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Abstract

Let G = (V, E) be a graph. A set S C V is a total restrained dominating
set if every vertex is adjacent to a vertex in S, and every vertex in V — §
is adjacent to a vertex in V' — S. The total restrained domination number
of G, denoted by 7;,-(G), is the smallest cardinality of a total restrained
dominating set of G. In this paper we show that if G is a graph of order

n > 4, then v, (G)y:-(G) < 4n. We also characterize the graphs achieving
the upper bound.

1 Introduction

For notation and graph theory terminology, we generally follow [5]. Specifically, let
G = (V, E) be a graph of order n with vertex set V' and edge set E. For a set S C V|
the subgraph induced by S in G is denoted by (S). If H is a subgraph of G, then G—H
will denote the induced graph (V(G) — V(H)). The minimum degree (respectively,
mazimum degree) among the vertices of G is denoted by 0(G) (respectively, A(G)).

If v € V, then the open neighborhood of v in G is defined as Ng(v) = {x € V—{v} |z
is adjacent to v in G}, while the closed neighborhood of v in G is given by Ng[v] =
Ng(v) U{v}. A degree one vertex of a graph G will be referred to as a leaf, while a
degree zero vertex of G will be referred to as an isolate.

A set S C V is a dominating set of G, denoted by DS, if every vertex not in 9 is
adjacent to a vertex in S. The domination number of G, denoted by ~(G), is the
minimum cardinality of a DS. The concept of domination in graphs, with its many
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variations, is now well studied in graph theory. A thorough study of domination
appears in [5, 6].

A set S C V is a restrained set if every vertex in V' — S is adjacent to a vertex in
V —5. ADS § CV is a restrained dominating set, denoted by RDS, if S is also
a restrained set. Every graph has a restrained dominating set, since S = V' is such
a set. The restrained domination number of G, denoted by ~,.(G), is the minimum
cardinality of a RDS of G.

A DS S C V is a total dominating set, denoted by TDS, if every vertex in S
is adjacent to a vertex in S. Every graph without isolated vertices has a total
dominating set, since S = V is such a set. The total domination number of G,
denoted by (@), is the minimum cardinality of a TDS of G.

A RDS S C V is a total restrained dominating set, denoted by TRDS, if S is
a TDS. Every graph without isolated vertices has a total restrained dominating
set, since S = V is such a set. The total restrained domination number of G,
denoted by 7.(G), is the minimum cardinality of a TRDS of G. Total restrained
domination was introduced by Telle and Proskurowski [11], although indirectly, as a
vertex partitioning problem and further studied, for example, in [3, 2, 7, 12].

Nordhaus and Gaddum presented best possible bounds on the sum and product
of the chromatic number of a graph and its complement in [10]. Bounding the
sum and product of the domination number of a graph and its complement were
investigated by Jaeger and Payan, in [8]: If G is a graph of order n > 2, then

Y(G) +9(G) < n+1 and v(G)y(G) < n. Furthermore, these problems were also
examined for the restrained domination number, and these results appear in [1, 3, 4].

Define K as the graph obtained by joining an isolated vertex to the vertices of degree
two of a Py. It is shown in [3] that if G is a graph of order n > 2 such that neither G nor
G contains isolated vertices or is isomorphic to K, then 4 < v,.(G) + v, (G) < n+4.
Extremal graphs G of order n achieving these two bounds are also characterized.

The aim of this paper is to bound the product of the total restrained domination
numbers of a graph and its complement. We show that if n > 4, and neither G nor
G contains isolated vertices or is isomorphic to K, then v,.(G)7:(G) < 4n. We also
characterize the graphs achieving the upper bound.

The following two results will prove to be useful in the proof of our main result.

Theorem 1.1 [7] Let G be a connected graph with 6 > 2 and order n > 4. Then
Y (G) <n—%5 -1

Theorem 1.2 /2] Let G be a connected graph with 3 < § < n —2. Then v,(G) <
n —o.
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2 Preliminary Results

Let £ be the class of all graphs constructed in the following way: Let u and v be
two distinct isolates and consider the complete graph K,,, where n = 2 or n > 4. Let
u' and v’ be two distinct vertices of K. Join u to v/, and join v to v'. Recall the
definition of the graph K. In order to prove our main result, we will first prove a
sequence of necessary lemmas.

Lemma 2.1 IfG € L, then 74, (G)vr (G) = 4n.

Proof. Let G € £ and let S be any TRDS of G of cardinality v;,.(G). Then, as u
and v are leaves of G, adjacent to v’ and v, respectively, {u,v,u,v'} C S, whence
Y (G) = |S| > 4. Moreover, {u,v,u/,v'} is a TRDS of G, whence ~,.(G) = 4.

Let S be any TRDS of G of cardinality 7,.(G). Then, as v’ and v’ are leaves
of G, adjacent to v and u/, respectively, we have {u,v,u',v'} C S. Moreover,
(V(G) —{u,v,u,v"})g only contains isolated vertices, whence V(G) —{u, v, v’,v'} C

S, and so |S| > n. It now follows that v, (G) = n, whence v,.(G)y-(G) = 4n. O

Lemma 2.2 Suppose n > 4 and neither G nor G contains isolated vertices. If

diam(G) = diam(G) = 2, then v, (G) v (G) < 4n.

Proof. Suppose n > 4, neither G nor G contains isolated vertices and diam(G) =
diam(G) = 2. Let §* = min{d(G), §(G)} and 6™ = max{d(G),d(G)}. As diam(G) =
diam(G) = 2, both G and G are connected, and n > 5.

Let u (v, respectively) be a vertex of G (G, respectively) such that degg(u) = §(G)
(degg(u') = §(G), respectively). Suppose 6* = 1. Without loss of generality, assume
0(G) =1, and let v be adjacent to w in G. As diam(G) = 2, we have Ng(v) = V —{v},

and so v is isolated in G, which is a contradiction. Thus, §* > 2.

Let X =V — Nglu], X' =V — Nglu'], Ty = Ng(u) and T = Ng(u'). If X = 0, then
u is isolated in G, which is a contradiction. We conclude that X # ). Similarly,
X' # (. As diam(G) = diam(G) = 2, sets Ty and T}, dominate X and X' respectively.
To complete the proof of Lemma 2.2, we will prove a sequence of claims. We will
eventually show that there exists an integer k& > 1, such that n > k? 42k + 3, whence
4n > 4k*+8k+12. Then we will show that v, (G)+7,-(G) < 2(2k+1) = 4k+2. Since

the sum is then bounded, we can, using calculus, bound the product Yer (G)Yer (G),
and deduce that 74, (G)7v(G) < 4k* + 4k + 1 < 4n.

Claim 2.1 If §* < 3, then 74, (G (G) < 4n.

Proof. Assume that ¢* < 3. Without loss of generality, assume that §* = §(G).
1.

Hence, A(G) = n—3(G)—1 > n—4. So, by Theorem 1.1, 4;,(G) < n—%G)—l < 5+
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Let U = {x € X | Ng(z) = Ng(u)}. If U = (), then Ng[u] is a TRDS of G and so

Y (G) < 4. As A(G) > 6(G) > 2, we have, by Theorem 1.1, v,,.(G) < n — 2, whence

Yir (G)Ver (G) < 4n. Hence, U # (). o
Claim A. If v;,(G) < 6, then v,.(G)y4(G) < 4n.

Proof. Suppose v, (G) < 6. Then 74, (G)y,(G) < 6(5 +1) =3n+6. If n > 7, then

3n +6 < 4n, and so V4, (G)y-(G) < 4n. We therefore assume that n =5 or n = 6.
First consider the case when 6(G) = 3. It follows easily that 1 < |U| < 2, whence

Y (G) = 2, and 50 7, (G) 74 (G) < 2(5 +1) =n+2 < 4n.
Next consider the case when §(G) = 2. If |U| > 2, then it is clear that v,.(G) = 2,

whence 74, (G)(G) < 2(2 +1) = n+ 2 < 4n. It follows that |U| = 1. As §(G) > 2,
we have that |[X —U| > 2, and so n = 6. Let X — U = {z,y}. Note that z and y
cannot be adjacent to a common neighbor in G that lies in Ng(u). Let 2’ € Ng(u)

be adjacent to z. The set {y,2’, x} is a TRDS of G, hence 7, (G)v,(G) < 3n < 4n.

o

If |U] <2, then U U Nglu| is a TRDS of G of cardinality at most 6, and the result
follows from Claim A. Hence |U| > 3.

Let x be an arbitrary vertex in Ng(u). If the set S = Ng[u] —{z} is a DS of G, then
S is a TRDS of G, whence v;,.(G) < 3, a contradiction. It follows that there exists
a vertex y € X — U, such that y and = are adjacent in G and Ng(u) N Ng(y) = {z}.

If 2 dominates X in G, then {z,u} is a TRDS of G, and so v;,(G) = 2, a contradic-
tion. Thus = does not dominate X in G, and so there exists a vertex z € X —U —{y},
such that x is not adjacent to z in G.

Let 4/ € U. The set S = {y,2,9'} is a TDS of G. If S is a TRDS of G, then
Yir(G) Ve (G) < 3n < 4n. Note that if t € U — {y'}, then every vertex of X U {u} —
S — {t} is adjacent to t in G. Thus, there exists a vertex @’ € Ng(u) such that 2’ is
adjacent in G to every vertex of V — S. The set S’ = SU {2’} is a TDS of G. If S’
is a TRDS of G, then, by Theorem 1.1, v;,.(G)7:(G) < 4(n —2) < 4n. Hence, there
exists a vertex &’ € Ng(u) — {2’} such that 2” is adjacent in G to every vertex of

V—-S—{2'}.

Suppose first that =z = z”. Since deg(u) = §(G), vertex z is adjacent to a vertex
2 e X —U—{z}in G. As 2/ is adjacent to every vertex of V' — {2/, x,y, 2,9}, the
set {z,y, 2,2} is a TRDS of G, and the result follows from Claim A. Hence x # z”,
and by a similar argument, x # 2. It immediately now follows that 6(G) = 3.

If y is adjacent to z in G, then {z,2’,y} is a TRDS of G, and the result follows from
Claim A. As §(G) > 3, the vertex z is adjacent to a vertex 2’ € X —U — {z,y}. If 2
is adjacent to 2’ in G, then {x, 2’} is a TRDS of G and the result follows as before.
If z is not adjacent to 2/ in G, then {x,2’, 2’} is a TRDS of G, and the result follows
as before. This completes the proof of our claim. o

By Claim 2.1, 6* > 4.
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As in [9], for an arbitrary graph G, let Sy be the largest subset of Ty that does
not dominate X. Let T} = Ty — Sp. By the maximality of Sy, every vertex of T}
dominates X — N(S), but Ty may or may not dominate X. Note that if Sy = 0,

then v, (G) < 2 and so Y, (G)v(G) < 2n < 4n. We continue, constructing sets
To, Th, ..., Tp with To D T7 D ... D Ty (where k > 1) and sets Sy, . .., Sk_1 such that

1. for ¢ < k, the set T; dominates X.

2. for v < k, the set S; is the largest subset of T; that does not dominate X, and
Ti =T, - Si.

3. T}, does not dominate X.

Since T; dominates X but S; does not (when ¢ < k), all of Ty, ..., Ty (and Sy, ...,
Sk—1) are nonempty.

Analogously, for the graph G, construct sets Tg, T}, ..., T, with Ty DT} D ... D T}
(where ¢ > 1) and sets S, ..., S;_; such that

1. for i < ¢, the set T dominates X".

2. for i < ¢, the set S] is the largest subset of 7] that does not dominate X', and
T\, =T, - .

3. T, does not dominate X".

Again, T # () for i = 0,...,¢, while S{ # () for i =0,...,¢ — 1.

Claim 2.2 v, (G)v,(G) < 4n or fori < k (i < {, respectively) we have v, (G) <

|Si| + 2 (v (G) < |S| + 2, respectively).

Proof. Without loss of generality, consider the graph GG and the set S; and recall
that every vertex in T;,; dominates U = X — Ng(95;). Let W = Ng(u) — S, let
y € Tiyq, and let S = {u,y} U S;. Obviously S is a TDS of G and has cardinality
|S;| + 2. Observe that if y dominates X, then, since 6* > 4, we have that {y,u} is a

TRDS of G, and s0 v, (G)7i-(G) < 2n < 4n. We may therefore assume that y does
not dominate X.

Case 1. |W| > 3.

Then 3 < |W| = §(G) — |Si|, and so |S| = |S;| +2 < §(G) — 1. Every vertex in X
has at most 0(G) — 2 neighbors in S, while every vertex in W has at most §(G) — 1
neighbors in S. It follows that S is a TRDS of G and so v,.(G) < |S;| + 2.

Case 2. |W|=2.

We show that S is a restrained set of (G, since then the conclusion will follow. Sup-
pose, to the contrary, that S is not restrained. As |S;| = 6(G) — 2, each vertex in X
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has at most 6(G) — 1 neighbors in S, and so there exists a vertex in z € W — {y}
such that Ng(z) = {y,u} US;.

Consider the set S” = S5; U {z}. Note that S’ is a restrained set. If S” is a DS of G,
then S” is a TRDS of G, and so v;,.(G) < |S;] + 1. So, suppose S’ is not a DS of G,
and let z € X be a vertex which is not adjacent to any of the vertices in S; U {z}.
As diam(G) = 2, z is adjacent to y in G. Since y does not dominate X, there is a

vertex 2’ € X — {2} that is not adjacent to y in G. As 6(G) > 4, the set {2/, z,u} is
a TRDS of G, whence v, (G)v:-(G) < 3n < 4n.

Case 3. W = {y}.

We show that S is a restrained set of G, since then the conclusion will follow. Sup-
pose, to the contrary, that S is not restrained. Thus there exists a vertex x in X
such that Ng(x) = Ng(u). Let 2 € X — Ng(S;). Then y is adjacent to z in G, and
z dominates S; in G. Let 2’ € X — {2,z}, such that 2’ is not adjacent to y in G. As
§(G) > 6* > 4, the set {z, 2, 2} is a TRDS of G, whence ;,.(G)v:(G) < 3n < 4n. o

For:=0,1,...,k — 1, let x; be a vertex of X that is not dominated by S;, and let
xp be a vertex that is not dominated by T}.

Let 0 <i < k—1andlet 0 <j <i. Weshow that z; # x;. Note that z; is adjacent
to every vertex of Tj1. As S; C Tj44, vertex x; is adjacent to every vertex of .S;.
But z; is non-adjacent to every vertex of S;, and so z; # x;. A similar argument
shows that z; # x;, for i = 0,...,k— 1. Let U = U¥_{x;}. Then |U| =k + 1.

Similarly, for i = 0,1,...,¢ — 1, let 2} be a vertex of X that is not dominated by
5!, let 2}, be a vertex that is not dominated by 7T}, and let U’ = U!{_,{z}}. Then
|U'| =€+ 1.

We say that a vertex v € Ng(u) U (X —U) has Property P if either v € Ng(u) and
Ng(v) 2 Ne[u]U(X —U) —{v} orve X —U and Ng(v) O Ng(u) U(X —U) —{v}.
A similar property is described for a vertex v € Ng(u') U (X' — U’).

Claim 2.3 If G (G, respectively) has no vertices with Property P, then 7;,.(G) <
k+2 (v.(G) < €+ 2, respectively).

Proof. Suppose G has no vertices with Property P. Given the non-existence of
vertices with Property P, the set S = U U {u} is a TRDS of G, whence v;,.(G) <
k42 o

Claim 2.4 If G or G has no vertices with Property P, then v, (G) + v, (G) <

0" — (’ytr(G) - 3)(7tr(G) - 3) + 4.

Proof. Assume, without loss of generality, that G has no vertices with Property
P. Observe that [So| = 8(G) — [Tk — S25— |S;|. By Claims 2.2 and 2.3, we have

Y (G) + 1 (G) < (|So] +2) + (k +2)
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= §(GQ) — |Tx| — E |S:i|+k+4

k—1
< )= 1= (w(G)—2)+k+4
=1

= 3(G)+ (k= 1) = (k= D)(3(G) —2) + 4
= 3(G) — (k= 1)(3(G) — 3) +4
< 07— (1(G) = 3)(3 (@) — 3) + 4. :

Assume G does not have any vertices with Property P. By Claim 2.4, we have that
Yir(G) +792r (G) < 0™ +4— (74, (G) = 3) (74 (G) — 3) and it follows that v, (G) 7. (G) <
0* + 2(v4(G) + 74 (G)) — 5. Hence, as 6* > 4, we have (cf. Theorem 1.2) that

r(G) Y (G) < 87 +4n = 2(6(G) + 6(G)) — 5 < 4n.

We may assume, henceforth, that both G and G must have vertices with Property
P.

Claim 2.5 If 7, (G) < £+ 2 (7,(G) < k + 2, respectively), then 27, (G) < §(G) +
4 — (y(G) = 3)? (29(G) < 6(G) + 4 — (4,(G) — 3)?, respectively).

Proof. Consider the graph G and assume v;,.(G) < k + 2. By Claim 2.2 we have
that 7,-(G) < |So| + 2. Observe that [So| = 6(G) — [T — 3207, |S;]. Following the
proof of Claim 2.4, we obtain 2v;.(G) < §(G) + 4 — (7(G) — 3). Similarly, one
establishes that 2v;,.(G) < §(Q) +4 — (74(G) — 3)2. o

Without loss of generality, we may assume that v,.(G) < v, (G).
Claim 2.6 For alli <k, |S;)| > k+1.

Proof. Assume that for some i < k, we have that |S;| < k. By Claim 2.2, 7,.(G) <
|S;| + 2 < k + 2. Applying Theorem 1.2 and Claim 2.5, we obtain

P)/tr(G)’ytr(a> ’ytr(G>2
6(G) -5+ 4’7t7“(G)
5(G) +4(n — 6(G)) — 5 < 4n. .

IA A IA

By Claim 2.6, we have that §(G) = |Tx| + 3207 [Si| > k(k + 1) + 1, whence n =
INglu]| +|U|+ | X =U| > k(k+1)+2+k+ 1.

Claim 2.7 The graph G has a TRDS of cardinality at most 2k + 1.
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Proof. Let = be the vertex of G that has Property P and observe that either
x € Ng(u) or z € X — U. Consider the vertices xg and z;. For each vertex z;, where
2 < i <k, consider a neighbor of z; in G, say y;. Let W = UF_,{z;, y;}.

Assume first that zy and z; are adjacent. As diam(G) = 2, 2y and u have a common
neighbor in G, say y. Since the vertex x dominates Ng(u) U X — U, we have that
if y # z, then z is adjacent to y. Let S = W U {x,zo,y}, and observe that |S| <
|[W|+3 =2k+ 1. It is clear that S is a TDS of G. If kK = 1 then |S| = 3, and so,
since 6* >4, Sisa TRDS of G. If k > 2 then §(G) > k(k+1)+1 > 2k + 1, whence
S is a TRDS of G.

We may assume, without loss of generality, that the set U is independent in G. As
diam(G) = 2, xp and x; have a common neighbor in G, say y, and y € Ng(u)UX —U.
Since x dominates Ng(u) U X — U, recall that if y # x, then x is adjacent to y. Let
x' € Ng(u) — {x} be a vertex adjacent to z in G, and let S =W U {y, z,2'}. Note
that |S| < |W|+3 = 2k + 1. It is clear that S is a TDS of G. If k = 1, then, since
0*>4,Sisa TRDS of G. If k > 2, then §(G) > k(k+1)+1>2k+1, and so S is
a TRDS of G. o

Claim 2.8 If v, (G) + 74 (G) < 4k + 2, then 74, (G) i (G) < 4k + 4k + 1,

Proof. This follows from the fact that ab < (azb)Q, where a and b are non-negative

real numbers. o

To complete the proof of Lemma 2.2, recall that n > k% 4+ 2k + 3, whence 4n > 4k? +

8k+12. By Claim 2.7, we have 7, (G) +71-(G) < 7 (G) +7%- (G) < 2(2k+1) = 4k +2,
and so (cf. Claim 2.8) 7;,.(G)v(G) < 4k* + 4k +1 < 4n.0

Lemma 2.3 Let G be a graph of order n > 4 and assume that neither G nor G has

any isolates. If G or G is disconnected, then v, (G)v(G) < 4n.

Proof. Assume G is disconnected, n > 4 and neither G nor G has any isolates. Let
G1, Gy, . .., G be the components of G, and observe that each component has order
at least two. Let x € V(G1) and y € V(Gs). The set {x,y} is a TRDS of G, whence

Yer (G (G) < 2n < 4n. 0

Lemma 2.4 Let G be a graph of order n > 4 such that G and G are both connected,
and neither G nor G has isolates or is isomorphic to K. If 6(G) =1 or §(G) = 1,
then Y- (G)V(G) < 4n, or, either G € L or G € L.

Proof. Let G Ee a graph of order n > 4 such that G and G are both connected, and
neither G nor G has isolates or is isomorphic to K.

Case A. ( has at least two leaves.
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Let u and v be leaves of G and let v’ (v', respectively) be the neighbor of u (v,
respectively) in G. Let us assume first that «' = v'. Since G has no isolates, there
exists a vertex z € V(G) — Ng[u/]. The set {z,u,u'} is a TRDS of G, and so

Yer (G (G) < 3n < 4n.
We therefore assume that u’ # v'. If V(G) — {u,u/,v,v'} =0, then G = P, € L for

which 74, (G)y4-(G) = 4n. We henceforth assume that V(G) — {u, v, v,v'} # 0, and
son > 5.

If v/ and v’ are not adjacent, then the set {u, v'} is a TRDS of G, whence 7;,.(G)ver (G)
< 2n < 4n. We may assume that v’ and v" are adjacent.

Assume that there exists a vertex z € V(G) —{u,v,u/,v'} such that « and «" are not
adjacent in G. The set {u,v’,x} is a TRDS of G and s0 v;,.(G)7:(G) < 3n < 4n.
Hence, in G, u' is adjacent to every vertex in V(G) — {u,v,u’,v'}, and, by symmetry,
in G, v is adjacent to every vertex in V(G) — {u,v,u/,v'}.

Observe that degg(u') = degg(v') = 1, so every TRDS of G must contain wu,u’, v
and v'. Also note that u is adjacent to v in G.

Consider the set S = {u,v/,v',v}. As G % K, |V — S| > 2. Suppose S is a TRDS
of G. Then 7;,(G) = 4 and 50 Y- (G)Y(G) < 4n. If v.(G)y(G) < 4n, we are
done. So suppose Vi (G)Vi(G) = 4n, whence v,.(G) = n. If two distinct vertices
x and y in V — S are non-adjacent in G, then V — {z,y} is a TRDS of G, and so

Y (G) < n — 2, which is a contradiction. Thus, V' — S forms a clique in G, and so
GelL.

Thus, we may assume that S is not a TRDS of GG, and, similarly, that S is not a
TRDS of G. As S is a TDS of both G and G, there exist vertices x and y in V — S
such that in G, z is not adjacent to every vertex of V' — S — {z} and y is adjacent
to every vertex of V' — S — {y}. We conclude that x # y and that = and y are both
adjacent and non-adjacent in GG, which is a contradiction.

Case B. G has exactly one leaf.

We may therefore assume that G has exactly one leaf, say u. Consider a path
U, Ut .. ., Ueee(u) Of G. Define V;, i = 0,...,ecc(u), as the set of vertices at distance
i from u. If ecc(u) = 2, then G is disconnected, which is a contradiction. So
assume that ecc(u) > 3. If ecc(u) > 5, then {u, Uecc(w} is @ TRDS of G, whence

Yer(G) Y (G) < 2n < 4n. For convenience, set © = u; and z = uz. Observe that the
set V(G) —{z,z} is a TRDS of G, and so v4,(G) <n — 2.

First consider the case when ecc(u) = 4. If S = {u,x, 2} is a TRDS of G, then
Yir (G) Ve (G) < 3n < 4n. We therefore assume that S is not a TRDS of G. As S is
a TDS of G and every vertex of Vs is non-adjacent to every vertex of V; in G, there
exists a vertex y € V3—{z} which is adjacent to every vertex of VoUV3—{z}UV, in G.
If {z,u,y} is a TRDS of G, then ;,(G)7:-(G) < 3n < 4n. So assume {z, u,y} is not
a TRDS of G, and, as before, there exists a vertex y’ € V53— {y} which is adjacent to
every vertex of VoU Vs —{y}UVyin G. If ¢ # z, let 8" = {u,x, v/, z}, while if ¢ = z,

let S" = {u, z,us, z}. Then S” is a TRDS of G and s0 74, (G) v (G) < 4(n—2) < 4n.
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Next consider the case when ecc(u) = 3. Suppose V3 = {z}. Then, as before,
S ={u,z,z} is not a TRDS of GG, and there exists a vertex y € V5 which is adjacent
to every vertex of V5 — {y} in G. Since u is the only leaf of G, we can pick a vertex

y' € Ng(z)—{y}. Theset {u,y’,z} is a TRDS of G and so 74, (G)v(G) < 3n < 4n.
It follows that |V3| > 2.

As S is not a TRDS of G, there exists a vertex y € Vi, U V5 which is adjacent to
every vertex of Vo UVs —{y, 2z} in G.

Subcase i. y € V3.

If {z,u,y} is a TRDS of G, then v, (G)y,(G) < 3n < 4n. Thus, {z,u,y} is not
a TRDS of GG, and so there exists a vertex 3’ € V5 U V3 which is adjacent to every
vertex of VoUV3 —{y,y'} in G. If / € V3 —{z,y}, then {u,z,v/, 2z} is a TRDS of G

and we have that v, (G)y1-(G) < 4(n—2) < 4n. If y’ € V5, then {u, z,y'} is a TRDS
of G, whence V4, (G)Y-(G) < 3n < 4n. We may assume that y' = z, and let y” € V5.
Let 8" = {u,x,y", v/} It Vs —{z,y} # 0, then S" is a TRDS of G. If V3 — {2, y} = 0,

then {u,z,y"} is a TRDS of G. Hence, in both cases, v;,.(G)y-(G) < 4n.
Subcase ii. y € V5.

Assume first that y is adjacent to z. The set {u,z,y} is a TDS of G and if it
is a TRDS of G, then 74, (G)v,(G) < 4n. Hence, as u is the only leaf of G, we
have that every vertex in V3 must have degree at least two in GG, and so there is a
vertex gy € Vi such that Ng(y') = {z,y}. The set {z,y,u} is a TRDS of G, whence

’ytr(G)/Ytr (G) < 4TL

We may assume that y is not adjacent to z. Let 2’ € V3 — {z}. By considering the
set {u,z, 7'}, there is a vertex y’' € Vo U V3 such that Ng(y') D Vo U Vs — {y/,2'}.
Similar to what have been shown for the set {u,z,z} above, we have 3" € V, with
v’ not adjacent to 2z’ in G. The facts that 2’ # z and 3’ is adjacent to z imply that
y # 3. The set S = {u,z,y,y'} is a TDS of G, and if it is a TRDS of G, then
Yer (G)er(G) < 4(n —2) < 4n.

We may assume that S is not a TRDS of G. Hence, there exists a vertex v ¢ S such
that either v € Vo and Ng(v) C {z,y,y'} or v € V3 and Ng(v) C {y,y'}. If v € V5,
then as u is the only leaf of G, we have Ng(v) = {y,y'}, whence v &€ {z,2/,y,vy'}.
Thus, in both cases, v € {z,2',y,y'}. The set {u,y, 2} is a TRDS of G, whence

Y (G (G) < 3n < 4n. O

Lemma 2.5 Let G be a connected graph of order n > 4 with min{6(G),5(G)} > 2.
Moreover, suppose G is connected. Then vu,.(G)ve (G) < 4n.

Proof. Let G be a connected graph of order n > 4 with min{d(G),d(G)} > 2.
Moreover, suppose G is connected. We may assume, by Lemma 2.2, that diam(G) >
3 or diam(G) > 3. Without loss of generality, suppose diam(G) > 3, and consider a
diametrical path u = g, u1, . .., Udiam(@) = v of G. Define V;, ¢ = 0,...,diam(G), as

the set of vertices at distance i from wu. It is easy to see that if diam(G) > 4, then
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the set {u,z} for € V3 is a TRDS of G and s0 7;,(G)7:(G) < 2n. Thus, we may
assume that diam(G) = 3.

Consider the case where V3 = {v}. Obviously, |V1| > 2 (|V2| > 2, respectively), since
otherwise u (v, respectively) is a leaf of G. The set {u,v} is a TDS of G. If it is a
TRDS of G, then 7;,.(G)v,(G) < 2n. So suppose {u,v} is not a RDS of G. Then
there exists a vertex y € V3 U V4 such that Ng(y) 2 Vi U Va — {y}.

Suppose there is a vertex y' € V3 UV, — {y} such that Ng(y') 2 ViU Vo — {y,y'}.
Let z € Ng(v) with z € Vo —{y'}, and let 2’ € Ng(u) with 2/ € V; — {y'}. If y € V4,
then {y,u,z} is a TRDS of G. If y € V5, then {z,y,2'} is a TRDS of G. Hence

Yer (G)ver (G) < 31

Assume, therefore, that each vertex y e ViuVy — {yi is adjacent to a vertex of
ViuVa —{y,y'} in G. But then {y,u,v} is a TRDS of G and so v;,-(G)y-(G) < 3n.

Now suppose V3 D {v}. We may assume that the TDS {u, v} of G is not a RDS of
G. Hence, there exists a vertex y € V5 such that Ng(y) 2 VU Vo U Vs — {v, y}. Now
suppose that there is a vertex y" € V5 — {y} such that Ng(y') 2 ViUVLUVs —{v,y'}.
Let 2 € Ng(v) — {y'}. The set {y,u, 2} is a TRDS of G and 50 Y, (G)73(G) < 3n.

Hence, {y,u,v} is a TRDS of G and so 74, (G)7.(G) < 3n. O

3 Main Result

We are now ready to state and prove our main result:

Theorem 3.1 Let G be a graph of order n > 4, and suppose neither G nor G
contains isolated vertices or is isomorphic to K. Then v, (G)y(G) < 4n with
equality holding if and only if either G € L or G € L.

Proof. Let G be a graph of order n > 4, such that G has no isolates and is not
isomorphic to K. By Lemmas 2.3 and 2.4, both G and G must be connected and
min{d(G),6(G)} > 2. Our result now follows from Lemma 2.5. By Lemmas 2.1, 2.2,
2.3, 2.4 and 2.5 equality holds if and only if G € L or G € L. a
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