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Abstract

Let G = (V,E) be a graph. A set S ⊆ V is a total restrained dominating
set if every vertex is adjacent to a vertex in S, and every vertex in V −S
is adjacent to a vertex in V −S. The total restrained domination number
of G, denoted by γtr(G), is the smallest cardinality of a total restrained
dominating set of G. In this paper we show that if G is a graph of order
n ≥ 4, then γtr(G)γtr(G) ≤ 4n. We also characterize the graphs achieving
the upper bound.

1 Introduction

For notation and graph theory terminology, we generally follow [5]. Specifically, let
G = (V,E) be a graph of order n with vertex set V and edge set E. For a set S ⊆ V ,
the subgraph induced by S in G is denoted by 〈S〉. IfH is a subgraph of G, then G−H
will denote the induced graph 〈V (G)− V (H)〉. The minimum degree (respectively,
maximum degree) among the vertices of G is denoted by δ(G) (respectively, Δ(G)).

If v ∈ V , then the open neighborhood of v in G is defined as NG(v) = {x ∈ V −{v} | x
is adjacent to v in G}, while the closed neighborhood of v in G is given by NG[v] =
NG(v) ∪ {v}. A degree one vertex of a graph G will be referred to as a leaf, while a
degree zero vertex of G will be referred to as an isolate.

A set S ⊆ V is a dominating set of G, denoted by DS, if every vertex not in S is
adjacent to a vertex in S. The domination number of G, denoted by γ(G), is the
minimum cardinality of a DS. The concept of domination in graphs, with its many
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variations, is now well studied in graph theory. A thorough study of domination
appears in [5, 6].

A set S ⊆ V is a restrained set if every vertex in V − S is adjacent to a vertex in
V − S. A DS S ⊆ V is a restrained dominating set, denoted by RDS, if S is also
a restrained set. Every graph has a restrained dominating set, since S = V is such
a set. The restrained domination number of G, denoted by γr(G), is the minimum
cardinality of a RDS of G.

A DS S ⊆ V is a total dominating set, denoted by TDS, if every vertex in S
is adjacent to a vertex in S. Every graph without isolated vertices has a total
dominating set, since S = V is such a set. The total domination number of G,
denoted by γt(G), is the minimum cardinality of a TDS of G.

A RDS S ⊆ V is a total restrained dominating set, denoted by TRDS, if S is
a TDS. Every graph without isolated vertices has a total restrained dominating
set, since S = V is such a set. The total restrained domination number of G,
denoted by γtr(G), is the minimum cardinality of a TRDS of G. Total restrained
domination was introduced by Telle and Proskurowski [11], although indirectly, as a
vertex partitioning problem and further studied, for example, in [3, 2, 7, 12].

Nordhaus and Gaddum presented best possible bounds on the sum and product
of the chromatic number of a graph and its complement in [10]. Bounding the
sum and product of the domination number of a graph and its complement were
investigated by Jaeger and Payan, in [8]: If G is a graph of order n ≥ 2, then
γ(G) + γ(G) ≤ n + 1 and γ(G)γ(G) ≤ n. Furthermore, these problems were also
examined for the restrained domination number, and these results appear in [1, 3, 4].

Define K as the graph obtained by joining an isolated vertex to the vertices of degree
two of a P4. It is shown in [3] that ifG is a graph of order n ≥ 2 such that neither G nor
G contains isolated vertices or is isomorphic to K, then 4 ≤ γtr(G)+ γtr(G) ≤ n+4.
Extremal graphs G of order n achieving these two bounds are also characterized.

The aim of this paper is to bound the product of the total restrained domination
numbers of a graph and its complement. We show that if n ≥ 4, and neither G nor
G contains isolated vertices or is isomorphic to K, then γtr(G)γtr(G) ≤ 4n. We also
characterize the graphs achieving the upper bound.

The following two results will prove to be useful in the proof of our main result.

Theorem 1.1 [7] Let G be a connected graph with δ ≥ 2 and order n ≥ 4. Then
γtr(G) ≤ n− Δ

2
− 1.

Theorem 1.2 [2] Let G be a connected graph with 3 ≤ δ ≤ n − 2. Then γtr(G) ≤
n− δ.
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2 Preliminary Results

Let L be the class of all graphs constructed in the following way: Let u and v be
two distinct isolates and consider the complete graph Kn, where n = 2 or n ≥ 4. Let
u′ and v′ be two distinct vertices of Kn. Join u to u′, and join v to v′. Recall the
definition of the graph K. In order to prove our main result, we will first prove a
sequence of necessary lemmas.

Lemma 2.1 If G ∈ L, then γtr(G)γtr(G) = 4n.

Proof. Let G ∈ L and let S be any TRDS of G of cardinality γtr(G). Then, as u
and v are leaves of G, adjacent to u′ and v′, respectively, {u, v, u′, v′} ⊆ S, whence
γtr(G) = |S| ≥ 4. Moreover, {u, v, u′, v′} is a TRDS of G, whence γtr(G) = 4.

Let S be any TRDS of G of cardinality γtr(G). Then, as u′ and v′ are leaves
of G, adjacent to v′ and u′, respectively, we have {u, v, u′, v′} ⊆ S. Moreover,
〈V (G)−{u, v, u′, v′}〉G only contains isolated vertices, whence V (G)−{u, v, u′, v′} ⊆
S, and so |S| ≥ n. It now follows that γtr(G) = n, whence γtr(G)γtr(G) = 4n. �

Lemma 2.2 Suppose n ≥ 4 and neither G nor G contains isolated vertices. If
diam(G) = diam(G) = 2, then γtr(G)γtr(G) < 4n.

Proof. Suppose n ≥ 4, neither G nor G contains isolated vertices and diam(G) =
diam(G) = 2. Let δ∗ = min{δ(G), δ(G)} and δ∗∗ = max{δ(G), δ(G)}. As diam(G) =
diam(G) = 2, both G and G are connected, and n ≥ 5.

Let u (u′, respectively) be a vertex of G (G, respectively) such that degG(u) = δ(G)
(degG(u

′) = δ(G), respectively). Suppose δ∗ = 1. Without loss of generality, assume
δ(G) = 1, and let v be adjacent to u inG. As diam(G) = 2, we have NG(v) = V −{v},
and so v is isolated in G, which is a contradiction. Thus, δ∗ ≥ 2.

Let X = V −NG[u], X
′ = V −NG[u

′], T0 = NG(u) and T ′
0 = NG(u

′). If X = ∅, then
u is isolated in G, which is a contradiction. We conclude that X �= ∅. Similarly,
X ′ �= ∅. As diam(G) = diam(G) = 2, sets T0 and T ′

0 dominate X and X ′ respectively.

To complete the proof of Lemma 2.2, we will prove a sequence of claims. We will
eventually show that there exists an integer k ≥ 1, such that n ≥ k2+2k+3, whence
4n ≥ 4k2+8k+12. Then we will show that γtr(G)+γtr(G) ≤ 2(2k+1) = 4k+2. Since
the sum is then bounded, we can, using calculus, bound the product γtr(G)γtr(G),
and deduce that γtr(G)γtr(G) ≤ 4k2 + 4k + 1 < 4n.

Claim 2.1 If δ∗ ≤ 3, then γtr(G)γtr(G) < 4n.

Proof. Assume that δ∗ ≤ 3. Without loss of generality, assume that δ∗ = δ(G).

Hence, Δ(G) = n−δ(G)−1 ≥ n−4. So, by Theorem 1.1, γtr(G) ≤ n−Δ(G)
2

−1 ≤ n
2
+1.
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Let U = {x ∈ X | NG(x) = NG(u)}. If U = ∅, then NG[u] is a TRDS of G and so
γtr(G) ≤ 4. As Δ(G) ≥ δ(G) ≥ 2, we have, by Theorem 1.1, γtr(G) ≤ n− 2, whence
γtr(G)γtr(G) < 4n. Hence, U �= ∅.
Claim A. If γtr(G) ≤ 6, then γtr(G)γtr(G) < 4n.

Proof. Suppose γtr(G) ≤ 6. Then γtr(G)γtr(G) ≤ 6(n
2
+ 1) = 3n+ 6. If n ≥ 7, then

3n + 6 < 4n, and so γtr(G)γtr(G) < 4n. We therefore assume that n = 5 or n = 6.

First consider the case when δ(G) = 3. It follows easily that 1 ≤ |U | ≤ 2, whence
γtr(G) = 2, and so γtr(G)γtr(G) ≤ 2(n

2
+ 1) = n + 2 < 4n.

Next consider the case when δ(G) = 2. If |U | ≥ 2, then it is clear that γtr(G) = 2,
whence γtr(G)γtr(G) ≤ 2(n

2
+ 1) = n+ 2 < 4n. It follows that |U | = 1. As δ(G) ≥ 2,

we have that |X − U | ≥ 2, and so n = 6. Let X − U = {x, y}. Note that x and y
cannot be adjacent to a common neighbor in G that lies in NG(u). Let x

′ ∈ NG(u)
be adjacent to x. The set {y, x′, x} is a TRDS of G, hence γtr(G)γtr(G) ≤ 3n < 4n.

If |U | ≤ 2, then U ∪NG[u] is a TRDS of G of cardinality at most 6, and the result
follows from Claim A. Hence |U | ≥ 3.

Let x be an arbitrary vertex in NG(u). If the set S = NG[u]−{x} is a DS of G, then
S is a TRDS of G, whence γtr(G) ≤ 3, a contradiction. It follows that there exists
a vertex y ∈ X −U, such that y and x are adjacent in G and NG(u)∩NG(y) = {x}.
If x dominates X in G, then {x, u} is a TRDS of G, and so γtr(G) = 2, a contradic-
tion. Thus x does not dominate X in G, and so there exists a vertex z ∈ X−U−{y},
such that x is not adjacent to z in G.

Let y′ ∈ U. The set S = {y, z, y′} is a TDS of G. If S is a TRDS of G, then
γtr(G)γtr(G) ≤ 3n < 4n. Note that if t ∈ U − {y′}, then every vertex of X ∪ {u} −
S − {t} is adjacent to t in G. Thus, there exists a vertex x′ ∈ NG(u) such that x′ is
adjacent in G to every vertex of V − S. The set S ′ = S ∪ {x′} is a TDS of G. If S ′

is a TRDS of G, then, by Theorem 1.1, γtr(G)γtr(G) ≤ 4(n− 2) < 4n. Hence, there
exists a vertex x′′ ∈ NG(u) − {x′} such that x′′ is adjacent in G to every vertex of
V − S − {x′}.
Suppose first that x = x′′. Since deg(u) = δ(G), vertex z is adjacent to a vertex
z′ ∈ X − U − {z} in G. As x′ is adjacent to every vertex of V − {x′, x, y, z, y′}, the
set {x, y, z, z′} is a TRDS of G, and the result follows from Claim A. Hence x �= x′′,
and by a similar argument, x �= x′. It immediately now follows that δ(G) = 3.

If y is adjacent to z in G, then {x, x′, y} is a TRDS of G, and the result follows from
Claim A. As δ(G) ≥ 3, the vertex z is adjacent to a vertex z′ ∈ X −U − {z, y}. If z
is adjacent to x′ in G, then {x, x′} is a TRDS of G and the result follows as before.
If z is not adjacent to x′ in G, then {x, x′, z′} is a TRDS of G, and the result follows
as before. This completes the proof of our claim.

By Claim 2.1, δ∗ ≥ 4.
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As in [9], for an arbitrary graph G, let S0 be the largest subset of T0 that does
not dominate X. Let T1 = T0 − S0. By the maximality of S0, every vertex of T1

dominates X − N(S0), but T1 may or may not dominate X. Note that if S0 = ∅,
then γtr(G) ≤ 2 and so γtr(G)γtr(G) ≤ 2n < 4n. We continue, constructing sets
T0, T1, . . . , Tk with T0 ⊃ T1 ⊃ . . . ⊃ Tk (where k ≥ 1) and sets S0, . . . , Sk−1 such that

1. for i < k, the set Ti dominates X.

2. for i < k, the set Si is the largest subset of Ti that does not dominate X, and
Ti+1 = Ti − Si.

3. Tk does not dominate X.

Since Ti dominates X but Si does not (when i < k), all of T0, . . . , Tk (and S0, . . . ,
Sk−1) are nonempty.

Analogously, for the graph G, construct sets T ′
0, T

′
1, . . . , T

′
� with T ′

0 ⊃ T ′
1 ⊃ . . . ⊃ T ′

�

(where � ≥ 1) and sets S ′
0, . . . , S

′
�−1 such that

1. for i < �, the set T ′
i dominates X ′.

2. for i < �, the set S ′
i is the largest subset of T ′

i that does not dominate X ′, and
T ′
i+1 = T ′

i − S ′
i.

3. T ′
� does not dominate X ′.

Again, T ′
i �= ∅ for i = 0, . . . , �, while S ′

i �= ∅ for i = 0, . . . , �− 1.

Claim 2.2 γtr(G)γtr(G) < 4n or for i < k (i < �, respectively) we have γtr(G) ≤
|Si|+ 2 (γtr(G) ≤ |S ′

i|+ 2, respectively).

Proof. Without loss of generality, consider the graph G and the set Si and recall
that every vertex in Ti+1 dominates U = X − NG(Si). Let W = NG(u) − Si, let
y ∈ Ti+1, and let S = {u, y} ∪ Si. Obviously S is a TDS of G and has cardinality
|Si|+ 2. Observe that if y dominates X, then, since δ∗ ≥ 4, we have that {y, u} is a
TRDS of G, and so γtr(G)γtr(G) ≤ 2n < 4n. We may therefore assume that y does
not dominate X.

Case 1. |W | ≥ 3.

Then 3 ≤ |W | = δ(G) − |Si|, and so |S| = |Si| + 2 ≤ δ(G) − 1. Every vertex in X
has at most δ(G)− 2 neighbors in S, while every vertex in W has at most δ(G)− 1
neighbors in S. It follows that S is a TRDS of G and so γtr(G) ≤ |Si|+ 2.

Case 2. |W | = 2.

We show that S is a restrained set of G, since then the conclusion will follow. Sup-
pose, to the contrary, that S is not restrained. As |Si| = δ(G)− 2, each vertex in X
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has at most δ(G) − 1 neighbors in S, and so there exists a vertex in x ∈ W − {y}
such that NG(x) = {y, u} ∪ Si.

Consider the set S ′ = Si ∪ {x}. Note that S ′ is a restrained set. If S ′ is a DS of G,
then S ′ is a TRDS of G, and so γtr(G) ≤ |Si|+ 1. So, suppose S ′ is not a DS of G,
and let z ∈ X be a vertex which is not adjacent to any of the vertices in Si ∪ {x}.
As diam(G) = 2, z is adjacent to y in G. Since y does not dominate X, there is a
vertex z′ ∈ X − {z} that is not adjacent to y in G. As δ(G) ≥ 4, the set {z′, z, u} is
a TRDS of G, whence γtr(G)γtr(G) ≤ 3n < 4n.

Case 3. W = {y}.
We show that S is a restrained set of G, since then the conclusion will follow. Sup-
pose, to the contrary, that S is not restrained. Thus there exists a vertex x in X
such that NG(x) = NG(u). Let z ∈ X − NG(Si). Then y is adjacent to z in G, and
z dominates Si in G. Let z′ ∈ X − {z, x}, such that z′ is not adjacent to y in G. As
δ(G) ≥ δ∗ ≥ 4, the set {x, z′, z} is a TRDS of G, whence γtr(G)γtr(G) ≤ 3n < 4n.

For i = 0, 1, . . . , k − 1, let xi be a vertex of X that is not dominated by Si, and let
xk be a vertex that is not dominated by Tk.

Let 0 < i ≤ k− 1 and let 0 ≤ j < i. We show that xi �= xj . Note that xj is adjacent
to every vertex of Tj+1. As Si ⊆ Tj+1, vertex xj is adjacent to every vertex of Si.
But xi is non-adjacent to every vertex of Si, and so xi �= xj . A similar argument
shows that xi �= xk for i = 0, . . . , k − 1. Let U = ∪k

i=0{xi}. Then |U | = k + 1.

Similarly, for i = 0, 1, . . . , � − 1, let x′
i be a vertex of X that is not dominated by

S ′
i, let x′

� be a vertex that is not dominated by T ′
� , and let U ′ = ∪�

i=0{x′
i}. Then

|U ′| = �+ 1.

We say that a vertex v ∈ NG(u)∪ (X −U) has Property P if either v ∈ NG(u) and
NG(v) ⊇ NG[u]∪ (X −U)−{v} or v ∈ X −U and NG(v) ⊇ NG(u)∪ (X −U)−{v}.
A similar property is described for a vertex v ∈ NG(u

′) ∪ (X ′ − U ′).

Claim 2.3 If G (G, respectively) has no vertices with Property P, then γtr(G) ≤
k + 2 (γtr(G) ≤ �+ 2, respectively).

Proof. Suppose G has no vertices with Property P. Given the non-existence of
vertices with Property P, the set S = U ∪ {u} is a TRDS of G, whence γtr(G) ≤
k + 2

Claim 2.4 If G or G has no vertices with Property P, then γtr(G) + γtr(G) ≤
δ∗∗ − (γtr(G)− 3)(γtr(G)− 3) + 4.

Proof. Assume, without loss of generality, that G has no vertices with Property
P. Observe that |S0| = δ(G)− |Tk| −

∑k−1
i=1 |Si|. By Claims 2.2 and 2.3, we have

γtr(G) + γtr(G) ≤ (|S0|+ 2) + (k + 2)
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= δ(G)− |Tk| −
k−1∑

i=1

|Si|+ k + 4

≤ δ(G)− 1−
k−1∑

i=1

(γtr(G)− 2) + k + 4

= δ(G) + (k − 1)− (k − 1)(γtr(G)− 2) + 4

= δ(G)− (k − 1)(γtr(G)− 3) + 4

≤ δ∗∗ − (γtr(G)− 3)(γtr(G)− 3) + 4.

Assume G does not have any vertices with Property P. By Claim 2.4, we have that
γtr(G)+γtr(G) ≤ δ∗∗+4−(γtr(G)−3)(γtr(G)−3) and it follows that γtr(G)γtr(G) ≤
δ∗∗ + 2(γtr(G) + γtr(G))− 5. Hence, as δ∗ ≥ 4, we have (cf. Theorem 1.2) that

γtr(G)γtr(G) ≤ δ∗∗ + 4n− 2(δ(G) + δ(G))− 5 < 4n.

We may assume, henceforth, that both G and G must have vertices with Property
P.

Claim 2.5 If γtr(G) ≤ � + 2 (γtr(G) ≤ k + 2, respectively), then 2γtr(G) ≤ δ(G) +
4− (γtr(G)− 3)2 (2γtr(G) ≤ δ(G) + 4− (γtr(G)− 3)2, respectively).

Proof. Consider the graph G and assume γtr(G) ≤ k + 2. By Claim 2.2 we have
that γtr(G) ≤ |S0| + 2. Observe that |S0| = δ(G) − |Tk| −

∑k−1
i=1 |Si|. Following the

proof of Claim 2.4, we obtain 2γtr(G) ≤ δ(G) + 4 − (γtr(G) − 3)2. Similarly, one
establishes that 2γtr(G) ≤ δ(G) + 4− (γtr(G)− 3)2.

Without loss of generality, we may assume that γtr(G) ≤ γtr(G).

Claim 2.6 For all i < k, |Si| ≥ k + 1.

Proof. Assume that for some i < k, we have that |Si| ≤ k. By Claim 2.2, γtr(G) ≤
|Si|+ 2 ≤ k + 2. Applying Theorem 1.2 and Claim 2.5, we obtain

γtr(G)γtr(G) ≤ γtr(G)2

≤ δ(G)− 5 + 4γtr(G)

≤ δ(G) + 4(n− δ(G))− 5 < 4n.

By Claim 2.6, we have that δ(G) = |Tk| +
∑k−1

i=0 |Si| ≥ k(k + 1) + 1, whence n =
|NG[u]|+ |U |+ |X − U | ≥ k(k + 1) + 2 + k + 1.

Claim 2.7 The graph G has a TRDS of cardinality at most 2k + 1.
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Proof. Let x be the vertex of G that has Property P and observe that either
x ∈ NG(u) or x ∈ X −U. Consider the vertices x0 and x1. For each vertex xi, where
2 ≤ i ≤ k, consider a neighbor of xi in G, say yi. Let W = ∪k

i=2{xi, yi}.
Assume first that x0 and x1 are adjacent. As diam(G) = 2, x0 and u have a common
neighbor in G, say y. Since the vertex x dominates NG(u) ∪ X − U , we have that
if y �= x, then x is adjacent to y. Let S = W ∪ {x, x0, y}, and observe that |S| ≤
|W | + 3 = 2k + 1. It is clear that S is a TDS of G. If k = 1 then |S| = 3, and so,
since δ∗ ≥ 4, S is a TRDS of G. If k ≥ 2 then δ(G) ≥ k(k+1)+1 > 2k+1, whence
S is a TRDS of G.

We may assume, without loss of generality, that the set U is independent in G. As
diam(G) = 2, x0 and x1 have a common neighbor in G, say y, and y ∈ NG(u)∪X−U.
Since x dominates NG(u) ∪X − U , recall that if y �= x, then x is adjacent to y. Let
x′ ∈ NG(u)− {x} be a vertex adjacent to x in G, and let S = W ∪ {y, x, x′}. Note
that |S| ≤ |W |+ 3 = 2k + 1. It is clear that S is a TDS of G. If k = 1, then, since
δ∗ ≥ 4, S is a TRDS of G. If k ≥ 2, then δ(G) ≥ k(k+ 1)+ 1 > 2k+1, and so S is
a TRDS of G.

Claim 2.8 If γtr(G) + γtr(G) ≤ 4k + 2, then γtr(G)γtr(G) ≤ 4k2 + 4k + 1.

Proof. This follows from the fact that ab ≤ (a+b)2

4
, where a and b are non-negative

real numbers.

To complete the proof of Lemma 2.2, recall that n ≥ k2+2k+3, whence 4n ≥ 4k2+
8k+12. By Claim 2.7, we have γtr(G)+γtr(G) ≤ γtr(G)+γtr(G) ≤ 2(2k+1) = 4k+2,
and so (cf. Claim 2.8) γtr(G)γtr(G) ≤ 4k2 + 4k + 1 < 4n.�

Lemma 2.3 Let G be a graph of order n ≥ 4 and assume that neither G nor G has
any isolates. If G or G is disconnected, then γtr(G)γtr(G) < 4n.

Proof. Assume G is disconnected, n ≥ 4 and neither G nor G has any isolates. Let
G1, G2, . . . , Gk be the components of G, and observe that each component has order
at least two. Let x ∈ V (G1) and y ∈ V (G2). The set {x, y} is a TRDS of G, whence
γtr(G)γtr(G) ≤ 2n < 4n. �

Lemma 2.4 Let G be a graph of order n ≥ 4 such that G and G are both connected,
and neither G nor G has isolates or is isomorphic to K. If δ(G) = 1 or δ(G) = 1,
then γtr(G)γtr(G) < 4n, or, either G ∈ L or G ∈ L.

Proof. Let G be a graph of order n ≥ 4 such that G and G are both connected, and
neither G nor G has isolates or is isomorphic to K.

Case A. G has at least two leaves.
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Let u and v be leaves of G and let u′ (v′, respectively) be the neighbor of u (v,
respectively) in G. Let us assume first that u′ = v′. Since G has no isolates, there
exists a vertex x ∈ V (G) − NG[u

′]. The set {x, u, u′} is a TRDS of G, and so
γtr(G)γtr(G) ≤ 3n < 4n.

We therefore assume that u′ �= v′. If V (G)− {u, u′, v, v′} = ∅, then G ∼= P4 ∈ L for
which γtr(G)γtr(G) = 4n. We henceforth assume that V (G)− {u, u′, v, v′} �= ∅, and
so n ≥ 5.

If u′ and v′ are not adjacent, then the set {u, v′} is aTRDS ofG, whence γtr(G)γtr(G)
≤ 2n < 4n. We may assume that u′ and v′ are adjacent.

Assume that there exists a vertex x ∈ V (G)−{u, v, u′, v′} such that x and u′ are not
adjacent in G. The set {u, v′, x} is a TRDS of G and so γtr(G)γtr(G) ≤ 3n < 4n.
Hence, in G, u′ is adjacent to every vertex in V (G)−{u, v, u′, v′}, and, by symmetry,
in G, v′ is adjacent to every vertex in V (G)− {u, v, u′, v′}.
Observe that degG(u

′) = degG(v
′) = 1, so every TRDS of G must contain u, u′, v

and v′. Also note that u is adjacent to v in G.

Consider the set S = {u, u′, v′, v}. As G �∼= K, |V − S| ≥ 2. Suppose S is a TRDS
of G. Then γtr(G) = 4 and so γtr(G)γtr(G) ≤ 4n. If γtr(G)γtr(G) < 4n, we are
done. So suppose γtr(G)γtr(G) = 4n, whence γtr(G) = n. If two distinct vertices
x and y in V − S are non-adjacent in G, then V − {x, y} is a TRDS of G, and so
γtr(G) ≤ n − 2, which is a contradiction. Thus, V − S forms a clique in G, and so
G ∈ L.
Thus, we may assume that S is not a TRDS of G, and, similarly, that S is not a
TRDS of G. As S is a TDS of both G and G, there exist vertices x and y in V −S
such that in G, x is not adjacent to every vertex of V − S − {x} and y is adjacent
to every vertex of V − S − {y}. We conclude that x �= y and that x and y are both
adjacent and non-adjacent in G, which is a contradiction.

Case B. G has exactly one leaf.

We may therefore assume that G has exactly one leaf, say u. Consider a path
u, u1, . . . , uecc(u) of G. Define Vi, i = 0, . . . , ecc(u), as the set of vertices at distance
i from u. If ecc(u) = 2, then G is disconnected, which is a contradiction. So
assume that ecc(u) ≥ 3. If ecc(u) ≥ 5, then {u, uecc(u)} is a TRDS of G, whence
γtr(G)γtr(G) ≤ 2n < 4n. For convenience, set x = u1 and z = u3. Observe that the
set V (G)− {x, z} is a TRDS of G, and so γtr(G) ≤ n− 2.

First consider the case when ecc(u) = 4. If S = {u, x, z} is a TRDS of G, then
γtr(G)γtr(G) ≤ 3n < 4n. We therefore assume that S is not a TRDS of G. As S is
a TDS of G and every vertex of V2 is non-adjacent to every vertex of V4 in G, there
exists a vertex y ∈ V3−{z} which is adjacent to every vertex of V2∪V3−{z}∪V4 in G.
If {x, u, y} is a TRDS of G, then γtr(G)γtr(G) ≤ 3n < 4n. So assume {x, u, y} is not
a TRDS of G, and, as before, there exists a vertex y′ ∈ V3−{y} which is adjacent to
every vertex of V2∪V3−{y}∪V4 in G. If y′ �= z, let S ′ = {u, x, y′, z}, while if y′ = z,
let S ′ = {u, x, u2, z}. Then S ′ is a TRDS of G and so γtr(G)γtr(G) ≤ 4(n−2) < 4n.
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Next consider the case when ecc(u) = 3. Suppose V3 = {z}. Then, as before,
S = {u, x, z} is not a TRDS of G, and there exists a vertex y ∈ V2 which is adjacent
to every vertex of V2 − {y} in G. Since u is the only leaf of G, we can pick a vertex
y′ ∈ NG(z)−{y}. The set {u, y′, x} is a TRDS of G and so γtr(G)γtr(G) ≤ 3n < 4n.
It follows that |V3| ≥ 2.

As S is not a TRDS of G, there exists a vertex y ∈ V2 ∪ V3 which is adjacent to
every vertex of V2 ∪ V3 − {y, z} in G.

Subcase i. y ∈ V3.

If {x, u, y} is a TRDS of G, then γtr(G)γtr(G) ≤ 3n < 4n. Thus, {x, u, y} is not
a TRDS of G, and so there exists a vertex y′ ∈ V2 ∪ V3 which is adjacent to every
vertex of V2 ∪V3−{y, y′} in G. If y′ ∈ V3−{z, y}, then {u, x, y′, z} is a TRDS of G
and we have that γtr(G)γtr(G) ≤ 4(n−2) < 4n. If y′ ∈ V2, then {u, x, y′} is a TRDS
of G, whence γtr(G)γtr(G) ≤ 3n < 4n. We may assume that y′ = z, and let y′′ ∈ V2.
Let S ′ = {u, x, y′′, y′}. If V3−{z, y} �= ∅, then S ′ is a TRDS of G. If V3−{z, y} = ∅,
then {u, x, y′′} is a TRDS of G. Hence, in both cases, γtr(G)γtr(G) < 4n.

Subcase ii. y ∈ V2.

Assume first that y is adjacent to z. The set {u, x, y} is a TDS of G and if it
is a TRDS of G, then γtr(G)γtr(G) < 4n. Hence, as u is the only leaf of G, we
have that every vertex in V3 must have degree at least two in G, and so there is a
vertex y′ ∈ V2 such that NG(y

′) = {x, y}. The set {z, y, u} is a TRDS of G, whence
γtr(G)γtr(G) < 4n.

We may assume that y is not adjacent to z. Let z′ ∈ V3 − {z}. By considering the
set {u, x, z′}, there is a vertex y′ ∈ V2 ∪ V3 such that NG(y

′) ⊇ V2 ∪ V3 − {y′, z′}.
Similar to what have been shown for the set {u, x, z} above, we have y′ ∈ V2 with
y′ not adjacent to z′ in G. The facts that z′ �= z and y′ is adjacent to z imply that
y �= y′. The set S = {u, x, y, y′} is a TDS of G, and if it is a TRDS of G, then
γtr(G)γtr(G) ≤ 4(n− 2) < 4n.

We may assume that S is not a TRDS of G. Hence, there exists a vertex v �∈ S such
that either v ∈ V2 and NG(v) ⊆ {x, y, y′} or v ∈ V3 and NG(v) ⊆ {y, y′}. If v ∈ V3,
then as u is the only leaf of G, we have NG(v) = {y, y′}, whence v �∈ {z, z′, y, y′}.
Thus, in both cases, v �∈ {z, z′, y, y′}. The set {u, y, z} is a TRDS of G, whence
γtr(G)γtr(G) ≤ 3n < 4n. �

Lemma 2.5 Let G be a connected graph of order n ≥ 4 with min{δ(G), δ(G)} ≥ 2.
Moreover, suppose G is connected. Then γtr(G)γtr(G) < 4n.

Proof. Let G be a connected graph of order n ≥ 4 with min{δ(G), δ(G)} ≥ 2.
Moreover, suppose G is connected. We may assume, by Lemma 2.2, that diam(G) ≥
3 or diam(G) ≥ 3. Without loss of generality, suppose diam(G) ≥ 3, and consider a
diametrical path u = u0, u1, . . . , udiam(G) = v of G. Define Vi, i = 0, . . . , diam(G), as
the set of vertices at distance i from u. It is easy to see that if diam(G) ≥ 4, then



J.H. HATTINGH AND E.J. JOUBERT/AUSTRALAS. J. COMBIN. 70 (3) (2018), 297–308 307

the set {u, x} for x ∈ V3 is a TRDS of G and so γtr(G)γtr(G) ≤ 2n. Thus, we may
assume that diam(G) = 3.

Consider the case where V3 = {v}. Obviously, |V1| ≥ 2 (|V2| ≥ 2, respectively), since
otherwise u (v, respectively) is a leaf of G. The set {u, v} is a TDS of G. If it is a
TRDS of G, then γtr(G)γtr(G) ≤ 2n. So suppose {u, v} is not a RDS of G. Then
there exists a vertex y ∈ V1 ∪ V2 such that NG(y) ⊇ V1 ∪ V2 − {y}.
Suppose there is a vertex y′ ∈ V1 ∪ V2 − {y} such that NG(y

′) ⊇ V1 ∪ V2 − {y, y′}.
Let z ∈ NG(v) with z ∈ V2 − {y′}, and let z′ ∈ NG(u) with z′ ∈ V1 − {y′}. If y ∈ V1,
then {y, u, z} is a TRDS of G. If y ∈ V2, then {z, y, z′} is a TRDS of G. Hence
γtr(G)γtr(G) ≤ 3n.

Assume, therefore, that each vertex y′ ∈ V1 ∪ V2 − {y} is adjacent to a vertex of
V1 ∪V2−{y, y′} in G. But then {y, u, v} is a TRDS of G and so γtr(G)γtr(G) ≤ 3n.

Now suppose V3 ⊃ {v}. We may assume that the TDS {u, v} of G is not a RDS of
G. Hence, there exists a vertex y ∈ V2 such that NG(y) ⊇ V1 ∪ V2 ∪ V3 −{v, y}. Now
suppose that there is a vertex y′ ∈ V2−{y} such that NG(y

′) ⊇ V1∪V2∪V3−{v, y′}.
Let z ∈ NG(v)−{y′}. The set {y, u1, z} is a TRDS of G and so γtr(G)γtr(G) ≤ 3n.
Hence, {y, u, v} is a TRDS of G and so γtr(G)γtr(G) ≤ 3n. �

3 Main Result

We are now ready to state and prove our main result:

Theorem 3.1 Let G be a graph of order n ≥ 4, and suppose neither G nor G
contains isolated vertices or is isomorphic to K. Then γtr(G)γtr(G) ≤ 4n with
equality holding if and only if either G ∈ L or G ∈ L.

Proof. Let G be a graph of order n ≥ 4, such that G has no isolates and is not
isomorphic to K. By Lemmas 2.3 and 2.4, both G and G must be connected and
min{δ(G), δ(G)} ≥ 2. Our result now follows from Lemma 2.5. By Lemmas 2.1, 2.2,
2.3, 2.4 and 2.5 equality holds if and only if G ∈ L or G ∈ L. �
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