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Abstract

The H-force number of a hamiltonian graph G is the smallest number
k with the property that there exists a set W C V(G), |W| = k, such
that each cycle passing through all vertices of W is hamiltonian. In this
paper, we determine the H-force number of circulant graphs.

1 Introduction

Throughout this paper, we consider graphs without loops or multiple edges; for
terminology not defined here, we refer to [5].

In research of hamiltonian graphs, there are several concepts setting a kind of strat-
ification within this family of graphs, such as the number of different cycle lengths
(and the related notion of pancyclicity), the number of edges that can be prescribed
in a certain way such that it is possible to route a hamiltonian cycle through them
(see [13], [10] or [7] for the case of 4-connected planar graphs). Another way of clas-
sifying hamiltonian graphs involves the notion of k-hamiltonicity: an n-vertex graph
G = (V, E) is called k-hamiltonian if, for all sets U C V, 0 < |U| < k, the graph
G — U (obtained from G by deleting all vertices of U) is hamiltonian. In particular,
a graph is 1-hamiltonian if it is hamiltonian and the graph that results from deletion
of any vertex is also hamiltonian. There are several sufficient conditions for graphs
to be 1-hamiltonian (see [3], [4] or [12]); in many cases, these conditions are similar
to the classical conditions for hamiltonian connectivity.

Yet another concept of developing a hierarchy within hamiltonian graphs was defined
first in [6] in the following way: let G = (V, E) be a hamiltonian graph and let
W CV, W #0. A cycle in G is a W-cycle if it contains all vertices of W. We say
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that W enforces a hamiltonian cycle in G (or, W is an H-force set) if each W-cycle of
G is hamiltonian. The H-force number h(G) is the cardinality of the smallest H-force
set in G.

Note that if a graph G = (V, F) is 1-hamiltonian, then h(G) = |V/|, and vice versa.
Thus, it is natural to consider graphs with H-force number less than their orders. The
graphs with small H-force number were studied in [6], where there was presented,
among other results, the complete characterization of graphs with H-force number
two (or three in the case of 3-connected graphs, and four for 3-connected planar
graphs, respectively).

In general, determining the H-force number of a hamiltonian graph is a difficult
problem even for special graphs. In the papers [15] and [14], the H-force numbers of
several special families of hamiltonian graphs were determined. In [9], an upper and
a lower bound of H-force number were given using the cycle extendability property.
Note also that the concepts of H-force set and H-force number were extended to
hamiltonian digraphs and hypertournaments in [16] and [11].

In this paper, we deal with circulant graphs, defined as follows: for a finite set

{ai,as,...,a,}, 1 < a; < nof positive integers (the set of parameters), the circulant
graph Cy(ay, as, . .., a,) has vertex set [0,n — 1] ={0,1,...,n — 1} and two vertices
uw and v of Cy(ay,ay, ..., a,) are adjacent if u — v = £a;(mod n).

2 Several properties of circulant graphs

In this section, we describe several properties which we will use in the sequel. Let
G = Cy(ay,as,...,ay). The basic properties of G were studied in [1], [2], [8]. The
following has been proved: G is bipartite if and only if every parameter is odd and
n is even; G is connected if and only if ged(n, ay,...,a,,) = 1 and G is hamiltonian
if and only if GG is connected. Note that circulant graphs are vertex transitive which
yields that if there is a cycle C~* on all n — 1 vertices of V(G) — {u} (a cycle missing
one vertex), then there is a cycle C~" on all n — 1 vertices of V(G) — {v}, for each
v € V(G). In this paper, we will use the following isomorphisms several times:

1. The graph C,(a1,...,a;,...,ay) is isomorphic to the graph C,(a,...,n —
Qjy o vny am).

2. Let ged(n,a) = 1. Then the graph C),(a) is isomorphic to the graph C,(1).

3. Let ged(n,a) = 1. Then the graph C,,(a, b) is isomorphic to the graph C, (1, ¢),

where ¢ = a~'b(mod n), a~! being the multiplicative inverse of a modulo n.

Subsequently we assume, that a; < n — 2 for each ¢ € [1,m], a; # a; and a; # n —a;
for all 4,5 € [1,m], ¢ # j. Note that, in the following, all arithmetic on the vertices
is assumed to be modulo n.

Subsequently we use one construction of a hamiltonian cycle in circulant graphs on
two parameters, C. Let G = C),(a, b) be a hamiltonian circulant graph. If ged(n, a) =
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1 or ged(n, b) = 1, then G 22 C,y(1, ¢) (isomorphism 3) and C' = (0,1,...,n—1,0) is a
hamiltonian cycle of C,,(1,¢). Now let ged(n,a) = g > 2 and ged(n,b) > 2. A graph
Cy(a) has g isomorphic hamiltonian components Gy, i € [0, g — 1] on o vertices. Let
Co = (0,a,2a,...,0) be a hamiltonian cycle in Gy. A cycle C can be transformed
to a hamiltonian cycle C; = (ib,ib + a,ib + 2a,...,ib) in G;, i € [1,9 — 1]. Now

- g—1 g—2
C=UC0C — U {(@bib+a),(ib+a,ib+2a)} —(0,a) —e
i=0 i=1

+ L_;J {(2ib, (20 + 1)b), ((2i + 1)b + 2a, (20 + 2)b + 2a)} +%L_Jz(z'b +a,(i+ 1)b+ a),

where e = ((9 — 1)b+a, (g — 1)b+ 2a) for odd g and e = ((g — 1)b, (9 — 1)b + a) for
even g, is a hamiltonian cycle of G (Fig. 1). In the next, the cycle C' is called special
hamiltonian cycle.

Fig. 1: Special hamiltonian cycle C' in Cyo(5, 3)

Lemma 1. For a non-hamiltonian cycle C' of G, every H-force set of G contains a
vertex of V(G) \ V(C).

Lemma 2. Let G = C,(a) be a hamiltonian circulant graph. Then h(G) = 1.

Proof. Let G = C,(a) be a hamiltonian circulant graph. Then G is isomorphic to a
cycle (isomorphism 2) which implies h(G) = 1. O

3 Bipartite circulant graphs on two parameters

In this section, we establish the H-force number for bipartite hamiltonian circulant
graphs on two parameters.

Let G = C,(a, b) be a bipartite hamiltonian circulant graph, thus both its parameters
are odd, n is even and ged(n, a,b) = 1. Note that, if there is a cycle on n — 2 vertices
V(G)—{u,u + a} (for such a cycle, we will use the notation C~{*#+e} and we will say
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that a cycle misses two adjacent vertices), then due to vertex transitivity of circulant
graphs, there is a cycle on n — 2 vertices V(G) — {v,v + a} (a cycle C~tvv+a}) for
each v of V(G).

Lemma 3. Let G = C,(a,b) be a bipartite hamiltonian circulant graph and let
ged(n,a) =1 or ged(n,b) = 1. Then h(G) = 3.

Proof. Let G = C,(a,b) be a bipartite hamiltonian circulant graph and let ged(n,
= lorged(n,b) = 1. Then G = G’ = C,(1, ¢) (isomorphism 3). Obviously h(G") <
(both bipartite sets of G’ are H-force sets) and moreover, there is the cycle C 10}
(1,2,...,c—1,n—1n—2,...,c+ 1,1) of G’ missing exactly two vertices 0 and ¢
(Fig. 2). The cycle C~{%¢ can be transformed to a cycle C~1%:27¢} of G missing
exactly two vertices 27 and 2¢ + ¢, where i € [0,% — 1}. Note that ¢ is odd, so all
21,21+ c are distinct. By Lemma 1, at least one vertex of the pair of vertices 2i, 2i+¢

belongs to any H-force set, and thus h(G) = 3. O

a)
n
2

Fig. 2: C~{%%} in Ox(5,7)

Lemma 4. Let G = C,(a,b) be a bipartite circulant graph and let gcd(n,a,b) = 1.
Then h(G) = 3.
Proof. Let G = C,(a,b) be a bipartite hamiltonian circulant graph. Obviously
h(G) < % (both bipartite sets are H-force sets of G). If ged(n, a) = 1 or ged(n, b) = 1,
then by previous Lemma h(G) = 5. Let ged(n,a) = g > 2 and ged(n, b) > 2. More-
over, let C' be the special hamiltonian cycle of G described above. We use this
cycle to construct a cycle C~1% where E(C~19%) = E(C) —(0,b) —(0,n — a)
—(b,n—a+b) +(n—a,n—a+b) (Fig. 3). The cycle C~{%*} can be transformed to a
cycle O~{2:240} of ¢ missing exactly two vertices 2i and 2i + b where i € [O, 5 — 1].
By Lemma 1, at least one vertex of pair of vertices 2i,2i + b belongs to any H-force

set, thus h(G) = 5. O
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25 28 1 4 7

Fig. 3: C~193} in Cy(5, 3)

The next lemma will be used in the proof of Theorem 9.

Lemma 5. Let G = Cy(a,b) be a bipartite circulant graph with special hamiltonian
cycle C. Then there is k € {b,c = ab™'(mod n)} such that for every i € [0,% —1],
a cycle C— 2028 contains at least one edge of C.

Proof. Let C,(a,b) be a bipartite circulant graph with special hamiltonian cycle C.

1. Let ged(n,a) = 1 or ged(n, b) = 1 and let C~1?2+¢} be the cycle of G described
in Lemma 3. Then ‘E(CN’) N E(C’*{zi’%*c})) > n —4, for every i € [0,% — 1].
Note that the smallest such graph is isomorphic to Cg(1, 3).

2. Let ged(n,a) > 2 and ged(n, b) > 2 and let C~ 1448 be the cycle of G described
in Lemma 4. Then ’E(CN’) N E(C*{Qi’z”b})’ >n—4> 2 foreveryi € [0,n — 1].
Note that the smallest such graph is isomorphic to Csy(3,5).

4 Non-bipartite circulant graphs on two parameters

In this section, we establish the H-force number for a non-bipartite hamiltonian
circulant graph on two parameters.

Lemma 6. Let G = C,(a,b) be a non-bipartite hamiltonian circulant graph and let
ged(n,a) =1 or ged(n,b) = 1. Then h(G) = n.

Proof. Let G = C,(a,b) be a non-bipartite hamiltonian circulant graph and let
ged(n,a) = 1 or ged(n,b) = 1. Then G = G’ = C,,(1,¢) (isomorphism 3). Denote
d = n—c. We assume that c is even (if ¢ is odd, then n is also odd and n — ¢ is even,
thus C,(1,¢) = C,(1,n — ¢) (isomorphism 1) and we denote G' = C,,(1,n — ¢)). We
can see that n = d(mod n). In the next we prove that there is a cycle C°.
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1. Let ¢ < "T” Then C~° = P, U P,, where
P=(01+4d,1,2,2+d,3+d,3,4,4+d,5+d,...,n—2,n—1,¢c—1),
P, = (c—1,¢c,e+1,...,1+d) with V(P)) = [l,c—=1]U[d+1,n—1] and
V(P,) = [c— 1,d + 1]; note that all four vertex sets are non-empty (Fig. 4a).

2. Let 2 < ¢ < 2n. Then d < %32 < 22 If d is even, then h(G) = n (previous
case). Now we assume that d is odd. Then C~° = P, U P, U Py U Py, where
P =(1,2,...,c—d),
Py=(c—d,c,c+1l,c+1—d,c+2—d,c+2,...,d—1,d,2d),
Py=(2d,2d+1,...,n—1,c—1),

Py = (c—1,¢=2,...,d+1,1),with V(P,) = [1,c — d],

V(P;) = [2d,n—1]U{c—1} and V(P) = [d+ 1,

vertex sets are non-empty (Fig. 4b).

V(P) = [c — d,d]U][c, 2d],
¢ — 1]; note that all four

3. Let 2n < ¢. Then d < 2 < 222 If d is even, then h(G) = n (first case). Now
we assume that d is odd. Let k = |2=2=1| and note that k > 1 (¢ > 2n).
Then C~Y consists of two parts:

e The first part of C° consists of k paths P;, where

P =(1,2,...,d) and
P=((G-1)d-1)+2,...,0—1)(d=1)+d=i(d—1)+1),1 € [2,K]
Now we merge these paths to the one path P by edges (1,d + 1) and
((i—1)(d—=1)4+2,(i—2)(d—1)+1), i € [3, k] (note that the first vertex is
the initial vertex of P; and the second vertex is the final vertex of P;_5).
Now P has end vertices k(d — 1) + 1 and (k — 1)(d — 1) + 1; obviously
V(P)=[1,k(d—1)+1].

e The second part of C7° forms a path P* = C* — (k(d — 1) + 1,k(d —
1) + 2), where C* is a cycle of the graph G* = C,,,(1,d), m =n — k(d —
1), which misses exactly one vertex 0 (a cycle from one of the previous
cases). Denote every vertex j of P* as k(d — 1) + j. Now V(P*) =
k(d—1)4+1,n—1].

The cycle C™°=PUP*+ ((k—1)(d—1) + 1,k(d — 1) + 2) (Fig. 4c).

The cycle C7° can be transformed to a cycle C~¢ of G’ missing exactly one vertex
i where ¢ € [0,n — 1]. By Lemma 1, every vertex belongs to every H-force set; thus
h(G) = n. n

Lemma 7. Let G = C,(a,b) be a non-bipartite circulant graph and let ged(n,a,b) = 1.
Then h(G) = n.

Proof. Let G = C,(a,b) be a non-bipartite circulant graph and let ged(n,a,b) =
1. If ged(n,a) = 1 or ged(n,b) = 1 then, by the previous lemma, h(G) = n.
Let ged(n,a) = g > 2 and ged(n,b) = f > 2. A graph C),(a) has g isomorphic
hamiltonian components G; on 2 vertices, i € [0,g — 1]. Let Cy = (0, a, 2a, . ..,0) be
a hamiltonian cycle in Gy. The cycle Cy can be transformed to a hamiltonian cycle
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C; = (ib,ib + a,ib + 2a, . ..,ib) in G; where i € [1,g — 1]. In what follows we prove
that in G there exists a cycle C°.

15 e 10
14 % 15 M

a b c

Fig. 4: C~%in 018(]_,8), 027(1, ]_6) and 025(]_,20)

1. Let % be odd. The cycle
Co? = (0,a,a + b,2a + b,2a,3a,3a + b,4a + b, ..., (3 — 1)a,0) contains all
vertices of Cy and C, except one vertex b. Now O~ = (C’ —C1UCy U C'(ib -
{(a+b,2a+b)} + {(a+ b,a+ 2b), (2a + b,2a + 2b)} (Fig. 5a).

2. Let g and % be even. This means that n is even, one of a, b is odd (G is
hamiltonian), and one is even (G is non-bipartite). Without lost of gener-
ality, assume that a is even and b is odd. Then ¢ is even. Let k be the
smallest integer such that —b = (g — 1)b 4+ ka(mod n). This is equal to
—b = k%(mod ¥) and it means that k is odd. The path Py’ = (0,a,a +
b,2a+0b,2a,3a,...,ka, (k+1)a,...,n—a,n—a+bn—2a+b,..., ka+b) con-
tains all vertices of Cy and C) except of one vertex b. For ¢ € [2,% — 1},

n_j

we let P, = C; — {(ib+ (k —1)a,ib+ka)}. Now C~° = Py’ U gU P, +
=2

s}

lul {((2i — 1)b+ ka, 2ib + ka), (2ib + (k—1)a, (2i + 1)b + (k — 1)a)} (Fig. 5b).

o

The cycle C~° can be transformed to a cycle C~% of G missing exactly one
vertex ¢ where i € [0,n — 1]. By Lemma 1, every vertex belongs to every
H-force set, thus h(G) = n.
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Flg 5 C~?in 045(5, 6) and 060(6, 5)

The next lemma will be used in the proof of Theorem 9.

Lemma 8. Let G = Cy(a,b) be a non-bipartite circulant graph with special hamil-
tonian cycle C'. Then for every i € [0,n — 1], there exists a cycle C~" containing at
least one edge of C.

Proof. Let Cy(a,b) be a non-bipartite circulant graph with special hamiltonian cy-
cle C.

1. Let ged(n,a) = 1 or ged(n,b) = 1 and let C~* be a cycle of G described
in Lemma 6. Then )E(C’) NEC)| > |2], for every i € [0,n—1] (edges

(i,i+1) € E(C™")). Note that the smallest such graph is isomorphic to Cy(1, 2).

2. Let g = ged(n,a) > 2 and ged(n,b) > 2 and let C~* be a cycle of G described

in Lemma 7. Then ‘E(C’) N E(C’*i)) > n— ¢, for every i € [0,n — 1]. Note
that the smallest such graph is isomorphic to Cg(2, 3).
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5 H-force number for circulant graphs

Theorem 9. Let G = C(ay,as,...,a,) be a hamiltonian circulant graph. Then
1, ifm=1;

hG) =< n, ifm>2 and G is non-bipartite;
5, if m > 2 and G is bipartite.

Proof. Let G = Cp(ay,as, ..., ay,) be a hamiltonian circulant graph. If m = 1 orm =
2, then the assertion is true by Lemma 2 or by Lemmas 3, 4, 6 and 7, respectively.
Let m > 3. Note that in the case when n is even and there are two parameters such
that one is even and the second one is odd, we assume that a; is even and as is
odd. Let Gy = Cy(aq,...,a;) and g, = ged(n,aq,...,a;), t € [1,m]. Obviously, G,
has ¢g; hamiltonian components isomorphic to the graph C=n (%, ..., %), We shall

gt ~ 9t gt
prove by induction that in the component of GG; which contains a vertex 0, there is a

~ — alagl
hamiltonian cycle C; and one of cycles from S = {C’to, oot Ne) {o }},

which contains one edge from C,. If ¢ < 3, then the assertion is true by Lemmas
3,4,6,7 and by Lemmas 5 and 8. Now we assume that the assertion is true for
every graph Gy, ..., Gy. If g = g441, there is nothing to show, since G; and G4
have the same components. Now assume ¢;1 < ¢;. Let k = gfil. In G; there
are k components connected into one component of G;,1. Denote these components
by Zuys- - Zu,, for u, = (r — 1)awr, v € [1,k]. By induction, the component
Zy, (0 € V(Z,,)) contains a cycle from S, which contains one edge from C;. A
hamiltonian cycle of Z,, can be transformed to a hamiltonian cycle of Z, ,r € [2, k]
in the following way: if (a1, 2, ... ,iﬁ,atﬂ) is a hamiltonian cycle of Z,,, then

((r—Dag1,i0+ (r—Dag, - - -, iz + (r —1)ag1, (r — 1)agyq) is a hamiltonian cycle
of Z,,, r €[2,k]. Now we will merge together a cycle of Z,, and hamiltonian cycles
of Z,,., r € [2,k] into one cycle in a new component of Gy1. This can be done by
induction.

At first, we replace the edges (i,4') € E(Z,,) and (i+ a41,7 +ar1) € E(Z,,) by two
new edges (4,74 a;1) and (7,4 + ayy1) to obtain a new cycle. If we have constructed

a cycle through all components Z,,, ..., Z,., r < k (this cycle has at least one edge
(j,7") of a hamiltonian cycle of Z, ), we can build a cycle through all vertices of
Luys ooy Ly

The cycle from S can be transformed to a cycle O~ (C~1%:2+a2}) of G where i €
[0,n—1] (i € [0,2 — 1]). By Lemma 1, every vertex (at least one vertex of every pair
of vertices 24, 2i+ay) belongs to every H-force set, and thus h(G) = n (h(G) > §). O
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