
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 70(2) (2018), Pages 202–220

The r-Bessel and restricted r-Bell numbers

Ji-Hwan Jung

Department of Mathematics
Sungkyunkwan University

Suwon 440-746
Republic of Korea
jh56k@skku.edu

István Mező∗
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Abstract

In the present article we establish some combinatorial properties involv-
ing r-Bessel numbers of the second kind. These identities are deduced
from the combinatorial interpretation by using restricted set partitions.
Additionally, we introduce the restricted r-Bell numbers in analogy to the
well-known Bell numbers. We derive several recurrence relations, combi-
natorial sums, arithmetical properties (2-adic valuation) and asymptotic
results for these sequences.
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1 Introduction

The Bessel numbers of the second kind, B(n, k), count the number of set partitions
of [n] := {1, 2, . . . , n} into k blocks of size one or two. These numbers can be defined
as the connecting coefficients between some special polynomials. Namely,

dn

dtn
f(t)

∣∣∣∣
t=0

:= f (n)(0) =
n∑
k=1

B(n, k)(x)k,

where f(t) =
(

1 + t+ t2

2!

)x
and (x)n is the falling factorial, i.e., (x)n := x(x −

1) · · · (x− n+ 1) if n ≥ 1 and (x)0 = 1.
The Bessel numbers of the second kind satisfy the following recurrence (cf. [15])

B(n, k) = B(n− 1, k − 1) + (n− 1)B(n− 2, k − 1).

Moreover, B(n, k) = S(n, k) for n− k < 2, where S(n, k) are the Stirling numbers of
the second kind. Note that the Bessel numbers are complementary to the associated
Stirling numbers of the second kind defined as the number of set partitions of [n] into
k blocks of size at least 2 (cf. [16]). See [15] for the unimodality of Bessel numbers, [18]
for a combinatorial proof of the log-convave property. See [17] for their connections
to Bessel polynomials, [19, 20] for their relations to special polynomials as Cauchy
polynomials and poly-Bernoulli polynomials. For some generalizations see [13, 14].
See [4, 9, 28, 26] for some recent relations of the associated Stirling numbers.

Recently, Cheon et al. [12] introduced a generalization of this sequence called r-
Bessel numbers Br(n, k). This new sequence counts the number of set partitions of
[n + r] := {1, 2, . . . , n + r} into k + r blocks of size one or two such that the first r
elements are in distinct blocks. It is clear that if r = 0 then B0(n, k) = B(n, k).
For example, B2(2, 1) = 5 with the partitions being{

{1}, {2}, {3, 4}
}
,

{
{1, 3}, {2}, {4}

}
,

{
{1, 4}, {2}, {3}

}
,{

{1}, {2, 3}, {4}
}
,

{
{1}, {2, 4}, {3}

}
.

There is a combinatorial formula to evaluate the r-Bessel numbers (cf. [12]):

Br(n, k) =
n!

k!

n−k∑
j=0

(
r

j

)(
k

n− k − j

)
1

2n−k−j
.

Moreover, its exponential generating function is given by

∞∑
n=k

Br(n, k)
zn

n!
=

1

k!
(1 + z)r

(
z +

z2

2

)k
.

The r-Bessel numbers can be defined by means of Riordan arrays [12] as follows

[Br(n, k)] =

(
(1 + z)r, z +

z2

2

)
,
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where (, ) denoted an element of an exponential Riordan group. For example, if r = 2
we have the following array:

[B2(n, k)] =

(
(1 + z)2, z +

z2

2

)
=



1 0 0 0 0 0 0
2 1 0 0 0 0 0
2 5 1 0 0 0 0
0 12 9 1 0 0 0
0 12 39 14 1 0 0
0 0 90 95 20 1 0
0 0 90 375 195 27 1
...

...
...


An infinite lower triangular matrix L = [ln,k]n,k∈N is called an exponential Riordan

array [3] if its column k has generating function g(z) (f(z))k /k!, k = 0, 1, 2, . . . , where
g(z) and f(z) are formal power series with g(0) 6= 0, f(0) = 0 and f ′(0) 6= 0. The
matrix corresponding to the pair f(z), g(z) is denoted by (g(z), f(z)). If we multiply
(g, f) by a column vector (c0, c1, . . . )

T with the exponential generating function h(z)
then the resulting column vector has exponential generating function gh(f). This
property is known as the fundamental theorem of exponential Riordan arrays or
summation property. The product of two exponential Riordan arrays (g(z), f(z))
and (h(z), l(z)) is defined by:

(g(z), f(z)) ∗ (h(z), l(z)) = (g(z)h (f(z)) , l (f(z))) .

The set of all exponential Riordan matrices is a group under the operator ∗ (cf.
[3, 27]).

Note that the r-Bessel numbers are related to r-Stirling numbers of the second kind
[10]. The r-Stirling numbers of the second kind, Sr(n, k), are defined as the number
of set partitions of [n + r] into k + r blocks such that the first r elements are in
distinct blocks.

In the present article, we study the r-Bessel numbers of the second kind from their
combinatorial interpretation, and moreover we introduce the restricted r-Bell num-
bers in analogy to the well-known Bell numbers. In particular, in Sections 2 and 3 we
obtain several recurrence relations and combinatorial sums of the r-Bessel numbers
of the second kind and the restricted r-Bell numbers. In some cases, we use the
fundamental theorem of exponential Riordan arrays to establish the identities. In
Section 4 we introduce the restricted r-Bell polynomials. Then we show their rela-
tions with the Hermite polynomials. In particular, for the case r = 0 we prove that
these polynomials have only real zeros. In Section 5, we use the Riordan arrays to de-
rive several connections between the r-Bessel numbers and the r-Whitney numbers.
In Section 6, we show that the restricted Bell numbers form a log-convex sequence.
Moreover, a conjecture on the log-concavity of the r-Bessel numbers is proposed here.
In Section 7, we study the 2-adic valuation of the restricted r-Bell numbers. Finally,
in Section 8 we determine the asymptotic behavior of the restricted r-Bell numbers.
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2 Some Combinatorial Identitites

Recall that a partition of a set A is a class of disjoint subsets of A such that the
union of them covers A. The subsets are often called blocks. Any fixed partition
can be written uniquely: we order the elements in the blocks in increasing order and
we put the blocks into increasing order with respect to their first elements. This
representation is called the partition’s standard form.
Let n, r ≥ 0 be integers. Let Πn,r denote the set of partitions of the set [n+ r], such
that the first r elements are in distinct blocks. The elements {1, 2, . . . , r} will be
called special elements. A block of a partition of the above set is called special if it
contains a special element.

Theorem 2.1. The r-Bessel numbers satisfy the following recursive relation:

Br(n, k) = Br(n− 1, k − 1) + rBr−1(n− 1, k) + (n− 1)Br(n− 2, k − 1),

with the initial conditions Br(n, k) = 0 if n, k ≤ 0 and Br(n, 0) = (r)n if n ≥ 0.

Proof. For any set partition of Πn,r into k blocks, there are three options: either n+r
forms a single block or n + r is in a special block or n + r is in a non-special block.
In the first case, it is clear that there are Br(n− 1, k− 1) possibilities. In the second
case, the element n+ r can be placed into one of the r special blocks. The remaining
elements can be chosen in Br−1(n− 1, k) ways. Altogether, we have rBr−1(n− 1, k)
possibilities. In the third case, we can use a similar argument as was used in the
previous case, and then we obtain (n− 1)Br(n− 2, k − 1) possibilities.

Theorem 2.2. The r-Bessel numbers satisfy the following recursive relation:

Br(n, k) = Br(n− 1, k − 1) + (k + r)Br(n− 1, k)−(
n− 1

2

)
Br(n− 3, k − 1)− r(n− 1)Br−1(n− 2, k).

Proof. For any set partition of Πn,r into k blocks we can do the following construction.
The element n + r forms a single block; then the other elements can be chosen in
Br(n − 1, k − 1) ways. Or the element n + r is in one of the k + r existing blocks
after constructing a partition of Πn,r into k blocks. Then we have (k+ r)Br(n−1, k)
ways. However, we have to subtract the possibilities where the existing block is size
2. In this case we have two options. If the block is special then there are r(n − 1)
ways to construct this block, while if the block is non-special then there are

(
n−1
2

)
ways. Therefore we have to subtract the following possibilities

(
n−1
2

)
Br(n − 3, k −

1) + r(n− 1)Br−1(n− 2, k).

Theorem 2.3. For any positive integer r we have

Br(n, k) = Br−1(n, k) + nBr−1(n− 1, k). (1)



J.-H. JUNG ET AL. / AUSTRALAS. J. COMBIN. 70 (2) (2018), 202–220 206

Proof. For any set partition of Πn,r into k blocks we can do the following construction:
either 1 (the first element) forms a single special block or 1 is in a non-special block.
In the first case, it is clear that there are Br−1(n, k) possibilities, while in the second
case, the element 1 can be placed into one of the n non-special blocks. The other
elements can be chosen in Br−1(n− 1, k) ways. Altogether, we have nBr−1(n− 1, k)
possibilities.

Theorem 2.4. For any integers r, s ≥ 0 we have

Br+s(n, k) =
n∑
i=k

(
n

i

)
(r)n−iBs(i, k). (2)

Proof. By means of the Riordan multiplication and taking in count that (1 + z)r =∑∞
i=0(r)i

zi

i!
, we obtain

[Br+s(n, k)] = ((1 + z)r, z)

(
(1 + z)s, z +

z2

2

)
=

[(
n

k

)
(r)n−k

]
[Bs(n, k)] .

By equating the (n, k)th element of the above equation, we obtain the desired result.

Combinatorial Proof: We can construct any partition of Πn,k into k blocks as follows:
we put n − i non-special elements in the r-special blocks. Since that none of the
blocks contain more than 2 elements then we have r(r − 1) · · · (r − (n− i)) = (r)n−i
possibilities. Moreover, the n − i elements can be chosen in

(
n
n−i

)
=
(
n
i

)
ways.

Altogether, we have
(
n
i

)
(r)n−i ways. The remaining s+ i elements can be chosen in

Bs(i, k) ways. Summing over i gives (2).

In particular if s = 0 we obtain the following relation between r-Bessel and Bessel
numbers

Br(n, k) =
n∑
i=k

(
n

i

)
(r)n−iB(i, k). (3)

Corollary 2.5. For any integers r, s ≥ 0 with r ≥ s we have

Br(n, k) =
n∑
i=k

(
n

i

)
(r − s)n−iBs(i, k). (4)

Note that if s = r − 1 we obtain Equation (1).

3 The Restricted r-Bell numbers

In analogy to the usual definition of Bell numbers we define the restricted r-Bell
numbers, Tr(n), as the number of set partitions of [n + r] = {1, 2, . . . , n + r} into
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blocks of size one or two such that the first r elements are in distinct blocks. Then
it is clear that for any integer n ≥ 0

Tr(n) =
n∑
k=0

Br(n, k),

with Tr(0) = 1. If r = 0 we recover the restricted Bell numbers (cf. [22, 25]),
which count also the number of involutions in the set of permutations (cf. [1]). From
Theorems 2.1 and 2.3 we obtain the following recursion:

Tr(n) = rTr−1(n− 1) + Tr(n− 1) + (n− 1)Tr(n− 2), (5)

Tr(n) = Tr−1(n) + nTr−1(n− 1). (6)

Moreover, from the summation property for the exponential Riordan arrays we get
the following theorem:

Theorem 3.1. The exponential generating function of the restricted r-Bell numbers
is

∞∑
n=0

Tr(n)
zn

n!
= (1 + z)rez+

z2

2 .

From above theorem we can obtain the following explicit expression for the restricted
r-Bell numbers. However, we give a combinatorial proof.

Theorem 3.2. For any integer n ≥ 1 we have

Tr(n) =

bn
2
c∑

i=0

(
n

2i

)(
2i

i

)
i!

2i

n−2i∑
j=0

(
n− 2i

j

)
(r)j.

Proof. Count the set of all partitions of Πn,r into block of size at most 2, with exactly
i non-special blocks of size 2. First we chose a subset of [n] of size 2i for the i non-
special blocks of size 2. It can be chosen in

(
n
2i

)
ways. Moreover, the number of set

partitions of [2i] such that each block has two elements is given by (2i)!
(2!)i i!

= i!
2i

(
2i
i

)
.

Now suppose there are j special blocks of size two, then it can be chosen in
(
n−2i
j

)
(r)j

ways. To complete the argument sum over i and j.

In particular if r = 0 we obtain the following expression to the restricted Bell num-
bers:

T (n) =

bn
2
c∑

i=0

(
n

2i

)(
2i

i

)
i!

2i
.

Theorem 3.3. For any integers n,m ≥ 0 we have

Tr(n+m) =
∑
j≥0

j∑
l=0

j!

(
n

j

)(
m

l

)(
r

j − l

)
T (n− j)Tr−(j−l)(m− l).
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Proof. Split up the set of n+m+ r elements into two disjoint sets A1 and A2 such
that |A1| = n and |A2| = m+ r. Count the set of all partitions of Πn+m,r into block
of size at most 2, with exactly j blocks of size 2 with one element from each set
A1 and A2. The first element can be chosen in

(
n
j

)
ways and the second one can be

chosen in
∑j

l=0

(
m
l

)(
r
j−l

)
ways. Therefore, there are j!

(
n
j

)∑j
l=0

(
m
l

)(
r
j−l

)
ways to chose

these blocks. The remaining elements in A1 and A2 can be chosen in T (n − j) and
Tr−(j−l)(m− l) ways, respectively. Summing over j gives the desired identity.

In particular, if m = 0 we obtain the following corollary:

Corollary 3.4. The restricted r-Bell numbers satisfy the following recursive rela-
tions:

Tr(n) =
∑
j≥0

j!

(
n

j

)(
r

j

)
T (n− j) =

∑
j≥0

(
n

j

)
(r)jT (n− j).

4 The Restricted r-Bell polynomials

Let us begin with definition of the restricted r-Bell polynomials.

Definition 4.1. The restricted r-Bell polynomials are defined by

Tr,n(x) =
n∑
k=0

Br(n, k)xk.

From Theorems 2.1 and 2.3, we easily establish the following recursions:

Tr,n(x) = xTr,n−1(x) + rTr−1,n−1(x) + (n− 1)xTr,n−2(x),

Tr,n(x) = Tr−1,n(x) + nTr−1,n−1(x). (7)

The exponential generating function of the restricted r-Bell polynomials is given, by
Theorem 3.1, as ∑

n≥0

Tr,n(x)
zn

n!
= (1 + z)re

x
(
z+ z2

2

)
(8)

The first few restricted r-Bell polynomials are:

Tr,0(x) = 1, Tr,1(x) = x+ r, Tr,2(x) = x2 + (2r + 1)x+ (r − 1)r,

Tr,3(x) = x3 + 3(r + 1)x2 + 3r2x+ (r − 2)(r − 1)r,

Tr,4(x) = x4 + (6 + 4r)x3 + (3 + 6r + 6r2)x2 + (2r − 6r2 + 4r3)x

+ (r − 3)(r − 2)(r − 1)r, . . .

Suppose that P (x) and Q(x) have only real zero. Let {ak} and {bk} be the sequences
of all zeros of P (x) and Q(x) in nondecreasing order respectively. We say that Q(x)
interlaces P (x), denoted by Q(x) � P (x), if degP (x) = n+ 1, degQ(x) = n and

a1 ≤ b1 ≤ a2 · · · ≤ bn ≤ an+1.
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In this section, we show that the restricted Bell polynomials Tn,0(x) := Tn(x) with
degree n ≥ 1 have the only non-positive real zeros and Tn(x) � Tn+1(x) for n ≥ 1.
The Hermite polynomials Hn(x) are defined by the exponential generating function:∑

n≥0

Hn(x)
zn

n!
= exz−

z2

2 . (9)

It is known that the Hermite polynomials with degree n ≥ 1 have only simple real
zeros and Hn(x) � Hn+1(x). Furthermore, they are symmetric.

Theorem 4.2. For n ≥ 1, the polynomials Tn(x) have the only non-positive real
zeros and Tn(x) � Tn+1(x).

Proof. Since the polynomial Hn(x) is symmetric, the polynomial can be expressed
as

Hn(x) =

{
x(x2 − x21)(x2 − x22) · · · (x2 − x2m−1), if n = 2m− 1;

(x2 − x21)(x2 − x22) · · · (x2 − x2m), if n = 2m;

wherem is a positive integer. It follows from (8) and (9) that Tn(−x2) = (−x)nHn(x).
Thus the polynomials Tn(x) can be expressed as

Tn(x) =

{
xm(x+ x21)(x+ x22) · · · (x+ x2m−1), if n = 2m− 1;

xm(x+ x21)(x+ x22) · · · (x+ x2m), if n = 2m;

i.e., Tn(x) have the only non-positive real zeros. Since Hn(x) � Hn+1(x), one may
see that Tn(x) � Tn+1(x). Hence the proof follows.

The authors have tried, without success, to establish the next statement:

Conjecture 4.3. For n, r ≥ 1, Tn,r(x) have only non-positive real zeros and
Tr,n(x) � Tr,n+1(x).

Theorem 4.4. For any integers r, s, n ≥ 0 we have

Tr+s,n(x) =
r∑
i=0

(
n

i

)
(r)n−iTs,i(x).

In particular, if s = 0,

Tr,n(x) =
n∑
i=0

(
n

i

)
(r)n−iTi(x).

Proof. This statement is a consequence of Theorem 2.4.



J.-H. JUNG ET AL. / AUSTRALAS. J. COMBIN. 70 (2) (2018), 202–220 210

Combinatorial proof. By Definition 4.1, Tr+s,n(x), when x is a positive integer, is the
number of partitions of n+r+s elements into blocks of size one or two such that the
blocks containing none of the first r+ s elements are colored independently with one
of the x colors. Such a partition can be formed if we choose some, say i, elements from
that of n and put them into blocks of size one or two where the first s elements are in
different blocks, and then the remaining n−i elements go one-by-one to the blocks of
the first r elements (each into separate blocks in r(r−1) · · · (r− (n− i) + 1) = (r)n−i
ways). Since we must permit some (or all) of the first r elements to be alone in a
block, we must restrict i ≤ r. Note that the coloring is appropriately counted in the
factor Ts,i(x). Summing over i we are done.

Remark 4.5. Considering the generating functions of the sequence Tr(n) and of the
Hermite polynomials, it follows easily that

Tr(n) =
n∑

m=0

Hm

(√
2

2i

)(
i√
2

)m
1

m!

(
r

n−m

)
.

4.1 Determinantal Identity

Let Ar := [Br(n, k)] =
(

(1 + z)r, z + z2

2

)
be the exponential Riordan array of the

r-Bessel numbers. Then the inverse exponential Riordan array of Ar is given by
([12]):

Br := [br(n, k)] = A−1r =
(

(1 + 2z)−r/2,−1 +
√

1 + 2z
)
.

The numbers b̂r(n, k) := (−1)n−kbr(n, k) are called the unsigned r-Bessel numbers of
the first kind. Cheon et al. [12] gave an interesting combinatorial interpretation of
this sequence by using the new concept of G-partitions. Its exponential generating
function is given by

2k+r∑
n=k

b̂r(n, k)
tn

n!
=

1

k!

(1−
√

1− 2z)k

(1− 2z)r/2
.

Moreover, it is clear that the r-Bessel numbers satisfy the following orthogonality
relation:

n∑
i=s

(−1)i−sBr(n, i)̂br(i, s) =
n∑
i=s

(−1)n−ib̂r(n, i)Br(i, s) = δs,n,

where δs,n = 1 if s = n and 0 otherwise. From above relations we obtain the inverse
relation:

fn =
n∑
s=0

(−1)n−sb̂r(n, s)gs ⇐⇒ gn =
n∑
s=0

Br(n, s)fs.

From definition of the restricted r-Bell polynomials we obtain the following equality

X = A−1r Tr,
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where X = [1, x, x2, . . . ]T and Tr = [Tr,0(x), Tr,1(x), Tr,2(x), . . . ]T . Then X = BrTr
and

xn =
n∑
k=0

br(n, k)Tr,k(x).

Therefore

Tr,n(x) = xn −
n−1∑
k=0

br(n, k)Tr,k(x), n ≥ 0. (10)

From the above identity we obtain the following determinantal identity.

Theorem 4.6. The restricted r-Bell polynomials satisfy

Tr,n(x) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣

1 x · · · xn−1 xn

1 br(1, 0) · · · br(n− 1, 0) br(n, 0)
0 1 · · · br(n− 1, 1) br(n, 1)
... · · · ...
0 0 · · · 1 br(n, n− 1)

∣∣∣∣∣∣∣∣∣∣∣
Proof. This identity follows from Equation (10) and by expanding the determinant
by the last column.

5 Some Additional Identities

From the product of Riordan arrays we obtain the following identities involving r-
Stirling numbers and r-Whitney numbers of both kinds. The r-Whitney numbers of
the first kind wm,r(n, k) and the second kind Wm,r(n, k) were defined by Mező [21]
as the connecting coefficients between some particular polynomials.
For non-negative integers n, k and r with n ≥ k ≥ 0 and for any integer m > 0

(mx+ r)n =
n∑
k=0

mkWm,r(n, k)(x)k, (11)

and

mn(x)n =
n∑
k=0

wm,r(n, k)(mx+ r)k. (12)

The r-Whitney numbers of both kinds have the following exponential generating
functions [21]:

∞∑
n=k

Wm,r(n, k)
zn

n!
=
erz

k!

(
emz − 1

m

)k
, (13)

∞∑
n=k

wm,r(n, k)
zn

n!
= (1 +mz)

−r
m

lnk(1 +mz)

mkk!
. (14)



J.-H. JUNG ET AL. / AUSTRALAS. J. COMBIN. 70 (2) (2018), 202–220 212

Moreover, these sequences satisfy the orthogonality relation:

n∑
i=s

(−1)i−sWr(n, i)wr(i, s) =
n∑
i=s

(−1)n−iwr(n, i)Wr(i, s) = δs,n.

Then we have the inverse relation:

fn =
n∑
s=0

(−1)n−swr(n, s)gs ⇐⇒ gn =
n∑
s=0

Wr(n, s)fs.

Note that if (m, r) = (1, 0) we obtain the Stirling numbers, if (m, r) = (1, r) we have
the r-Stirling (or noncentral Stirling) numbers [10], and if (m, r) = (m, 1) we have
the Whitney numbers [6, 7]. The Stirling numbers of the first and the second kind
are denoted by

[
n
k

]
and

{
n
k

}
, respectively. Moreover, the r-Stirling numbers of the

first and the second kind are denoted by
[
n
k

]
r

and
{
n
k

}
r
, respectively.

From Equations (13) and (14) we obtain that the matrices W2 := [Wm,r(n, k)]n,k≥0
and W1 := [wm,r(n, k)]n,k≥0 are exponential Riordan arrays given by ([11])

W2 =

(
erz,

emz − 1

m

)
, W1 =

(
(1−mz)

−r
m ,− 1

m
ln(1−mz)

)
.

In [11, 23, 24], authors found additional identities for these sequences by using a
matrix approach.

Theorem 5.1. For any integers n, k, r ≥ 0, we have

1.
n∑
j=0

{
n

j

}
Br(j, k) = W2,r(n, k).

2.
n∑
j=0

{
n

j

}
r

Br(j, k) = W2,2r(n, k).

Proof. By means of the Riordan multiplication we get[{
n

k

}]
[Br(n, k)] = (1, ez − 1)

(
(1 + z)r, z +

z2

2

)
=

(
erz, (ez − 1) +

(ez − 1)2

2

)
=

(
erz,

e2z − 1

2

)
= [W2,r(n, k)] .

By equating the (n, k)th element of the above equation, we obtain the first identity.
The last identity is obtained in a similar manner.

The r-Whitney numbers of the second kind satisfy the following identity ([11])

Wm,r(n, k) =
n∑
j=k

(
n

j

)
mj−krn−j

{
j

k

}
. (15)
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Therefore from the first identity in Theorem 5.1 we have

n∑
j=0

{
n

j

}
Br(j, k) =

n∑
j=0

(
n

j

)
2j−krn−j

{
j

k

}
.

In particular, if r = 0 we obtain the following interesting relation for the Bessel
numbers of the second kind ([30]):

n∑
j=0

{
n

j

}
B(j, k) = 2n−k

{
n

k

}
.

Corollary 5.2. For any integers n, k, r ≥ 0, we have

1.
n∑
j=0

(−1)n−j
[
n

j

]
W2,r(j, k) = Br(n, k).

2.
n∑
j=0

(−1)n−j
[
n

j

]
r

W2,2r(j, k) = Br(n, k).

Proof. From (1) in Theorem 5.1 and the inverse relation for the Stirling numbers
with

fn = Br(n, k), and gn = W2,r(n, k),

we obtain the identity (1). The second relation can be verified in a similar way.

From the first identity in the above corollary and Equation (15) we obtain the fol-
lowing interesting identity

Br(n, k) =
n∑
l=0

n∑
j=0

(−1)n−j
(
j

l

){
l

k

}[
n

j

]
2l−krj−l.

Theorem 5.3. For any integers n, k, r ≥ 0, we have

1.
n∑
j=0

b̂r(n, j)

[
j

k

]
= w2,r(n, k).

2.
n∑
j=0

b̂r(n, j)

[
j

k

]
r

= w2,2r(n, k).

Proof. By means of the Riordan multiplication we get[
b̂r(n, k)

] [[n
k

]]
=
(
(1− 2z)−r/2, 1−

√
1− 2z

)
(1,− ln(1− z))

=

(
(1− 2z)(−r/2),

1

2
ln(1− 2z)

)
= [w2,r(n, k)] .

By equating the (n, k)th element of the above equation, we obtain the first identity.
The last identity is obtained in a similar manner.
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The (unsigned) r-Whitney numbers of the first kind satisfy the following identity
([11])

wm,r(n, k) =
n∑
j=k

(
j

k

)
mn−jrj−k

[
n

j

]
. (16)

Therefore from the first identity in Theorem 5.3 we have

n∑
j=0

b̂r(n, j)

[
j

k

]
=

n∑
j=k

(
j

k

)
2n−jrj−k

[
n

j

]
.

In particular, if r = 0 we obtain the following relation for the (unsigned) Bessel
numbers of the first kind ([30]):

n∑
j=0

b̂(n, j)

[
j

k

]
= 2n−k

[
n

k

]
.

From the inverse relation for the r-Bessel numbers we obtain next corollary.

Corollary 5.4. For any integers n, k, r ≥ 0, we have

1.
n∑
j=0

Br(n, j)w2,r(j, k) = (−1)n−k
[
n

k

]
.

2.
n∑
j=0

Br(n, j)w2,2r(j, k) = (−1)n−k
[
n

k

]
r

.

6 Log-Convex and Log-Concavity Properties

Given a positive real sequence A = {ak}0≤k, we say that A is unimodal if there exists
an integer 0 ≤ j such that a0 ≤ · · · ≤ aj−1 ≤ aj ≥ aj+1 ≥ · · · . The integer j is
called the mode of the sequence A. We say that the sequence A is log-concave if
anan+2 ≤ a2n+1, for all n ≥ 0. It is called log-convex if anan+2 ≥ a2n+1 for all n ≥ 0.
For more information, the reader is referred to the general overview on unimodality
and log-concavity written by P. Brändén in [8, Chapter 7].
The unimodality of the restricted Stirling numbers (B(n, k))k≥0 was proved in [15].
Moreover, in [18] authors give a combinatorial proof of the log-concavity of this
sequence.
A sequence {a0, a1, . . . , an} of the coefficients of a polynomial f(x) =

∑n
k=0 akx

k of
degree n with only real zeros is called the Pólya frequency sequence (PF). It is well
know that if a sequence is PF then it is log-concave (See [29, Theorem 4.5.2] for a
proof). Therefore 4.3 implies the following conjecture.

Conjecture 6.1. The sequence of r-Bessel numbers (Br(n, k))k≥0 is log-convave.
Hence, it is unimodal.
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It is well-known that the Bell sequence is log-convex [2]. It is not difficult to show
that the restricted r-Bell numbers are also log-convex.
A sequence (an)n∈N has no internal zeros if there do not exist integers 0 ≤ i < j < k
such that ai 6= 0, aj = 0, ak 6= 0.

Theorem 6.2 (Bender-Canfield Theorem, [5]). Let 1, w1, w2, . . . be a log-concave
sequence of nonnegative real numbers with no internal zeros and define the sequence
(an)n≥0 by

∞∑
n=0

an
n!
xn = exp

(
∞∑
j=1

wi
i
xj

)
.

Then the sequence (an)n≥0 is log-convex and the sequence (an/n!)n≥0 is log-convave.

Theorem 6.3. The restricted Bell sequence (T (n))n≥0 is log-convex and the sequence
(T (n)/n!)n≥0 is log-concave.

Proof. From Theorems 3.1 (with r = 0) and 6.2, it suffices to prove that the sequence

wi =

{
1

(i−1)! , if 1 ≤ i ≤ m;

0, i > m.

is a log-concave sequence, which is clear.

Remark 6.4. Note that the above statement cannot be generalized to the restricted
r-Bell sequence (Tr(n))n≥0. For example,

8 = T2(0)T2(2) < T2(1)2 = 9,

while
528 = T2(2)T2(4) > T2(3)2 = 484.

7 2-adic Valuation of the Restricted r-Bell Numbers

In this section, we analyze the 2-adic valuation of the restricted r-Bell numbers. Let
p be a prime number, the p-adic valuation of n ∈ N, denoted by νp(n), is the largest
nonnegative integer m such that pm divides n. The valuation of n = 0 is defined by
+∞.

Amdeberhan and Moll [1] studied the 2-adic valuation of the restricted Bell numbers.
In particular they found the following expression:

ν2(T (n)) =


k, if n = 4k;

k, if n = 4k + 1;

k + 1, if n = 4k + 2;

k + 2, if n = 4k + 3.

The 2-adic valuation of the restricted r-Bell numbers follows a similar pattern. In
Figure 1 we show the first few values of ν2(T5(n)).
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Figure 1: The 2-adic valuation of T5(n).

Theorem 7.1. The 2-adic valuation of the restricted r-Bell numbers is: if r ≡ 0
(mod 4) then

ν2(Tr(n)) =


k, if n = 4k;

k, if n = 4k + 1;

k + 1, if n = 4k + 2;

α, if n = 4k + 3.

where α ≥ k + 2. The remaining cases are:

ν2(T4l+1(n)) =


k, if n = 4k;

k + 1, if n = 4k + 1;

α, if n = 4k + 2;

k + 1, if n = 4k + 3.

ν2(T4l+2(n)) =


k, if n = 4k;

k, if n = 4k + 1;

α, if n = 4k + 2;

k + 1, if n = 4k + 3.

ν2(T4l+3(n)) =


k, if n = 4k;

α, if n = 4k + 1;

k + 1, if n = 4k + 2;

k + 1, if n = 4k + 3.

with α ≥ k + 2.

Proof. We proceed by induction on n. The proof is divided into four cases according
to the residue of n modulo 4. The symbols Oi (resp. Ei) denote an odd number
(resp. even number). If n = 4k then from Equation 6 and by induction hypothesis
we have

T4l(4k) = T4l−1(4k) + 4kT4l−1(4k − 1) = 2kO1 + 4k · 2kO2 = 2k(O1 + 4kO2) = 2kO3.
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Therefore ν2(T4l(4k)) = k.
If n = 4k + 1 then from Equation 6 and by induction hypothesis we have that

T4l(4k + 1) = T4l−1(4k + 1) + (4k + 1)T4l−1(4k) = 2αO1 + (4k + 1)2kO2

= 2k(2α−kO1 + (4k + 1)O2) = 2kO3.

Therefore ν2(T4k(4k + 1)) = k.
If n = 4k + 2 then from Equation 6 and by induction hypothesis we have that

T4l(4k + 2) = T4l−1(4k + 2) + (4k + 2)T4l−1(4k + 1) = 2k+1O1 + (4k + 2)2αO2

= 2k+1(O1 + 2α+1(2k + 1)O2) = 2k+1O3.

Therefore ν2(T4k(4k + 2)) = k + 1.
If n = 4k + 3 then from Equation 6 and by induction hypothesis we get

T4l(4k + 3) = T4l−1(4k + 3) + (4k + 3)T4l−1(4k + 2) = 2k+1O1 + (4k + 3)2k+1O2

= 2k+1(O1 + (4k + 3)O2) = 2k+1E1.

Therefore ν2(T4k(4k + 3)) = α ≥ k + 2.
The remaining cases are analyzed in a similar manner.

8 Asymptotics of Tr(n)

In this section we are going to determine the asymptotic behavior of the Tr(n) se-
quence as n→∞ and r is fixed. This will be done via Hayman’s method [29]. This
method says that if we have an entire function

f(x) =
∞∑
n=0

anx
n,

then the asymptotics of an as n→∞ is given by

an ∼
f(rn)

rnn
√

2πb(rn)
, (17)

where

b(r) = r

(
r
f ′(r)

f(r)

)′
, (18)

and rn is the unique solution of

r
f ′(r)

f(r)
= n. (19)

To assure that this equation really has a unique root, some assumptions on the
generating function f must be made. In our case Theorem 3.1 is suitable, because
the left hand side of (19) is strictly increasing on [0,+∞[ and the equation has a
unique solution. However, if we substitute the function under 3.1 into (19), the



J.-H. JUNG ET AL. / AUSTRALAS. J. COMBIN. 70 (2) (2018), 202–220 218

resulting transcendental equation is too complicated to solve. But one substantial
simplification can be made: since we need only asymptotic results, it is enough to
solve an equation “close to” the original. It turns out that as r →∞

r
f ′(r)

f(r)
= x2 + x+ r +O(x−1).

Hence

rn ∼
1

2

(
−1 +

√
4n+ 1− 4r

)
.

as n→∞ and r is fixed.
Substituting this rn into (17), we can determine the asymptotic expansion of the
resulting function at n =∞. This results in

Tr(n) ∼ 1√
2e1/4

nn/2+r/2 exp

(√
n+

1

24
√
n
− n

2

)(
1 +

1 + 2r

4
√
n

)
.

This result, in a somewhat weaker form, can be found in [29, p. 187].
This can be rewritten in a somewhat weaker form:

Tr(n)

nn/2+r/2 exp
(√

n− n
2

) → 1√
2e1/4

.
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[24] I. Mező and J. L. Ramı́rez, Some identities of the r-Whitney numbers, Aequa-
tiones Math. 90(2) (2016), 393–406.



J.-H. JUNG ET AL. / AUSTRALAS. J. COMBIN. 70 (2) (2018), 202–220 220

[25] F. L. Miksa, L. Moser and M. Wyman, Restricted partitions of finite sets, Canad.
Math. Bull. 1 (1958), 87–96.

[26] V. Moll, J. Ramı́rez and D. Villamizar, Combinatorial and arithmetical prop-
erties of the restricted and associated Bell and factorial numbers, J. Comb.,
(accepted, to appear).

[27] L. W. Shapiro, S. Getu, W. Woan and L. Woodson, The Riordan group, Discrete
Appl. Math. 34 (1991), 229–239.
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