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Abstract

In this paper, we use two-variable Laurent polynomials attached to ma-
trices to encode properties of compositions of sequences. The Lagrange
identity in the ring of Laurent polynomials is then used to give a short
and transparent proof of a theorem about the Yang multiplication.

1 Introduction

Many classes of complementary sequences have been investigated in the literature
(see [1]). A quadruple of (41)-sequences (a, b, ¢, d) of length m, m, n, n, respectively,
is called base sequences if

Na(5) + Np(j) + Ne(j) + Na(j) = 0

for all positive integers j, where

Ns(j) =
) 0 otherwise,

{Zﬁgl Sisiy; HO<j<l,

for s = (sg,...,5.1) € {£1}!. We denote by BS(m,n) the set of base sequences of
length m, m, n, n. If (a,b,c,d) € BS(m,n), then it is complementary with weight
2(m+n). In [9], Yang proved the following theorem, which is known as one version
of the Yang multiplication theorem:

Theorem 1.1 (|9, Theorem 4]). If BS(m + 1,m) # () and BS(n+ 1,n) # 0, then
BS(m/,m’) # 0 with m' = (2m + 1)(2n + 1).
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The well-known Hadamard conjecture states that Hadamard matrices of order 4n
exist for every positive integer n. A consequence of Theorem 1.1 is the existence of
a Hadamard matrix of order 8m’ for a positive integer m’ satisfying the hypotheses.
Indeed, a class of sequences called T-sequences with length 2m’ can be obtained
from BS(m',m') [8], and Hadamard matrices of order 8m’ can be produced from 7-
sequences with length 2m’ by using Goethals—Seidel arrays [10]. For more information
on T-sequences, we refer the reader to [1, 2, 3, 4].

In order to prove Theorem 1.1, Yang used the Lagrange identity for polynomial
rings. Let Z[z*!] be the ring of Laurent polynomials over Z and * : Z[z*!] — Z[2z*!]

be the involutive automorphism defined by z + 27 '. Let a = (ag,...,a_1) € Z.

We define the Hall polynomial ¢q(z) € Z[z*] of @ by

Ga(x) = Zaixi.

It is easy to see that a quadraple (£1)-sequences (a,b,c,d) of length m,m,n,n,
respectively, is a base sequences if and only if
(¢a¢3 + ¢b¢z + ¢c¢z + gbdqui) (l') = 2(m + n)
Suppose (a,b,c,d) € BS(n+ 1,n) and (f,g,h,e) € BS(m + 1, m). The proof of
Theorem 1.1 in [9] is by establishing the identity
(¢q¢z + QZSTQS:: + ¢s¢: + ¢t¢:)(l‘)
= (daBh + 060, + Gcdi + $ady) (%) (9eds + D587 + SgBy + Ondi) (V) (1)

after defining the sequences q, 7, s, t appropriately such that, in particular,

0q(1) = Pa(2®)Pp= (7P 4 2 (%) g (a7 HY)
— g2OmED g (26 (22EMDY 4 2@ (02) 8 (HEmE)
A key to the proof is the Lagrange identity (see |9, Theorem L|): given a, b, ¢, d, e,
f, g, h in a commutative ring with an involutive automorphism x*, set
g=af"+cg—>be+dh,
r=>bf"+dg* + a*e — ch”,
s=ag* —cf —bh—d"e,
t =bg —df + ah™ + ce.
Then
qq" + 11t + s+t = (aa” + 00" + cc* 4+ dd*)(ee” + ffF 4+ gg" + hhT).  (3)
However, the derivation of (1) from (3) is not so immediate since one has to define

a7bﬂcﬂd7€’f7g’h’ as
(ba(xQ)a (bb(xz)? .%'(]56(.%'2), x¢d(x2>7

x2m+(lfn)(2m+1)¢e(x2(2m+1))’ xfn(2m+1)¢f(x2(2m+1))’

x—n(2m+1)¢g (x2(2m+1))’ x(l—n)(2m+1)¢h(x2(2m+l))

)
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rather than
ba(2?), o(2%), pe(2?), Pa(a?), Pe (2P HD), hp (22D g (a2 HV) | oy (222mHD)

respectively. We note that Pokovi¢ and Zhao [7] observed some connection between
the Yang multiplication theorem and the octonion algebra. More information on the
Yang multiplication theorem and constructions of complementary sequences can be
found in [5].

In this paper, we give a more straightforward proof of Theorem 1.1. Our approach
is by constructing a matrix @) from the eight sequences a, b, c,d, e, f, g, h and pro-
duce Laurent polynomials ¢s(x) for s € {a,b,c,d, e, f,g,h} of single variable and
a Laurent polynomial 1o (xz,y) of two variables for a matrix @), such that

Vo (2, y) = Ya(2)V(y) + Ve(2)Ug(y) + Yo(2)e(y) + tha(2)Yn(y).

This gives an interpretation of the Lagrange identity in term of sequences and ma-
trices, i.e. there exist matrices ), R,.S,T such that

(Yo + VrYR + sty + o) (2,y)
= (Vaty + Yoty + Vet + Yatha) (@) (Wetbe + Vpiby + gty + Vntp)(y)-

Then (1) follows immediately by noticing 1o (x, 22" 1)) = ¢, (x) and (Y1) (z) =
(6a)(?).

The paper is organized as follows. In Section 2, we will define a Laurent poly-
nomial 14 (z) for a sequence a and introduce basic properties of ¥4 (z). We will
also show how to combine sequences and matrices to produce new sequences and
matrices, eventually leading to a construction of a matrix from a given set of eight
sequences. Finally, in Section 3, we will prove Theorem 1.1 as a consequence of the
Lagrange identity in the ring of Laurent polynomials of two variables. We note here
that Theorem 1.1 [9, Theorem 4] is known as one of the Yang multiplication theorem.
Other versions of the Yang multiplication theorem will be investigated in subsequent
papers.

2 Preliminary Results

Let R be a commutative ring with identity and let * be an involutive automorphism
of R. Moreover, let R[z*!] be the ring of Laurent polynomials over R and * :
R[z*] — R[z*!] be the extension of the involutive automorphism * of R defined by

x— x L

Definition 2.1. Let a = (ag, ...a;_1) € R!. We define the Hall polynomial ¢q(x) €
R[z*] of a by

We define a Laurent polynomial ¢4 (z) € R[zF!] by
Va(z) = 21 0 (2?).
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Hall polynomials have been used not only by Yang, but also others. See [6] and
references therein. For a sequence a = (ag,...,a;_1) € R' of length [ we define
a* € R' by (aj ,...,a}). It follows immediately that a** = a for every a € R'.

Definition 2.2. For a sequence a = (ay,...,a;_1) of length [ with entries in R, we
define the non-periodic autocorrelation N, of a by

I—j—1 & . .
_ o aar s if0<j <l
Na(j) = {Z =0 it

0 otherwise.

We say that a set of sequences {ay, ..., a,} not necessarily all of the same length, is
complementary with weight w if

~ , w if j =0,
SN () {
=1 0

otherwise.

By Definition 2.2 with R = Z, we see that (a, b, c,d) € BS(m,n) if and only if
{a, b, c,d} is complementary with weight 2(m + n).

Lemma 2.3. Let | be a positive integer and a € R'. Then

Yar (1) = Y5 (2).

Proof. Straightforward. O
Lemma 2.4. For sequences ay, . . ., a, with entries in R, the following are equivalent.
(i) ai,...,a, are complementary with weight w,

(i) 321 (Pa,0a,)(x) = w,
(i) 325 (Va,t0g,) () = w.

Proof. 1t is straightforward to check that (i) is equivalent to (ii). Equivalence of
(ii) and (iii) is clear since for any sequence a, ¢q(22)¢:(2?) = Ya(x)i(x) from
Definition 2.1. O

Definition 2.5. Let a = (ay,...,a;_1) € R'. Define
a/0 = (ag,0,ay,...,0,a;_1) € R*™, 0/a=(0,a,0,...,a,_1,0) € R**.
Lemma 2.6. For every a € R,
Qﬁa/o(%) = %/a(x) = ¢a($2)-
Proof. By Definition 2.1 and Definition 2.5 , we have

%/0(3?) = xli(mil)(ba/o(lg) x2721¢a(l‘4) = wa(xQ)v
Yosa(T) = xlf(mﬂ)%/a(f) 2P da () = Ya(2?).
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Now, we will define a Laurent polynomial of two variables for arbitrary matrices.
Let Rz, y*!] be the ring of Laurent polynomials in two variables z,y. We define
an involutive ring automorphism * : R[z*!, y*] — R[2* yF by 2+ 27 y— gyt
and a — a* for a € R.

Definition 2.7. For A € R™*", we denote the row vectors of a matrix A by
ag,...,a,,_1. Define

seq(A) = (ag|a1 |- | amn_1) € R™,

where | denotes concatenation, and

m—1
Yalz,y) =Y ta,(x)y™
=0

Clearly, we have Y 41p(z,y) = Ya(x,y) £ ¥p(x,y) for every A, B € R™*". Note
that we may regard R™ as R'*". So, for every a € R", we have a' € R™*! where t
denotes the transpose of a matrix.

Lemma 2.8. Let f € R™ and a € R". Then

Vsta(T,y) = Yal(2)Pr (y).
Proof. Let f = (fo,..., fm-1). Then

wfta(xa y) - Z w(fta)i (l.)yZi—i—l—m
=0

m—1

@Y
(

f‘y2i+1—m
7

a
a

2)¥s(y).

Lemma 2.9. If A € R™*", then

Vieq(a) (1) = a(z,z").

Proof. Let ay, ..., an—_1 be the row vectors of A. Since ¢geq(a)(v) = ngl T g, (),

i=
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we have
77Z)Sefl(f4)(x) = xlimngbseq(A) (1'2)

m—1
— :L,l—mn Z I,angbai (IL‘2
=0

m—1
— :L,l—mn Z l,Zni-l—n—lwai(x)
i=0
m—1
— :L‘n (2i+1—m ¢a )
7
=0
= Ya(x,z").

3 Main Result

We will present our result by three steps. The following lemma is essential to describe
the Yang multiplication theorem by using matrix approach.

Lemma 3.1. Let

a,bc,dcR", e f,ghecR™

Set
Q= f"a+g'c—e'd* + h'd,
R _ f*tb—i—g*td—i—eta,* h*t
S =g*'a— flc— —e'd",
T:g%—fd+m%+ec.
Then

(Vo + ViR + sty + Yrvr)(z,y)
= (Vathe + oty + Vetbe + Vathg) () (Vetbe + Vpty 4+ gthg + Untn)(y).-

Proof. By Lemma 2.3 and Lemma 2.8, we have

Vo, y) = Va()V};(y) + Ye(2)9g(v) — Yp(2) e (y) + Ya(@)Yn(y),
Vr(,y) = ¥o(2)V7(Y) + Va(2)vg(y) + Yo (2)ve(y) — Ye(x)¥p (y),
Vs(@,y) = Yal2)Vg(y) — Ye(x)Vs(y) — Yu(2)¥n(y) — Ya(@)te(y),
Ur(z,y) = Yo(2)1bg(y) — Ya(@)s(y) + Yal(z)Vn(y) + Yel()ve(y).

Thus, by applying the Lagrange identity, the result follows. O
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For the remainder of this section, we fix a multiplicatively closed subset T of
R\ {0} satisfying —1 € T = T*. Also, we denote 7o = 7 U{0}. Denote by supp(a)
and supp(A) the set of indices of nonzero entries of a sequence a = (ag, . ..,a;_1) € R!
and a matrix A = [a;;]o<i<m—1,0<j<n—1 € R"™*", respectively. We say that sequences
a, b are disjoint if supp(a) Nsupp(b) = (). Matrices A, B are also said to be disjoint
if supp(A) Nsupp(B) = 0.

Lemma 3.2. Let m and n be positive integers,
a,be 7"
c,deTm,
f.geT™,
h,ecT™.

Set

a =a/0, b=0b/0, =0/c, d=0/d,
f'=7r/0, g =g/0, K =0/h € =0]e.
Whrite
Q _ f/*tal +g/tcl o eltb/* + hltdl
R — f/*tb/ + g/*td/ + e/ta/* . h/*tcl7
S — g/*ta/ o f/tc/ o h/tb/ o e/td/*,
T _ g/tb/ o f/td/ + h/*ta/ + e/tcl*'

A~ N /N
(=)
S— N N N

Then Q, R, S, T € T@m+xCntl) sqtisfy

(Vg + YRR + s + Yrpr) (T, )
= (a0 + Uuthy + heth) + ) (@) (W) + Vst + gty + Unthn) (7).

Proof. Notice that a’,b',c,d € T;"™ and €', f',g',h’ € T,
Since supp(s™*) = supp(s’) for every s € {a,b,c,d, e, f,g,h} and (s, t') is
disjoint whenever

se€{a, b}, te{c,d} or sec{f,g} te{h, e},
matrices A and B are disjoint whenever A # B and
A Be{f*ad g'c e'b* h'd}.
Also,

supp(a’) Usupp(¢') = supp(b™) Usupp(d') = {0,...,2n},
1%

supp(f") = supp(g’), supp(e’) = supp(h’).
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Hence

supp(Q) = supp(f*a’) Usupp(g”ec’) Usupp(ed™) Usupp(h'd’)
{(3,) : i € supp(g'), j € supp(a’) Usupp(c)}

U{(i,7) : i € supp(€’), j € supp(b”™) Usupp(d’)}
= {(i,7) : i € supp(g’) Usupp(e’), j € {0, ..., 2n}}
={0,...,2m} x {0,...,2n}.

By a similar argument, we obtain

supp(R) = supp(S) = supp(T) ={0,...,2m} x {0,...,2n}.

Therefore, Q, R, S, T € T@n+Uxn+1) - The claimed identity follows from Lemma
2.6 and Lemma 3.1. O

Theorem 3.3. Let m,n be positive integers, and suppose
a,be T,
c,deT",
f.ge T,
h,ecT™

satisfy

(20+1),
(2m+1).

(Yaty + othy + ethe + aty) (x)
(hethe + sty + gthg + Unthp ) (x) =

Then there exist q,r,s,t € TV sych that

(Vgthg + Urthn + et + etf)(x) = 4(2m + 1)(2n + 1),
Proof. Define Q, R, S,T as in (4), (5), (6), (7), respectively. Write

g =seq(Q), 7 =seq(R), s=seq(S), t=seq(T).

By Lemma 3.2, g, 7, s, t € T@m+D@+D - Applying Lemma 2.9 and Lemma 3.2, we
have

(wqw; + ¢rw: + Qﬁs@/): + ¢t¢:)(x)
= (Youg + VrVR + Vsb§ + Yrp) (z, 2™

= (Yatly + Yoty + Vel + Yavy) (1) (et + Ypt} + Vgt + Ynthy) (22 FY)
=4(2m+1)(2n +1).

2
2

Hence the proof is complete. O

Finally, we see that Theorem 1.1 follows from Theorem 3.3 by setting 7 = {£1} C
Z. Hence, our method gives a more transparent proof of Theorem 1.1. Indeed, by
taking (a,b,c,d) € BS(n+ 1,n) and (f,g,h,e) € BS(m + 1,m), the hypotheses
in Theorem 3.3 are satisfied by Lemma 2.4. Then the resulting sequences (q, 7, s, t)
belong to BS(m',m') by Lemma 2.4 where m' = (2m + 1)(2n + 1).
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