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Abstract

Threshold graphs are a prevalent and widely studied class of simple
graphs. We generalize this class of graphs to oriented graphs (directed
simple graphs). We give generalizations to four of the most commonly
used definitions and show their equivalence in the oriented case. We then
enumerate the number of these oriented threshold graphs which relates
to the Fibonacci numbers, and finish by finding the number of transitive
orientations of threshold graphs.

1 Introduction

1.1 History

Threshold graphs were first seen in several publications in the mid 1970s. Papers
in a variety of areas independently developed basic definitions for a class of graphs
which gets its name from a 1973 paper titled Set-packing Problems and Threshold
Graphs by Chvátal and Hammer [1]. These graphs have been found in numerous
applications since their introduction; they cover a wide range of subjects including
applications in set-packing, parallel processing, resource allocation, scheduling, and
psychology. There is a great introduction to threshold graphs and their applications
in the book Threshold Graphs and Related Topics by Mahadev and Peled, [5].

In recent years, the limit points of threshold graphs (as graphons) have been
studied in a paper by Diaconis, Holmes, and Jansen [3]. This gives an interesting
result that their limits can be realized as {0, 1}-valued increasing functions on the
unit square.

Another recent result from Cloteaux et al. [2] gives a generalization to directed
graphs focusing on degree sequences and unique realizations. This work is extended
by Reilly, Scheinerman, and Zhang [6]. These extensions generalize definitions of
simple threshold graphs into directed graphs and demonstrate their equivalence with
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the definitions of Cloteaux et al. These definitions deal predominantly with directed
graphs in which 2-cycles (multi-edges in the underlying graph) are permitted in order
to obtain unique realizability.

In this paper we will look at oriented simple graphs where we prohibit such 2-
cycles and see some surprisingly lovely results.

1.2 Background

Mahadev and Peled in [5] give a thorough treatment of the class of threshold graphs.
Here we give the basic definition and some equivalences.

Let G be a graph. We say that G is a threshold graph if there exists a threshold
t ∈ R and an injective vertex weight function w : V (G) → R such that e = (x, y) ∈ E
if and only if w(x) + w(y) > t.

Although this is a fairly simple definition to work with, there are several equiva-
lences that will be worth considering. To understand them we need few definitions:

A subset of vertices of a graph is a clique if all possible edges between vertices
in the subset are included in the graph. A graph, G = (V,E), is said to be split
if the vertex set V can be partitioned into two classes K and I such that K is a
clique in G, and I is an independent set in G. The neighborhoods of a graph are
said to be nested if any two are comparable as subsets. If H is a graph, a graph G is
said to be H-free if G contains no induced subgraphs isomorphic to H . A vertex is
dominating if it is adjacent to all other vertices. A vertex is isolated if it has degree
0. A graph is oriented if each edge is assigned a direction. The head of an oriented
edge is the vertex to which the edge points, whereas the tail is the vertex from
which the edge begins. Notationally, we say −→xy when the edge xy is oriented with
x as the tail and y as the head. In an oriented graph (V,E), the out-neighborhood
of a vertex v is the set {w ∈ V | −→vw ∈ E}; the in-neighborhood of a vertex v is the
set {u ∈ V | −→uv ∈ E}; the in- (out-)degree of a vertex is the cardinality of its in-
(respectively, out-) neighborhood. The notation Kn represents the complete graph
on n vertices, Pn denotes the path on n vertices, and Cn denotes the cycle on n
vertices. Also �Pn and �Cn denote the directed path and directed cycle.

We can now state four characterizations of threshold graphs.

Theorem 1. [5] The following are equivalent:

(i) G is a threshold graph.

(ii) G is a split graph and the vertex neighborhoods are nested.

(iii) G is {2K2, C4, P4}-free.
(iv) The graph G can be constructed by starting with a single vertex and sequentially

adding either a dominating vertex or an isolated vertex at each step.

Equivalence (iv) of Theorem 1 allows a very nice constructive bijection between
binary sequences of length n − 1 and threshold graphs on n vertices. We define a
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threshold graph by creating a binary sequence s̄ ∈ {0, 1}n by setting s1 = � (this
does not matter since the first vertex is both isolated and dominating), and for
i = 2, 3, . . . , n set si = 1 if the vertex added is dominating or si = 0 if it is isolated.
Given such a sequence we define T (s̄) to be the threshold graph associated with it.
In this construction the very first vertex is both isolated and dominating; therefore
our classifying it as a 0 or 1 is somewhat misleading. We will always classify the
first vertex as � when giving a threshold graph in its sequential form. We use the
convention that the sequence is constructed right to left, thinking of the first vertices
added as least significant, as in least significant digits in a number.

2 Oriented Threshold Graphs

There are several definitions for a threshold graph in the undirected case, Theorem 1.
We begin by developing an analogous vocabulary for oriented graphs and then state
a theorem presenting several equivalent definitions of an oriented threshold graph.

Definition 2. An oriented graph, G = (V,E), is said to be threshold if there exists
an injective weight function on the vertices w : V → R and a threshold value t ∈ R

such that −→xy ∈ E if and only if |w(x)|+ |w(y)| ≥ t and w(x) > w(y).

Although in the unoriented graph case the weight function need not be injective
[5], we choose an injective weight function in the oriented case so that we can think
of this as a threshold graph with edges running ‘downhill’ and not worry about which
direction to orient an edge if the weights are equal.

2.1 Background and Oriented Threshold Equivalence

Before we state our main theorem which is directly analogous to Theorem 1, we need
to develop vocabulary to state corresponding statements in the oriented case.

The first generalization we will explore is split with nested neighborhoods. These
next definitions will help us generalize the concepts of split and nested neighborhoods
to oriented graphs where we have not just a total neighborhood, but have in and out
neighborhoods as well.

Definition 3. An oriented graph is said to be oriented split if the vertex set can be
partitioned into three classes, V = B ∪ I ∪ T (Bottom, Independent, and Top), with
the properties:

i) I is an independent set;

ii) the graph induced by B ∪ T is a tournament;

iii) all edges between T and B ∪ I are directed from T ;

iv) all edges between B and T ∪ I are directed into B.
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Figure 2.1: A small oriented split graph
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A small example of an oriented split graph may be helpful in understanding this
definition; see Figure 2.1

LaMar, prior to working on the unigraphic sequence problem for digraphs, gave
a definition for split digraphs in [4]; the definition we just gave fits within his, but is
more restrictive. The definition we give only allows the tournament to be split into
two parts, a top and a bottom. LaMar’s definition allows a third part, in some sense
a middle with fewer restrictions on the edges in and out of it. With this stronger
definition, we end up with a smaller class of graphs, but we are able to say much
more about the structure of our class, both by giving a recursive construction from
a ternary sequence, and by defining what it means to have nested neighborhoods in
the sense of oriented threshold graphs.

A vertex is a source (sink) if it has out- (respectively, in-) degree 0. A vertex, v, in
an oriented graph (V,E) is called an out-dominating (in-dominating) vertex if it is a
source (respectively, sink) and its out-neighborhood (respectively, in-neighborhood)
is V − v.

Definition 4. Let σ : V → 2V be a function from a set to its power set. We say the
function σ is nested on S ⊆ V if for every x, y ∈ S we have σ(x) ⊆ σ(y) ∪ {y} or
σ(y) ⊆ σ(x) ∪ {x}. We denote σ(x) ⊆ σ(y) ∪ {y} by x�σ y.

We say the function σ is strictly nested on S ⊂ V , if for every x, y ∈ S we have
either σ(x) ⊆ σ(y) or σ(y) ⊆ σ(x). For x, y ∈ V we denote σ(x) � σ(y) by x�σ y.

If σ is nested (respectively, strictly nested) on all of V , we say that σ is nested
(respectively, strictly nested).

Recall that in Theorem 1 one of the conditions that makes a graph threshold is
that it is split and has nested neighborhoods. That is, the neighborhood function of
a threshold graph is a nested function. With this in mind, the proper way to view
nested and strictly nested functions in terms of oriented threshold graphs is via the
following definition.

Definition 5. Let D be an oriented split graph with clique K = T ∪ B and in-
dependent set I. We say D has properly nested neighborhoods if the following hold
for N,N+, N− : V → 2V the neighborhood, out-neighborhood and in-neighborhood
functions:
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i) N is nested,

ii) N+ and N− are nested on I and for x, y ∈ I we have if x�N y then x�− y and
x�+ y (the N’s in the last two inequalities are ommitted to make the notation
less cumbersome).

iii) N+ and N− are strictly nested on K and for x, y ∈ K we have x �+ y if and
only if y �− x.

The properly nested neighborhoods condition states that the total neighborhoods
are nested. For vertices in I, the size of in and out neighborhoods are directly
correlated, whereas in B ∪ T the in and out neighborhoods are inversely correlated.
Figure 2.1 gives an example of a graph which has properly nested neighborhoods.

Now, we can generalize Theorem 1 to oriented threshold graphs.

Theorem 6. The following are equivalent for a graph G = (V,E):

(a) G is an oriented threshold graph.

(b) G is
{
�P3, �C3

}
-free and the underlying undirected graph is {2K2, C4, P4}-free.

(c) G is a transitive orientation of a threshold graph.

(d) G is an oriented split graph and has properly nested neighborhoods.

(e) G can be constructed from the one vertex empty graph by successively adding an
independent vertex, an out-dominating vertex or an in-dominated vertex.

Proof. We will prove the implications in the order they are written. We start with
(a) implies (b). Let w : V (G) → R be the weight function and t ∈ R the threshold
value for G. To show the underlying graph is threshold, use the weight function
|w(v)| and the same threshold t; this gives {2K2, C4, P4}-free. Now, x → y and
y → z. By definition then, we know that |w(x)|+ |w(y)| ≥ t and |w(y)|+ |w(z)| ≥ t
and that w(x) > w(y) > w(z). We need to consider two cases to show that x → z.

Case 1) w(y) ≥ 0: Then w(x) > 0 so |w(x)| ≥ |w(y)| therefore |w(x)| + |w(z)| ≥
|w(y)|+ |w(z)| ≥ t. So x → z.

Case 2) w(y) ≤ 0: Then w(z) < 0 so |w(z)| ≥ |w(y)| therefore |w(x)| + |w(z)| ≥
|w(x)|+ |w(y)| ≥ t. So again x → z.

This means that there is an edge between x and z so that G is has no �P3. Also,
the edge is not oriented to form a �C3.

Next, we show (b) implies (c). Let −→xy and −→yz be edges of G. Since G is �P3 free,

either −→xz or −→zx. Since G is �C3-free, we must have �xz, making G transitive. By the
underlying graph being {2K2, C4, P4}-free, we have that G is a transitive orientation
of a threshold graph.

Continuing on, we show (c) implies (d). Let G be the underlying threshold graph
associated with the sequence s̄ (Theorem 1). The initial vertex in the sequential
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construction is given the label �. Now, the collection of � and the 0s form an inde-
pendent set; call this set of vertices I. The collection of 1s form a clique; call this set
K. Set T = N−(�) and B = N+(�). Since every 1 was adjacent to �, this partitions
K. By the transitivity of the ordering, if t ∈ T and b ∈ B, then t → � and � → b so
t → b. This gives us the partition T ∪ I ∪B. We have that all edges between T and
B are oriented correctly.

We still need to show that edges between K and I are oriented correctly. That
is, we need to show the edges are directed from T to I, and the edges are directed
to B from I. To do this we first show that N+ and N− are nested on I. Since the
underlying graph is threshold, the neighborhood function is nested (this is the nested
neighborhoods condition of (ii) in Theorem 1). So, let i, j ∈ I with i�N j. Suppose
there is x ∈ N+(i)\N+(j). Then x ∈ N−(j), since i�N j. But this means i → x → j
and transitivity gives i → j; however, that is impossible because i, j ∈ I. So we
must have N+(i) ⊆ N+(j). A similar argument gives N−(i) ⊆ N−(j). This shows
property ii) of the properly nested condition, Definition 5.

Using this, and noting that for all i ∈ I we have i �N �, we obtain N+(i) ⊆
N+(�) = B and N−(i) ⊆ N−(�) = T , showing that the graph is oriented split.

To show the third condition of properly nested neighborhoods, let x, y ∈ K
with x → y. Then by transitivity N+(y) � N+(x) (the inclusion is strict because
y /∈ N+(y)) and N−(x) � N−(y) (again because x /∈ N−(x)) which completes all
conditions.

The next implication is (d) implies (e). Let i ∈ I be minimal in I with respect to
total neighborhoods. If N(i) = ∅ then it is an isolate. If not, we have that either its
in-neighborhood is non-empty or its out-neighborhood is non-empty. Say x ∈ N+(i).
Then, x ∈ N+(j) for all j ∈ I since the neighborhood function is nested on I. Let y
be the maximum element in the order given by N− being strictly nested on K. Then
since x ∈ N+(j) for all j ∈ I, we have j ∈ N−(x) � N−(y) for all j ∈ I. This show y
is dominated by I. To show y is dominated by K, suppose for a contradiction, that
y → z for some z ∈ K. Then y ∈ N−(z) � N−(y) which is impossible. This means
y is an in-dominated vertex. A similar argument shows that if x ∈ N−(i) then the
maximal vertex with respect to the strictly nested order on N+ is an out-dominating
vertex.

In order to recursively choose an independent, out-dominating, or in-dominated
vertex we must show that the removal of such a vertex leaves us with a transitive
digraph with properly nested neighborhoods. If the vertex is isolated, its removal
has no effect on the neighborhoods or the transitivity of the graph. If the vertex is
dominating or dominated, then its removal decreases every neighborhood in exactly
the same way, leaving comparability conditions intact. The transitivity also remains
because removal of a vertex in any transitive graph leaves the graph transitive.

This gives us a recursive construction of the oriented threshold graph as a se-
quence of independent, in-dominated, and out dominating vertices as required.

Finally, (e) implies (a). The assumption gives a sequence of zeros, ones, and
negative ones, say (si)

n
i=1. If we forget (temporarily) about the sign on the ones,
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we have a sequence of zeros and ones corresponding to removing the direction on
the edges. This underlying graph is constructed by adding isolated or dominating
vertices. This means it is an unoriented threshold graph. There is an injective weight
function and threshold for this underlying graph, say (wi)

n
i=1 and t. It is enough to

show then, that the weight function

�wi =

{
siwi, ifsi 
= 0

wi, ifsi = 0

i gives the correct orientation of the edges.

We make an observation about the weights of the vertices. Notice that the weight
of a vertex is directly correlated with the size of its neighborhood since the heigher
the weight of a vertex the easier it is to meet the threshold with another vertex.
This means the later in the sequence a 1 happens, the higher the weight of the
vertex associated to it. Conversely, the later in the sequence a 0 happens the lower
the associated weight will be so that it becomes more difficult to meet thresholds
and thus will have fewer neighbors.

With this, we see that the above weight function satisfies |�wi| > |�wj| whenever
i > j and |si| = 1. This means that the orientation of the graph given by the above
weight function is the same as the orientation given by the sequential construction.

Remark 7. This last equivalence gives a ternary sequence which can be translated
into an oriented threshold graph. We call the graph a sequence s produces, OTG(s).

Example 8. Let s̄ = (1,−1, 0,−1, �). The sequential construction yields the graph
in Figure 2.2.

Figure 2.2: (Left) OTG(1,−1, 0,−1, �) and (right) the directed threshold graph cor-
responding to the weight function (15,−12, 3,−9, 6) and threshold 15.
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The vertex weights shown in the figure, (15,−12, 3,−9, 6) with threshold t = 15,
also gives an isomorphic graph.

3 Sequential Form and Enumeration

A few things before we go further: to draw and think about these oriented threshold
graphs, the sequential definition is quite a bit more malleable; we work with it. Recall
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that in the undirected case, the first vertex drawn is always an independent vertex
and we denoted it by �. We will use this convention with oriented threshold graph
sequences as well. For another simplification, instead of +1 and −1 we simply write
+ and − (respectively).

Looking more closely at these sequences, things get a little messy. In the undi-
rected case, it is easy to just count the sequences, {0, 1}n−1 (n− 1 as the first vertex
drawn does not matter.) Things are a little more subtle in the case of oriented thresh-
old graphs. Notice (in Figure 3.3) that the sequence (+ − 0 �) gives an isomorphic
graph to the one from the sequence (− + 0 �). The isomorphism switches the last
two vertices, as shown in the following figure.

Figure 3.3: (Left) OTG(−1, 1, 0, �), and (right) OTG(1,−1, 0, �)
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Define [n] = {1, 2, 3, ·, n}.
Lemma 9. Given a sequence s̄ := (si)

n
i=1, if there is a k ∈ [n] such that |sk| = |sk−1|

then the sequence s′ = (s1, s2, · · · , sk−2, sk, sk−1, sk+1, · · · , sn) produces a digraph iso-
morphic to the one produced by s.

Proof. Clearly if sk = sk−1 we are fine. So without loss of generality assume sk = +

and sk−1 = −. So there is an edge
−−−−−→
k(k − 1). Now, just note the neighborhoods

N+(k), N−(k), N+(k−1), N−(k−1) do not change when we swap the order of k and
k − 1, as the only edge affected is the one between them, and its order is switched
as was needed.

Remark 10. Since the � at the beginning of any sequence can be thought of as a
+,−, or 0, we can always think of −’s adjacent to � as +’s.

Using the previous lemma and remark we obtain a ‘canonical’ representation for
any isomorphism class, namely,

(+pl,−ml , 0zl,+pl−1,−ml−1 , 0zl−1, · · · ,+p1,−m1 , 0z1,+p0, �)

where zi 
= 0 for all i. The notation +pi, −mi , and 0zi simply mean pi +’s, mi −’s,
and zi 0’s (respectively).

Theorem 11. There is a bijection between isomorphism classes of oriented threshold
graphs and sequences of the form

(+pl,−ml , 0zl,+pl−1,−ml−1 , 0zl−1, · · · ,+p1,−m1 , 0z1,+p0, �)
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where the zi are positive integers and pi and mi are non-negative integers. We call
a sequence of this form canonical.

Proof. Let G be a directed threshold graph. Then by Theorem 6 (e) there is a
sequence of the characters +,− and 0 corresponding to G. By Lemma 9 any grouping
of +’s and −’s can be rearranged so that all +’s are to the left of all −’s in the
grouping without changing the isomorphism class. Also, by Remark 10, if there is
a grouping of +’s and −’s by � we can consider them as all +’s. Each of these
groupings is separated by a grouping of 0’s. This gives us a canonical sequence for
the graph G.

Now, every ternary sequence gives a unique representation of the form

(+pl,−ml , 0zl,+pl−1,−ml−1 , 0zl−1, · · · ,+p1,−m1 , 0z1, �).

Since each graph gives a ternary sequence, if we can show that two sequences that
have different canonical forms give non-isomorphic graphs, we are done.

So let s and t be two different ternary sequences in canonical form. We start
with a few trivial cases. If we take the underlying undirected graphs of s and t, and
they are non-isomorphic, then s and t themselves cannot be isomorphic. To get to
the undirected underlying graphs, we just look at the binary sequences where +’s
and −’s are mapped to 1, and 0’s are mapped to 0. If these are not the same, we
are done. So assume, s and t have the same length and the same number of 0’s;
moreover, the indices of the 0’s are the same. Let i be the leftmost index in which
s and t differ; without loss of generality, say si = + and ti = −. Let k be the next
index (k < i) where sk = tk = 0 (this exists because s and t are in canonical form,
and if it did not, then s and t would be a sequence of +’s). Then the grouping of 0’s
that include sk and tk form an independent set, say I. Now, all vertices in I have
the same degree, n− k.

From here there are two cases: there is another + or − after the grouping of 0’s,
or � is the next vertex after the grouping of zeros in which index k lies.

In the first case, there are no other vertices of degree n− k besides those in I. In
the sequence s, the number of vertices in the in-neighborhood of the vertices in I is
greater than they are in t. This makes the two graphs non-isomorphic.

In the other case, the number of +’s and −’s are different between the two
sequences, meaning the oriented split partition of the vertices is different showing
that the sequences represent non-isomorphic graphs.

Having a ternary canonical representation for oriented threshold graphs gives us
an easy way to count the number of isomorphism classes of oriented threshold graphs
on n vertices.

Theorem 12. The number of isomorphism classes of oriented threshold graphs on
n vertices is F2n the 2n Fibonacci number (where F0 = 0, F1 = 1.)
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Proof. We find a recursion relation on the classes by looking at the sequences in
canonical form. We can always create a new sequence from one in canonical form
by augmenting it with a 0 or +, but only sequences that have a 0 or − can be
augmented with a − to form a new sequence in canonical form. Let T (n) be the
number of sequences in canonical form, and P (n) be the number of sequences in
canonical form starting with a +. Because a sequence in canonical form cannot have
− before a +, we obtain T (n) = T (n−1)+T (n−1)+(T (n−1)−P (n−1)) where the
first two terms come from augmenting a 0 or + to an old sequence, and the last term
from augmenting a −. Since we could always have augmented a sequence with a +,
we have P (n) = T (n−1). This gives us the recurrence T (n) = 3T (n−1)−T (n−2).
The initial conditions are that T (1) = 1 (being the sequence +) and T (2) = 2 (from
the sequences +� and 0�).

We look at the Fibonacci sequence; specifically, we look at F2n.

F2n = F2n−1 + F2n−2

= 2F2n−2 + F2n−3

= 3F2n−2 − F2n−4

= 3F2(n−1) − F2(n−2)

Also, notice that F0 = 1 and F2 = 2. Therefore we have the same recursion and
starting values as the even Fibonacci numbers, and we are done.

Now, note that (e) from Theorem 6 states that every tertiary sequence is asso-
ciated to an oriented threshold graph. Since tertiary sequences in cannonical form
represent the isomorphism classes, we conclude that the number of isomorphism
classes of orientation of threshold graphs which are transitive is F2n.

Further, by using (c) from Theorem 6, we find that every transitive ordering of a
threshold graph is oriented threshold. This means that the number of non-isomorphic
transitive orientations of a threshold graph can be counted by determining the num-
ber of ways to include +’s and −’s in canonical form of the binary sequence repre-
sentation of the unoriented threshold graph. We do that in the following theorem.

Theorem 13. Let G be a threshold graph given by the sequence

(+pl, 0zl, . . . ,+p1, 0p1,+p0, �).

The number of non-isomorphic transitive orientations of G is

l∏
i=1

(pl + 1).

Proof. An orientation of G is given by turning some of the +’s into −’s. Canonical
form states that we get the same graph if we put −’s at the end of the string of
+/−’s. So, for each block of +’s we simply have a choice of where to start putting
−’s. There are pi+1 choices for each block. The last block does not get any −’s. The
product of these choices is the total number of orientations which are transitive.
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