5 to get a (K1,3, 3)-frame of type (4u
3
)3. Applying Construction 2.7

with ε = 0 and a (K1,3, 3)-frame of type 4
u
3 , we can get a (K1,3, 3)-frame of type 4u.
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For all other values of u, take a ({4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 18, 19, 23}, u)-
PBD from [4], then apply Construction 2.2 to obtain the conclusion.

Lemma 4.9. For each u ≡ 1 (mod 2), u ≥ 5, there is a (K1,3, 3)-frame of type 2u.

Proof: For u ≡ 1 (mod 4), apply Construction 2.1 withm = 2 to get a (K1,3, 3)-frame
of type 2u, where the input design a (K1,3, 3)-frame of type 1u exists by Lemma 4.1.

For u ≡ 3 (mod 4), when u ∈ {7, 11, 15, 19, 23, 27, 31, 55}, a (K1,3, 3)-frame of
type 2u exists by Lemmas 4.2 and 4.3.

For u = 35, 63, we start with a (K1,3, 3)-frame of type 15 or 19 from Lemma 4.1,
and apply Construction 2.1 with m = 14 to get a (K1,3, 3)-frame of type 145 or 149.
Applying Construction 2.7 with ε = 0 and a (K1,3, 3)-frame of type 27, we can get a
(K1,3, 3)-frame of type 2u.

For u = 39, start with a TD(5, 4) in [16]. Delete a vertex from the last group to
obtain a {4, 5}-GDD of type 3144. Give each vertex weight 4, and apply Construc-
tion 2.2 to get a (K1,3, 3)-frame of type 121164, where the input design (K1,3, 3)-frames
of type 44 and 45 exist by Lemma 4.8. Applying Construction 2.7 with ε = 1 and
(K1,3, 3)-frames of type 27 and 29, we can obtain a (K1,3, 3)-frame of type 239.

For u = 47, start with a TD(5, 5) in [16]. Delete 2 vertices from the last group
to obtain a {4, 5}-GDD of type 3154. Give each vertex weight 4, and apply Con-
struction 2.2 to get a (K1,3, 3)-frame of type 121204. Applying Construction 2.7 with
ε = 1, we can obtain a (K1,3, 3)-frame of type 247.

For u = 95, we start with a (K1,3, 3)-frame of type 15 from Lemma 4.1, and
apply Construction 2.1 with m = 38 to get a (K1,3, 3)-frame of type 385. Applying
Construction 2.7 with ε = 0 and a (K1,3, 3)-frame of type 219, we can get a (K1,3, 3)-
frame of type 295.

For all other values of u, we can always write u as u = 2t+8n+1 where 0 ≤ t ≤ n,
t �= 2, 3, n ≥ 4 and n �= 6, 10. We start with an idempotent TD(5, n) in [16] with n
blocks B1, B2, · · · , Bn in a parallel class. Delete n− t vertices in the last group that
lie in Bt+1, Bt+2, · · · , Bn. Taking the truncated blocks B1, B2, · · · , Bn as groups, we
have formed a {t, n, 4, 5}-GDD of type 5t4n−t when t ≥ 4, or a {n, 4, 5}-GDD of
type 5t4n−t when t = 0, 1. Give each vertex weight 4, and apply Construction 2.2
to get a (K1,3, 3)-frame of type 20t16n−t. Applying Construction 2.7 with ε = 1 and
(K1,3, 3)-frames of types 29 and 211, we can obtain a (K1,3, 3)-frame of type 2u. The
proof is complete.

5 Proof of Theorem 1.3

Now we are in the position to prove our main result.

Proof of Theorem 1.3: We distinguish two cases.

1. λ ≡ 1, 2 (mod 3). In this case we have three subcases.
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(1) g ≡ 3 (mod 12). By Theorem 1.1 we have u ≡ 1 (mod 4), u ≥ 5. There exists
a K1,3-frame of type 3u by Lemma 3.1. Repeat each block λ times to get a (K1,3, λ)-
frame of type 3u. Apply Construction 2.1 with m = g/3 to get a (K1,3, λ)-frame of
type gu.

(2) g ≡ 6 (mod 12). By Theorem 1.1 we have u ≡ 1 (mod 2), u ≥ 5. Similarly
we can obtain a (K1,3, λ)-frame of type 6u from aK1,3-frame of type 6u which exists by
Lemma 3.2. Then we apply Construction 2.1 with m = g/6 to get a (K1,3, λ)-frame
of type gu.

(3) g ≡ 0 (mod 12). By Theorem 1.1 we have u ≥ 3. Similarly we can use
Construction 2.1 with m = g/12 and a K1,3-frame of type 12u from Lemma 1.2 to
obtain a (K1,3, λ)-frame of type gu.

2. λ ≡ 0 (mod 3). In this case we also have three subcases.

(1) g ≡ 1, 3 (mod 4). By Theorem 1.1 we have u ≡ 1 (mod 4), u ≥ 5. Similarly
we can use Construction 2.1 with m = g and a (K1,3, 3)-frame of type 1u from
Lemma 4.1 to obtain a (K1,3, λ)-frame of type gu.

(2) g ≡ 2 (mod 4). By Theorem 1.1 we have u ≡ 1 (mod 2), u ≥ 5. Similarly
we can use Construction 2.1 with m = g/2 and a (K1,3, 3)-frame of type 2u from
Lemma 4.9 to obtain a (K1,3, λ)-frame of type gu.

(3) g ≡ 0 (mod 4). Let g = 4s, s ≥ 1. By Theorem 1.1 we have u ≥ 3. When
u = 3 and s = 1, by Lemma 4.6 a (K1,3, 6t + 3)-frame of type 43 can not exist
for any t ≥ 0, and by Lemma 4.7 there exists a (K1,3, 6t)-frame of type 43 for any
t ≥ 1. When u = 3 and s > 1, a (K1,3, λ)-frame of type gu can be obtained from a
(K1,3, 3)-frame of type gu which exists by Lemma 4.5. When u ≥ 4, there exists a
(K1,3, 3)-frame of type 4u by Lemma 4.8. Apply Construction 2.1 with m = s to get
a (K1,3, λ)-frame of type gu.
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